首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Integration of molecular and classical genetic maps is an essential requirement for marker-assisted breeding, quantitative trait locus mapping and map-based cloning. With respects to tomato, such maps are only available for the top part of chromosome 1, for chromosome 3 and for the short arm and the centromere proximal part of the long arm of chromosome 6. Employing an L. esculentum line carrying an L. hirsutum introgression we constructed an integrated linkage map for the telomere proximal part of the long arm of tomato chromosome 6, thereby completing the integrated map published previously. With an average map distance of only 0.6 cM the map provides detailed information on the relative position of molecular markers and several traits of economical importance, such as the fruit color marker B. Furthermore, two additional crosses using lines containing L. pennellii introgressions were performed to address the question as to how the recombination frequency in a marked interval on the long arm of chromosome 6 is affected by introgressed segments from different origins. It is concluded that recombination is not merely affected by the local level of homology but also by surrounding sequences. Combination of all the linkage data generated in various crosses described in this and other studies enabled the construction of the first integrated map of an entire tomato chromosome. This map carries 42 loci and shows the position of 15 classical genes relative to 59 molecular markers.  相似文献   

2.
Summary We have previously described gene introgression from the wild nightshade Solanum lycopersicoides into tomato (Lycopersicon esculentum) through the use of either diploid or sesquidiploid hybrids (the latter consisting of two genomes of L. esculentum and one genome of S. lycopersicoides). Both types of intergeneric hybrids display pollen sterility, but workable ovule fertility. Unilateral incompatibility prevents their direct hybridization with staminate L. esculentum. Pollen of a self-compattible form of the related wild species L. pennellii is compatible with pistils of L. esculentum x S. lycopersicoides hybrids. This trait was backcrossed from L. pennellii to L. esculentum in order to develop bridging lines that could be used to obtain progeny from the intergeneric hybrids and to study the inheritance of bridging ability. In progeny of L. esculentum x S. lycopersicoides hybrids pollinated with L. pennellii-derived bridging lines, preferential transmission of L. pennellii alleles was observed for certain isozyme and RFLP markers on chromosomes 1, 6 and 10. The skewed segregations suggest linkage to three major pollen-expressed compatibility loci. This was confirmed by observations of pollen tube growth, which indicated that compatibility with pistils of the diploid intergeneric hybrid occurred only in bridging lines at least heterozygous for the L. pennellii markers on chromosomes 1, 6 and 10. Compatibility with the sesquidiploid hybrid required only the chromosome 1 and 6 loci, indicating an apparent effect of gene dosage on expression of incompatibility in the pistil. In an F2 L. esculentum x L. pennellii population, preferential transmission of L. pennellii alleles was observed for the same markers on chromosomes 1 and 10, as well as other markers on chromosomes 3, 11, and 12, but not 6. The chromosome 1 pollen compatibility locus maps to or near the S-locus, which determines S-allele specificity. The results are discussed in relation to existing genetic models for unilateral incompatibility, including the possible involvement of the S-locus.  相似文献   

3.
An ethylene-inducing xylanase (EIX) from Tricohoderma viride is a potent elicitor of ethylene biosynthesis, localized cell death and other defense responses in specific cultivars of tobacco (Nicotiana tabacum) and tomato (Lycopersicon esculentum). Wild species of tomato, such as Lycopersicon cheesmanii and Lycopersicon pennellii, do not respond to EIX treatment. The F1 progeny of a L. esculentum×L. cheesmanii and a L. esculentum×L. pennellii cross responded to EIX treatment with an increase in ethylene biosynthesis and the induction of localized cell death. The F2 progeny of the above mentioned crosses segregated 3:1 (responding:non-responding). We mapped the EIX-responding locus (Eix) to the short arm of chromosome 7 using a population of introgression lines (ILs), containing small RFLP-defined chromosome segments of L. pennellii introgressed into L. esculentum. RFLP analysis of 990 F2 plants that segregated for the introgressed segment mapped the Eix locus 0.1 cM and 0.9 cM from the flanking markers TG61 and TG131, respectively. Using the marker TG61 we isolated a yeast artificial chromosome (YAC) clone that carries 300-kb DNA segments derived from the Eix region. By mapping the ends of this YAC clone we show that it spans the Eix locus. Thus, positional cloning of the Eix locus appears feasible. Received: 20 March 1999 / Accepted: 30 April 1999  相似文献   

