首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
禾本科牧草与草坪草在农业可持续发展、城市绿化和生态环境保护方面起着至关重要的作用。近年来, 随着生物技术的发展, 国内外在牧草及草坪草雄核发育与单倍体育种研究方面取得了较大进展。该文在归纳总结该领域研究成果的基础上, 对影响禾本科牧草及草坪草雄核发育与单倍体育种的几个主要因素进行了探讨。大量研究结果表明, 供试材料的基因型是影响培养效率的最主要因素。小孢子发育到单核中期至晚期时有利于提高培养效率。培养前花药经过低温和甘露醇等预处理不但可以提高愈伤组织的诱导效率, 还可提高愈伤组织的质量。适宜的激素种类和配比也是影响培养成败的关键因素。同时, 总结了雄核发育再生植株的倍性鉴定方法和加倍技术, 对单倍体育种技术在禾本科牧草及草坪草育种中的应用前景进行了展望。  相似文献   

2.
In vitro haploid and dihaploid production via unfertilized ovule culture   总被引:2,自引:0,他引:2  
Haploids and doubled haploids are very important in plant breeding, enabling the time needed to produce homozygous lines to be shortened compared with conventional breeding. In the present review, emphasis is given to haploid induction through unfertilized ovule/ovary culture. Attention is given to induction of haploid plants from female gametophyte culture through analysis of factors in the processes of gynogenesis, including genotype selection, stage of ovule development, pretreatment, and culture media containing nutritional components and phytohormones. The gynogenetic approach may be of great value in discovering novel genetic recombinations. Application of double haploids in genetics and plant breeding is also highlighted. This review also identifies some existing knowledge gaps where work may increase the efficiency of this process in different plant species.  相似文献   

3.
Caraway (Carum carvi L.) is a traditional medicinal and spice cross-pollinated plant species. Although in vitro techniques are recently extensively applied in plant breeding programmes, these are not commonly utilized in caraway. Therefore, based on the protocol for anther culture in carrot (Daucus carota L., a closely related species of caraway in Daucaceae family), in vitro androgenesis in caraway has been studied with the aim to produce completely homozygous inbred lines. Various induction conditions, such as temperature pretreatments, carbon sources and combination of growth regulators in a culture medium as well as the effect of genotype on in vitro androgenesis were examined. Ten breeding lines of winter caraway representing third generation of forced (artificial) self-pollination were used as donor plant material. Cultured anthers produced embryogenic calli, and subsequently two types of regenerated plants were obtained, namely haploids with evident microspore origin, and diploids which may represent somatic (anther wall) regenerants or spontaneous doubled haploids. The ploidy status of regenerated plants was determined by flow cytometry. This is the first report on androgenic doubled haploid production in caraway.  相似文献   

4.
Chen  Weishu  Zhang  Yun  Huang  Shengnan  Ren  Jie  Feng  Hui 《Plant Cell, Tissue and Organ Culture》2022,149(3):753-765

Isolated microspore culture (IMC) represents a potential alternative technique in the plant breeding process, as it allows the effective production of doubled haploid (DH) homozygous lines. However, the implementation of this technique is limited by a low rate of embryogenesis, high level of embryo death, and low frequency of chromosome doubling. Thus, we investigated the effects of using different concentrations of L-ascorbic acid sodium salt (VcNa), which has never been applied for kale, to enhance the embryogenesis and regeneration by IMC. Specifically, 1 to 5 μM VcNa was added to the NLN-13 medium of four kale genotypes, while control was grown on VcNa-free medium. Overall, 1–4 μM VcNa at pH 5.84 increased embryogenesis, with 4 μM VcNa being the optimum concentration (12.92-fold increase). The proportion of embryo deaths declined when using appropriate VcNa concentrations. To increase the frequency of chromosome doubling, an artificial chromosome doubling protocol was developed for kale microspore-derived haploids. This protocol involved dipping roots of haploid plantlets in colchicine solution and adding colchicine treatment to solid Murashige and Skoog (MS) medium. Optimum chromosome doubling of haploids was achieved by dipping their roots in 750 mg/L colchicine solution for 4–6 h and 1000 mg/L colchicine solution for 2 h (doubling for nearly 50% of haploids). In conclusion, this study delineated an effective tissue culture process in promoting chromosomal ploidy of microspore-derived regenerated plants, allowing more microspores to be maintained that have excellent ornamental characteristics through crossbreeding.

