首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
玉米抗甘蔗花叶病毒基因的比较定位   总被引:2,自引:0,他引:2  
收集了玉米抗甘蔗花叶病毒基因/QTL定位信息, 借助玉米遗传图谱IBM2 2005 Neighbors进行了整合。在国内外研究中, 累计报道81个抗病毒基因位点, 分布在玉米7条染色体上, 比较定位发现这些位点集中分布于第3和6染色体。采用元分析技术, 确定3个“一致性”抗病毒QTL, 其中1个位于第3染色体, 在遗传图谱IBM2 2005 Neighbors上覆盖的范围为6.44 cM; 2个位于第6染色体, 覆盖范围分别为6.16 cM和27.48 cM。借助比较基因组学策略, 在第3染色体“一致性”QTL区间内筛选出4个抗病位置候选基因。该研究结果为确定和克隆抗病主效基因提供了基础。  相似文献   

2.
拔节期与抽穗期玉米抗纹枯病相关QTL的初步定位   总被引:4,自引:0,他引:4  
以玉米自交系R15(抗)×478(感)的F_2分离群体为作图群体,构建了包含146个SSR标记位点的遗传连锁图谱,覆盖玉米基因组1666 cM,平均图距11.4 cM。通过麦粒嵌入法对229个F_(2:4)家系进行人工接种纹枯病菌,于玉米拔节期和抽穗期进行纹枯病的抗性鉴定。应用复合区间作图法分析两个时期的抗病QTL及遗传效应。结果共检测到17个抗性QTL,其中以拔节期病情指数为指标共检测到9个QTL,分别位于第1、2、3、4、5、6、和10染色体上,可解释的表型变异为3.72%-9.26%;以抽穗期的病情指数为指标共在7条染色体上检测到10个抗玉米纹枯病的QTL,分布于第2、3、4、5、6、8和9染色体上。单个QTL可解释的表型变异为4.27%-9.27%。两个时期共检测出2个共同QTL,它们分别位于第2染色体的bnlgl662-bnlg1940区间和第6染色体的umc1006-umc1723区间。定位结果表明两个时期检测出的抗性QTL的差异表达与玉米不同发育时期基因的时空表达有密切关系,从而反映在纹枯病的抗性位点差异性上.这为玉米抗病选育提供新的信息。  相似文献   

3.
玉米抗南方锈病基因的QTL定位   总被引:1,自引:0,他引:1  
为发掘新的抗南方锈病基因资源,本研究以感病自交系黄早四为母本、抗病自交系W456为父本,构建F2群体并开展抗病基因定位研究。采用人工接种鉴定的方法对两个亲本、F1、F2群体及对照材料进行表型鉴定和遗传分析。利用均匀覆盖10条染色体的200个SSR标记,分析240个F2单株的基因型并构建含有200个SSR位点的遗传连锁图,连锁图总长度3331 cM,标记间平均距离16.6 cM。使用QTL IciMapping V4.1软件中的完备区间作图法对抗病QTL进行分析,共检测到6个控制南方锈病的QTL:qSCR3、qSCR7、qSCR8-1、qSCR8-2、qSCR9和qSCR10,邻近标记分别为umc2105和umc1729、umc1066和bnlg2271、umc1904和umc1984、umc1984和bnlg1651、umc1957和bnlg1401、umc2034和umc1291,分别位于3、7、8、9和10号染色体上,其中8号染色体上有两个位点,标记区间长度在5~19 cM之间。单个QTL的表型贡献率在2.61%~24.19%之间,可以解释表型总变异的62.3%,其中3个QTL贡献率大于10%,位于10号染色体上的qSCR10贡献率最大,可解释表型变异的24.19%。通过对目标区间标记加密,将该位点的定位区间进一步缩小到2.51 cM内,与两侧标记的距离分别是2.15 cM和0.36 cM。初步定位得到10号染色体上存在抗南方锈病的主效QTL,可为抗病品种的培育提供参考。  相似文献   