  相似文献   

5.
There is a requirement of haploid and double haploid material and homozygous lines for cell culture studies and breeding in flax. Anther culture is currently the most successful method producing doubled haploid lines in flax. Recently, ovary culture was also described as a good source of doubled haploids. In this review we focus on tissue and plants regeneration using anther culture, and cultivation of ovaries containing unfertilized ovules. The effect of genotype, physiological status of donor plants, donor material pre-treatment and cultivation conditions for flax anthers and ovaries is discussed here. The process of plant regeneration from anther and ovary derived calli is also in the focus of this review. Attention is paid to the ploidy level of regenerated tissue and to the use of molecular markers for determining of gametic origin of flax plants derived from anther and ovary cultures. Finally, some future prospects on the use of doubled haploids in flax biotechnology are outlined here.  相似文献   

6.
玉米单倍体技术的应用可以大大缩短自交系选育年限,加快育种进程,提高选育效率,尤其是孤雌生殖单倍体技术的广泛应用,能够在高效加倍的基础上快速选育稳定的纯系。本文较全面地综述了近年来关于玉米孤雌生殖诱导产生单倍体的机理及单倍体染色体加倍分子机制的研究新进展,旨在为单倍体技术更广泛的应用提供一定的理论依据。  相似文献   

7.
Pathways to doubled haploidy: chromosome doubling during androgenesis   总被引:1,自引:0,他引:1  
Production of doubled haploid (DH) plants through androgenesis induction is a promising and convenient alternative to conventional selfing techniques for the generation of pure lines for breeding programs. This process comprises two main steps: induction of androgenesis and duplication of the haploid genome. Such duplication is sometimes indirectly induced by the treatments used to promote androgenic development. But usually, an additional step of direct chromosome doubling must be included in the protocol. Duplication of the haploid genome of androgenic individuals has been thought to occur through three mechanisms: endoreduplication, nuclear fusion and c-mitosis. In this review we will revise and analyze the evidences supporting each of the proposed mechanisms and their relevance during androgenesis induction, embryo/callus development and plant regeneration. Special attention will be devoted to nuclear fusion, whose evidences are accumulating in the last years.  相似文献   

8.
Novel technologies in doubled haploid line development   总被引:1,自引:0,他引:1       下载免费PDF全文
haploid inducer line can be transferred (DH) technology can not only shorten the breeding process but also increase genetic gain. Haploid induction and subsequent genome doubling are the two main steps required for DH technology. Haploids have been generated through the culture of immature male and female gametophytes, and through inter‐ and intraspecific via chromosome elimination. Here, we focus on haploidization via chromosome elimination, especially the recent advances in centromere‐mediated haploidization. Once haploids have been induced, genome doubling is needed to produce DH lines. This study has proposed a new strategy to improve haploid genome doubling by combing haploids and minichromosome technology. With the progress in haploid induction and genome doubling methods, DH technology can facilitate reverse breeding, cytoplasmic male sterile (CMS) line production, gene stacking and a variety of other genetic analysis.  相似文献   

9.
Double haploids (DH), obtained during androgenesis in vitro or by genome diploidisation in regenerated haploids, are one type of basic materials used in triticale breeding programmes. The aim of this study was to improve DH production by a combination of colchicine treatment methods on a sample of five winter and five spring triticale hybrids. Colchicine was applied in vitro either in the C17 medium to induce embryo-like structures (ELS) or in the 190-2 medium for green plant (GP) development. Regenerants which remained haploid were immersed in a colchicine solution either when placed on the medium prior to transferring to soil or when growing in pots, followed by the application or absence of cooling. Colchicine treatment during anther culture affected neither ELS nor GP development, but significantly increased the number of DH plants in comparison to spontaneous chromosome doubling. The highest efficiency was recorded when colchicine was applied in the induction medium (55%) versus the regeneration medium (44.5%) or no colchicine treatment (30%). The effectiveness of chromosome duplication in haploid plants ranged from 32 to 64.5% and it was the highest for the treatment on the medium followed by cooling. Individual hybrids differed regarding their capability of regeneration and chromosome doubling, which were consistent only to a low or moderate extent. However, taken together, winter and spring hybrids did not differ significantly. Combined colchicine application resulted in a high yield of DH production, 82.6% for all triticale hybrids, and can provide a considerable number of fertile DH lines for triticale breeding programmes.  相似文献   

10.
It is well known that some species produce offspring carrying only female chromosomes by processes such as apomixis and parthenogenesis (generically termed "gynogenesis"). There are also several cases of natural reproduction by androgenesis in which diploid offspring carry nuclear chromosomes from only the male parent. We used population genetics models to investigate the conditions for invasion of rare androgenesis alleles and the consequences of their spread. Our models predict that androgenesis alleles often spread to fixation. If fixation causes the loss of females or female function in the population, population extinction occurs. Therefore, androgenesis alleles represent a new class of selfish genetic elements. Extinction is more likely in dioecious species than in hermaphrodites. Within dioecious species, extinction is more likely when androgenesis occurs via paternal apomixis (vs. fusion or doubling of haploid nuclei) and when females are the heterogametic sex (vs. male heterogamety). The apparent rarity of androgenesis compared to gynogenesis could be because androgenesis is harder to detect and more often leads to population extinction. Also, there could be greater evolutionary constraints on the origin of mutations for androgenesis. We suggest characteristics of groups in which further cases of androgenesis are more likely to be found.  相似文献   

11.
This study reports haploid plantlet regeneration through gynogenesis in Citrus clementina Hort. ex Tan., cv. Nules, induced by in vitro pollination with pollen grains of Oroblanco, a triploid cultivar of grapefruit. It indicates that parthenogenesis induced in vitro by triploid pollen can be an alternative method to obtain haploids in monoembryonic cultivars of Citrus. Actually, despite considerable efforts, androgenesis has not been yet successful in many genotypes of Citrus. Pollination and mature stage of pistils was necessary for gynogenic embryo regeneration. Fourteen haploid gynogenic embryos of Nules clementine were obtained. Embryo conversion was high (85.7%) and embryos vigorously germinated producing twelve plantlets. Chromosome counting, performed in the roots of obtained embryos, showed the haploid level (n=x=9). Isozyme analyses confirmed the expected homozygous state of embryos and plantlets. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The overall goal of this study is to develop an anther culture system to produce doubled haploid (DH) lines of gentian (Gentiana triflora), an ornamental flowering plant, for use in an F1 hybrid breeding program. Embryogenesis was induced from anther cultures incubated on half-strength modified Lichter (NLN) medium containing a high concentration of sucrose (130 g/l) and subjected to heat shock treatment. Among the various parameters investigated, anthers collected from buds 9–12 mm in length induced the highest frequency of androgenesis. Moreover, among three genotypes tested, cvs. Ashiro-no-Aki and Ashiro-no-Natsu produced 21.3 and 3.7 embryos per 100 anthers, respectively, whereas, cv. Lovely-Ashiro failed to produce embryos. Among a total of 427 embryos transferred to a regeneration medium consisting of Murashige and Skoog (MS) medium, 138 plants were regenerated. The ploidy levels of regenerants were determined by flow cytometry and chromosome counts, revealing the presence of 5% haploids, 25% diploids, and 70% triploids. Inter simple sequence repeat (ISSR) analysis using the 6PS line obtained following self-pollination of the diploid plant obtained from anther culture confirmed that the diploid plant was indeed a DH.  相似文献   