4.
玉米灰斑病是由玉米尾孢菌(Cercospora zeine)和玉蜀黍尾孢菌(Cercospora zeae-maydis)引起的真菌性病害,是世界范围内重要的玉米叶部病害之一。以玉米灰斑病抗病自交系Suwan1和感病自交系HM01构建的BC1F1群体为研究材料,在自然发病条件下通过对BC1F1群体中玉米灰斑病的抗性鉴定,选择30株抗病材料和30株感病材料分别构建DNA抗、感混池。在对两个混池进行高通量测序后,通过质量控制和数据分析得到两个极端混池中的变异信息。利用高质量SNP标记对应的两个混池中测序深度差异进行统计检验,成功鉴定了29个玉米灰斑病抗性QTL (quantitative trait loci)。利用MaizeGDB网站在29个抗病QTL内共搜索到2 768个基因,通过Phytozome网站与拟南芥和水稻基因组进行同源比对,在1号、5号和10号染色体上分别确定了1个基因作为抗玉米灰斑病的候选基因。  相似文献   

5.
水稻中大麦Mlo和玉米Hm1抗病基因同源序列的分析和定位   总被引:4,自引:0,他引:4  
刘卫东  王石平 《遗传学报》2002,29(10):875-879
大麦抗病基因Mlo和玉米抗病基因Hm1编码的产物不具有绝大多数植物抗病基因产物所含有的保守结构域。这两个抗病基因的作用机理也不符合基因对基因学说。从水稻中分离克隆了Mlo基因的同源序列OsMlo-1和玉米Hm1基因的同源序列DFR-1。利用水稻分子标记遗传连锁图,将OsMlo-1定位于水稻第六染色体的两俱RZ667和RG424之间;Osmlo-1距离这两个分子标记分别为20.6和6.0cM(centi-Morgan)。将DFR-1定位于水稻第一染色体两个分子标记R2635和RG462之间;DFR-1距离这两个分子标记分别为11.3和23.9cM。参照已发表的水稻分子标记连锁图,发现OsMlo-1和DFR-1的染色体位点分别与两个报道的水稻抗稻瘟病数量性状位点(QTL)有较好的对应关系。结果提示,水稻中与大麦Mlo 和玉米Hml同源的基因可能也参于抗病反应的调控。  相似文献   

6.
水稻抗纹枯病遗传育种研究进展   总被引:3,自引:0,他引:3       下载免费PDF全文
纹枯病是世界性水稻病害, 在中国南方部分水稻种植区已成为水稻第一大病害. 但对水稻抗纹枯病遗传育种研究却进展缓慢. 抗性鉴定方法、抗病基因定位和抗性资源发掘是抗病遗传育种研究中的最重要内容, 亦是抗病品种选育的基础. 本文综述了近年提出的水稻纹枯病抗性鉴定方法, 对抗病基因QTL进行物理图谱整合, 分析了抗病QTL的定位概况, 同时对抗源发掘和抗病育种方面的新进展进行了归纳与讨论, 最后提出下一步研究方向, 以期为加速水稻抗纹枯病遗传育种进程提供帮助.  相似文献   

7.
两个玉米矮花叶病显性互补抗病基因的发现和定位   总被引:20,自引:0,他引:20  
吴建宇  丁俊强  杜彦修  陈伟程 《遗传学报》2002,29(12):1095-1099
玉米矮花叶病是世界普通发生危害严重的玉米病毒病害之一,迄今为止,只有少数几个抗病基因被发现并定位,优良自交系四一是鉴定出定的玉米筹花叶病新抗源,它表现为全生育抗性,通过连续两年的经典遗传学研究发现,四一的成株期抗性表现为一种新的抗病遗传模式,该抗性是由两个显性互补抗病基因控制,87对微卫星标记分析进一步证实了以上推论,并把两个抗病基因分别定位在第三和第六染色体上,第三染色体上的抗病基因与微卫星标记phi029相距14.5cM,第六染色体上的抗病基因与微卫星标记phil26相距7.2cM.  相似文献   

8.
选用抗玉米丝黑穗病自交系Mo17和SH15为供体,与受体感病自交系黄早四和昌7-2构建回交群体(BC3F1\BC4F2),通过田间人工接种玉米丝黑穗病原菌鉴定抗病性表现,评价群体抗病性。研究结果显示黄早四×(黄早四×Mo17)BC4F2群体发病率明显高于BC3F1群体;两个BC4F2黄早四×(黄早四×Mo17)和昌7-2×(昌7-2×SH15)群体的发病率差异较大。采用SSR标记分析抗病株的供体染色体导入片段,发现随着回交次数的增多,导入片段数量减少,但不同回交群体中供体导入片段数目明显不同。通过连锁不平衡分析,在染色体2.09和3.04区段发掘和验证2个抗玉米丝黑穗病主效QTL,连锁标记分别为umc2077和phio53或bnlg1965。本文研究结果为抗丝黑穗病基因精细定位和分子聚合育种提供了信息和材料。  相似文献   

9.
稻瘟病新隐性抗病基因pi55(t)的遗传及定位   总被引:1,自引:0,他引:1  
粤晶丝苗2 号是广东省优质稻主栽品种和省区试对照品种, 具有高度的稻瘟病抗性.用中国不同地区297 个稻瘟病菌株进行抗谱分析, 粤晶丝苗2 号对广东、四川、辽宁和黑龙江稻瘟病菌群体的抗性频率均达到100%, 其抗谱较主要抗源品种三黄占和28 占更广. 利用不同的菌株, 对粤晶丝苗2 号/露明的F2 群体和F4 株系进行抗性分离分析, 结果表明, 该品种的稻瘟病抗性由显、隐性的多基因控制. 通过基于F4 单基因分离株系的BSA 分析, 分别在染色体2, 6, 8 和12 上筛选到了与其抗病基因连锁的候选标记. 通过基于基因组位置已知的分子标记的连锁分析, 将其中的隐性基因定位于染色体8 约1.9 cM/152 kb 的区域内. 由于该区域内尚未有主效抗病基因的存在, 因此, 该基因是新的隐性抗病基因, 被命名为pi55(t). 通过对该区域内候选基因的注释, 发现其中编码LRR 蛋白的Os08g40090 和编码重金属结合域蛋白的Os08g40130 可能是其最佳的候选基因.  相似文献   

10.
水稻子粒硒含量的遗传及QTL检测   总被引:1,自引:0,他引:1  
富硒功能水稻具有富硒、优质、保健、防病、安全等特点,已成为当前研究的热点。子粒硒含量的QTL定位对研究富硒功能水稻的遗传育种具有重要的意义。以籼稻亲本奉新红米和明恢100杂交的145个株系的F2群体构建遗传连锁图谱,图谱拟合92个SSR标记位点,覆盖水稻基因组2187.5 cM,标记间平均遗传距离为23.7 cM,占水稻全基因组的49.2%。采用复合区间作图法,对水稻子粒硒含量进行QTL分析,在第5染色体上共检测到2个新的水稻子粒硒的QTL,对表型变异的贡献率分别为6.39%、8.01%。  相似文献   

11.
A meta-analysis of quantitative trait loci (QTL) associated with plant digestibility and cell wall composition in maize was carried out using results from 11 different mapping experiments. Statistical methods implemented in “MetaQTL” software were used to build a consensus map, project QTL positions and perform meta-analysis. Fifty-nine QTL for traits associated with digestibility and 150 QTL for traits associated with cell wall composition were included in the analysis. We identified 26 and 42 metaQTL for digestibility and cell wall composition traits, respectively. Fifteen metaQTL with confidence interval (CI) smaller than 10 cM were identified. As expected from trait correlations, 42% of metaQTL for digestibility displayed overlapping CIs with metaQTL for cell wall composition traits. Coincidences were particularly strong on chromosomes 1 and 3. In a second step, 356 genes selected from the MAIZEWALL database as candidates for the cell wall biosynthesis pathway were positioned on our consensus map. Colocalizations between candidate genes and metaQTL positions appeared globally significant based on χ2 tests. This study contributed in identifying key chromosomal regions involved in silage quality and potentially associated genes for most of these regions. These genes deserve further investigation, in particular through association mapping.  相似文献   