13.
Doubled haploids are an established tool in plant breeding and research. Of several methods for their production, androgenesis is technically simple and can efficiently produce substantial numbers of lines. It is well suited to such crops as hexaploid triticale. Owing to meiotic irregularities of triticale hybrids, aneuploidy may affect the efficiency of androgenesis more severely than in meiotically stable crops. This study addresses the issue of aneuploidy among androgenic regenerants of triticale. Plant morphology, seed set and seed quality were better predictors of aneuploidy, as determined cytologically, than flow cytometry. Most aneuploids were hypoploids and these included nullisomics, telosomics, and translocation lines; among 42 chromosome plants were nulli-tetrasomics. Rye chromosomes involved in aneuploidy greatly outnumbered wheat chromosomes; in C0 rye chromosomes 2R and 5R were most frequently involved. While the frequency of nullisomy 2R was fairly constant in most cross combinations, nullisomy 5R was more frequent in the most recalcitrant combination, and its frequency increased with time spent in culture with up to 70% of green plants recovered late being nullisomic 5R. Given that 5R was not involved in meiotic aberrations with an above-average frequency, it is possible that its absence promotes androgenesis or green plant regeneration. Overall, aneuploidy among tested combinations reduced the average efficiency of double haploid production by 35% and by 69% in one recalcitrant combination, seriously reducing the yield of useful lines.  相似文献   

14.
Gynogenesis was investigated on gentian (Gentiana triflora, G. scabra and their hybrids), which is an important ornamental flower. When unfertilized ovules were cultured in 1/2 NLN medium containing a high concentration of sucrose (100 g/l), embryo-like structures (ELS) were induced. Although genotypic variation was observed in ELS induction, all four genotypes produced ELSs ranging from 0.93 to 0.04 ELSs per flower bud. The ovules collected from flower buds of later stages (just before anthesis or flower anthesis) tended to exhibit higher response. The dark culture condition produced more than four times as many ELSs than in 16-h light condition. A significant number of plantlets were directly regenerated from ELSs on MS regeneration medium. The ploidy levels of 179 regenerated plants were determined by flow cytometry, revealing that the majority of them were diploid (55.9%) and haploid (31.3%). When a total of 54 diploid plants were examined by molecular genetic markers, 52 (96.3%) were considered as doubled haploids (DHs). This is the first report showing successful gynogenesis in gentian. The production of haploids and DHs by unfertilized ovule culture opens a novel prospect in gentian F1 hybrid breeding.  相似文献   

15.
殷丽琴  付绍红  杨进  李云  王继胜  王茂林 《遗传》2016,38(11):979-991
单倍体(Haploid)是指含有配子染色体数目的个体,对其进行基因组加倍可以快速获得纯合双单倍体(Doubled haploid, DH)。单倍体和双单倍体在植物品种选育、突变体筛选、基因功能鉴定、细胞学研究、遗传群体构建等方面具有重要作用,是近年来植物领域的一大研究热点。本文从单倍体和双单倍体的产生途径、鉴定、形成机理以及应用等方面较全面地综述了单倍体的最新研究进展,为单倍体的研究利用作一定的参考。  相似文献   

16.
Deng  Ying  Tang  Bing  Zhou  Xia  Fu  Wenyuan  Tao  Lian  Zhang  Lu  Chen  Jinfeng 《Plant Cell, Tissue and Organ Culture》2020,142(2):253-268

This paper reports a simple and effective method of directly producing cucumber plants through unfertilized ovary culture. The paper involves an experiment investigating factorial interactions between TDZ treatment, cold pretreatment, genotypes of cucumber, to improve plant induction. Cold pretreatment was effective in stimulating the ovary. The results showed that cold pretreatment for 4 days, TDZ for 0.06 mg·L?1, the interaction with genotype can be used as an effective strategy to improve the efficiency of gynogenesis. The plant regeneration induction rate was highest (79.3%). In addition, we observed the process of cucumber megasporogenesis and plant regeneration. The plants obtained from ovary culture of cucumber were identified as diploid or haploid by flow cytometry, consistent with the results of chromosome counting. The diploid plants were further identified as pure doubled haploid using simple sequence repeats (SSR). The doubling treatment we used was one of the simplest and most effective methods, completed in a short time (1 h) with a doubling rate of 75%. The acclimation rate for the surviving was 70%. This work provides a basis for promoting haploid breeding in cucumber.