12.
Common smut in maize, caused by Ustilago maydis, reduces grain yield greatly. Agronomic and chemical approaches to control such diseases are often impractical or ineffective. Resistance breeding could be an efficient approach to minimize the losses caused by common smut. In this study, quantitative trait loci (QTL) for resistance to common smut in maize were identified. In 2005, a recombinant inbred line (RIL) population along with the resistant (Zong 3) and susceptible (87-1) parents were planted in Beijing and Zhengzhou. Significant genotypic variation in resistance to common smut was observed at both locations after artificial inoculation by injecting inoculum into the whorl of plants with a modified hog vaccinator. Basing on a genetic map containing 246 polymorphic SSR markers with an average linkage distance of 9.11 cM, resistance QTL were analysed by composite interval mapping. Six additive-effect QTL associated with resistance to common smut were identified on chromosomes 3 (three QTL), 5 (one QTL) and 8 (two QTL), and explained 3.2% to 12.4% of the phenotypic variation. Among the 6 QTL, 4 showed significant QTL x environment (Q x E) interaction effects, which accounted for 1.2% to 2.5% of the phenotypic variation. Nine pairs of epistatic interactions were also detected, involving 18 loci distributed on all chromosomes except 2, 6 and 10, which contributed 0.8% to 3.0% of the observed phenotypic variation. However, no significant epistasis x environment interactions were detected. In total, additive QTL effects and Q x E interactions explained 38.8% and 8.0% of the phenotypic variation, respectively. Epistatic effects contributed 15% of the phenotypic variation. The results showed that besides the additive QTL, both epistasis and Q x E interactions formed an important genetic basis for the resistance to Ustilago maydis in maize.  相似文献   

13.
A comprehensive analysis was conducted using 48 sorghum QTL studies published from 1995 to 2010 to make information from historical sorghum QTL experiments available in a form that could be more readily used by sorghum researchers and plant breeders. In total, 771 QTL relating to 161 unique traits from 44 studies were projected onto a sorghum consensus map. Confidence intervals (CI) of QTL were estimated so that valid comparisons could be made between studies. The method accounted for the number of lines used and the phenotypic variation explained by individual QTL from each study. In addition, estimated centimorgan (cM) locations were calculated for the predicted sorghum gene models identified in Phytozome (JGI GeneModels SBI v1.4) and compared with QTL distribution genome-wide, both on genetic linkage (cM) and physical (base-pair/bp) map scales. QTL and genes were distributed unevenly across the genome. Heterochromatic enrichment for QTL was observed, with approximately 22% of QTL either entirely or partially located in the heterochromatic regions. Heterochromatic gene enrichment was also observed based on their predicted cM locations on the sorghum consensus map, due to suppressed recombination in heterochromatic regions, in contrast to the euchromatic gene enrichment observed on the physical, sequence-based map. The finding of high gene density in recombination-poor regions, coupled with the association with increased QTL density, has implications for the development of more efficient breeding systems in sorghum to better exploit heterosis. The projected QTL information described, combined with the physical locations of sorghum sequence-based markers and predicted gene models, provides sorghum researchers with a useful resource for more detailed analysis of traits and development of efficient marker-assisted breeding strategies.  相似文献   

14.
Genetic architecture of flowering time in maize was addressed by synthesizing a total of 313 quantitative trait loci (QTL) available for this trait. These were analyzed first with an overview statistic that highlighted regions of key importance and then with a meta-analysis method that yielded a synthetic genetic model with 62 consensus QTL. Six of these displayed a major effect. Meta-analysis led in this case to a twofold increase in the precision in QTL position estimation, when compared to the most precise initial QTL position within the corresponding region. The 62 consensus QTL were compared first to the positions of the few flowering-time candidate genes that have been mapped in maize. We then projected rice candidate genes onto the maize genome using a synteny conservation approach based on comparative mapping between the maize genetic map and japonica rice physical map. This yielded 19 associations between maize QTL and genes involved in flowering time in rice and in Arabidopsis. Results suggest that the combination of meta-analysis within a species of interest and synteny-based projections from a related model plant can be an efficient strategy for identifying new candidate genes for trait variation.  相似文献   

15.
Linkage mapping of 1454 new maize candidate gene Loci   总被引:8,自引:0,他引:8       下载免费PDF全文
Bioinformatic analyses of maize EST sequences have highlighted large numbers of candidate genes putatively involved in agriculturally important traits. To contribute to ongoing efforts toward mapping of these genes, we used two populations of intermated recombinant inbred lines (IRILs), which allow a higher map resolution than nonintermated RILs. The first panel (IBM), derived from B73 x Mo17, is publicly available from the Maize Genetics Cooperation Stock Center. The second panel (LHRF) was developed from F2 x F252 to map loci monomorphic on IBM. We built framework maps of 237 loci from the IBM panel and 271 loci from the LHRF panel. Both maps were used to place 1454 loci (1056 on map IBM_Gnp2004 and 398 on map LHRF_Gnp2004) that corresponded to 954 cDNA probes previously unmapped. RFLP was mostly used, but PCR-based methods were also performed for some cDNAs to map SNPs. Unlike in usual IRIL-based maps published so far, corrected meiotic centimorgan distances were calculated, taking into account the number of intermating generations undergone by the IRILs. The corrected sizes of our framework maps were 1825 cM for IBM_Gnp2004 and 1862 cM for LHRF_Gnp2004. All loci mapped on LHRF_Gnp2004 were also projected on a consensus map IBMconsensus_Gnp2004. cDNA loci formed clusters near the centromeres except for chromosomes 1 and 8.  相似文献   