  相似文献   

17.
Plant breeding is focused on continuously increasing crop production to meet the needs of an ever-growing world population, improving food quality to ensure a long and healthy life and address the problems of global warming and environment pollution, together with the challenges of developing novel sources of biofuels. The breeders’ search for novel genetic combinations, with which to select plants with improved traits to satisfy both farmers and consumers, is endless. About half of the dramatic increase in crop yield obtained in the second half of the last century has been achieved thanks to the results of genetic improvement, while the residual advance has been due to the enhanced management techniques (pest and disease control, fertilization, and irrigation). Biotechnologies provide powerful tools for plant breeding, and among these ones, tissue culture, particularly haploid and doubled haploid technology, can effectively help to select superior plants. In fact, haploids (Hs), which are plants with gametophytic chromosome number, and doubled haploids (DHs), which are haploids that have undergone chromosome duplication, represent a particularly attractive biotechnological method to accelerate plant breeding. Currently, haploid technology, making possible through gametic embryogenesis the single-step development of complete homozygous lines from heterozygous parents, has already had a huge impact on agricultural systems of many agronomically important crops, representing an integral part in their improvement programmes. The aim of this review was to provide some background, recent advances, and future prospective on the employment of haploid technology through gametic embryogenesis as a powerful tool to support plant breeding.  相似文献   

18.
Microspore or anther culture has been used to produce desirable meiotic recombinants in numerous species. However, the utilization of these recombinants relies on inefficient genome doubling procedures to obtain fertile doubled haploid plants. This study presents a simple and rapid procedure to generate fertile doubled haploids in Brassica napus cv. Topas using trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl- p -toluidine), a plant specific microtubule inhibitor. The effects of trifluralin on microtubule depolymerization and chromosome doubling in embryogenic microspore cultures of B. napus were examined and compared with those of colchicine. Indirect immunofluorescence labeling of isolated microspores indicated that microtubules were depolymerized within 30 min of trifluralin treatment and after 3–8 h of colchicine treatment. The direct application of these microtubule inhibitors to microspore cultures resulted in the recovery of fertile doubled haploid plants. Continuous culture in the presence of colchicine, was more effective than 18-h treatments for fertile plant production but resulted in abnormal embryo formation and recalcitrant plant regeneration. The application of 1 or 10 μ M trifluralin during the first 18 h of microspore culture was found to be the superior method for doubled haploid production. The embryos generated after trifluralin treatment developed normally, germinated readily and of the plants produced, close to 60% were fertile. The use of trifluralin to double chromosomes very early in microspore cultures is a simple process requiring minimal manipulation and should be very useful for genetic studies and breeding programs of B. napus and possibly other species.  相似文献   

19.
单倍体培养是快速获得菊科纯合系的重要途径。目前已进行单倍体研究的菊科植物共有13个种,其中9个已成功获得单倍体植株。菊科中诱导单倍体的途径有花药培养、小孢子培养、离体雌核培养、远源杂交和辐射花粉诱导单倍体。本文详细论述了不同外植体发育时期、预处理、培养基、培养条件等因素对单倍体植株诱导再生的影响。对菊科植物单倍体诱导的几种途径进行对比总结,指出研究中存在的问题并提出思路和建议。  相似文献   

20.
Summary Wheat (Triticum aestivum L.) haploids and doubled haploids have been used in breeding programs and genetic studies. Wheat haploids and doubled haploids via anther culture are usually produced by a multiple step culture procedure. We improved a wheat haploid and doubled haploid production system via anther culture in which plants are produced from microspore-derived embryos using one medium and one culture environment. In the improved protocol, tillers of donor plants were pretreated at 4°C for 1–2 wk before anthers were plated on a modified 85D12 basal medium with phenylacetic acid (PAA) and zeatin and cultured at 30°C with a 12-h daylength (43 μEs−1m−2) in an incubator. Microspore-derived embryos developed in 2–3 wk and the plants were produced 3–4 wk after anther plating. In the improved system, as much as 53% of the anthers of Pavon 76 were responsive with multiple embryos. For plant regeneration, as many as 22 green and 25 albino plants were produced from 100 anthers. Sixty-five green plants were grown to maturity and 32 (49%) plants were fertile and produced seeds (indicating spontaneous chromosome doubling) while 33 plants did not produce seed. Of five Nebraska breeding lines tested using the protocol, NE96675 was very responsive and the other lines less so, indicating that the protocol is genotype-dependent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号