16.
17.
Qiu F  Zheng Y  Zhang Z  Xu S 《Annals of botany》2007,99(6):1067-1081
BACKGROUND AND AIMS: Soil waterlogging is a major environmental stress that suppresses maize (Zea mays) growth and yield. To identify quantitative trait loci (QTL) associated with waterlogging tolerance at the maize seedling stage, a F2 population consisting of 288 F(2:3) lines was created from a cross between two maize genotypes, 'HZ32' (waterlogging-tolerant) and 'K12' (waterlogging-sensitive). METHODS: The F2 population was genotyped and a base-map of 1710.5 cM length was constructed with an average marker space of 11.5 cM based on 177 SSR (simple sequence repeat) markers. QTL associated with root length, root dry weight, plant height, shoot dry weight, total dry weight and waterlogging tolerance coefficient were identified via composite interval mapping (CIM) under waterlogging and control conditions in 2004 (EXP.1) and 2005 (EXP.2), respectively. KEY RESULTS AND CONCLUSIONS: Twenty-five and thirty-four QTL were detected in EXP.1 and EXP.2, respectively. The effects of each QTL were moderate, ranging from 3.9 to 37.3 %. Several major QTL determining shoot dry weight, root dry weight, total dry weight, plant height and their waterlogging tolerance coefficient each mapped on chromosomes 4 and 9. These QTL were detected consistently in both experiments. Secondary QTL influencing tolerance were also identified and located on chromosomes 1, 2, 3, 6, 7 and 10. These QTL were specific to particular traits or environments. Although the detected regions need to be mapped more precisely, the findings and QTL found in this study may provide useful information for marker-assisted selection (MAS) and further genetic studies on maize waterlogging tolerance.  相似文献   

18.
A new QTL for resistance to Fusarium ear rot in maize   总被引:1,自引:0,他引:1  
Understanding the inheritance of resistance to Fusarium ear rot is a basic prerequisite for an efficient resistance breeding in maize. In this study, 250 recombinant inbred lines (RILs) along with their resistant (BT-1) and susceptible (N6) parents were planted in Zhengzhou with three replications in 2007 and 2008. Each line was artificially inoculated using the nail-punch method. Significant genotypic variation in response to Fusarium ear rot was detected in both years. Based on a genetic map containing 207 polymorphic simple sequence repeat (SSR) markers with average genetic distances of 8.83?cM, the ear rot resistance quantitative trait loci (QTL) were analyzed by composite interval mapping with a mixed model (MCIM) across the environments. In total, four QTL were detected on chromosomes 3, 4, 5, and 6. The resistance allele at each of these four QTL was contributed by resistant parent BT-1, and accounted for 2.5-10.2% of the phenotypic variation. However, no significant epistasis interaction effect was detected after a two-dimensional genome scan. Among the four QTL, one QTL with the largest effect on chromosome 4 (bin 4.06) can be suggested to be a new locus for resistance to Fusarium ear rot, which broadens the genetic base for resistance to the disease and can be used for further genetic improvement in maize-breeding programs.  相似文献   

19.
条斑病是水稻(Oryza sativa)中的常见病害, 已经对我国粮食的高产稳产造成严重威胁。以典型籼稻台中本地1号与粳稻春江06的杂交F1代花药培养双单倍体群体(DH)为材料, 用Xoc BLS256进行人工接菌, 对双亲及群体各株系的病斑长度进行测量和量化分析; 同时利用该群体业已构建的加密遗传图谱对病斑表型数据进行QTL作图分析。结果在水稻第2、4、5和8号染色体上共检测到4个效应值能区分开的QTL。对2号与5号染色体上2个较大的QTL区间内抗条斑病相关基因进行了表达分析, 结果表明这些基因在处理前后出现了不同程度的表达差异, 暗示这些基因可能是响应春江06与台中本地1号条斑病抗性差异的目标基因。研究结果为进一步克隆水稻条斑病抗性QTL奠定了重要基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号