4.
The classical map of the short arm of chromosome 1 of tomato (Lycopersicon esculentum) has been shown to contain inaccuracies while the RFLP map of this region is known to be generally accurate. Molecular analysis of populations derived from crosses between L. esculentum lines carrying chromosome 1 classical markers and L. pennellii has enabled us to produce an integrated classical and RFLP marker map of this region. New data concerning the linkage relationships between classical markers have also been combined with previous data to produce a new classical map of the short arm of chromosome 1. The orders of the classical markers on these two new maps are in almost complete agreement and are very different to that shown on the previous classical map.  相似文献   

5.
Four different populations segregating for one of the two closely linked (possibly allelic) tomato disease resistance genes to the fungusCladosporium fulvum,Cf-4 andCf-9, were generated and analysed for recombination frequencies between theCf-genes and restriction fragment length polymorphism (RFLP) loci. The population consisting of F2 progeny from the interspecific crossLycopersicon esculentum carryingCf-9 ×L. pennellii was identified as the most useful for RFLP mapping of theCf-4/9 locus and an RFLP map around this locus was constructed mainly using this population. The two closest markers identified were CP46, 2.6 cM distal, and a group of 11 markers including TG236, 3.7 cM proximal toCf-4/9. A polymerase chain reaction (PCR)-based procedure for the rapid identification of recombination events between these two markers was developed. The regions of foreign DNA introgression surroundingCf-4 andCf-9 in near-isogenic lines were delimited.  相似文献   

6.
We have shown that a major QTL for fruit weight (fw2.2) maps to the same position on chromosome 2 in the green-fruited wild tomato species, Lycopersicon pennellii and in the red-fruited wild tomato species, L. pimpinellifolium. An introgression line F2 derived from L. esculentum (tomato) x L. pennellii and a backcross 1 (BC1) population derived from L. esculentum x L. pimpinellifolium both place fw2.2 near TG91 and TG167 on chromosome 2 of the tomato highdensity linkage map. fw2.2 accounts for 30% and 47% of the total phenotypic variance in the L. pimpinellifolium and L. pennellii populations, respectively, indicating that this is a major QTL controlling fruit weight in both species. Partial dominance (d/a of 0.44) was observed for the L. pennellii allele of fw 2.2 as compared with the L. esculentum allele. A QTL with very similar phenotypic affects and gene action has also been identified and mapped to the same chromosomal region in other wild tomato accessions: L. cheesmanii and L. pimpinellifolium. Together, these data suggest that fw2.2 represents an orthologous QTL (i.e., derived by speciation as opposed to duplication) common to most, if not all, wild tomato species. High-resolution mapping may ultimately lead to the cloning of this key locus controlling fruit development in tomato.  相似文献   

7.
Summary Nineteen ripening-related or -specific clones from Lycopersicon esculentum were mapped via RFLP analysis using an F2 population from the cross L. esculentum x L. pennellii and cDNA or genomic clones of known map location. The map produced using cDNA and genomic clones of known map location corresponded well with previously published maps of tomato. The number of loci detected for each ripening-related or-specific clone varied from one to seven. These loci were located on all 12 chromosomes of the tomato genome. There was no significant clustering of ripening-related or-specific genes. Regions of very low recombination were observed. The clone for polygalacturonase (TOM6) mapped to a single region on chromosome 10, the same chromosome as the nor and alc ripening mutants. To fine map this chromosome, two backcross populations were produced from the cross of L. esculentum x L. pimpenillifolium, in which the esculentum parents used were homozygous for either the alc or the nor. The coding region for polygalacturonase is functionally unlinked to either of these two ripening mutants.  相似文献   

8.
A population of 257 BC1 plants was developed from a cross between an elite processing line of tomato (Lycopersicon esculentum cvM82-1-7) and the closely related wild species L. pimpinellifolium (LA1589). The population was used to construct a genetic linkage map suitable for quantitative trait locus (QTL) analysis to be conducted in different backcross generations. The map comprises 115 RFLP, 3 RAPD and 2 morphological markers that span 1279 cM of the tomato genome with an average distance between markers of 10.7 cM. This map is comparable in length to that of the highdensity RFLP map derived from a L. esculentum x L. pennellii F2 population. The order of the markers in the two maps is also in good agreement, however there are considerable differences in the distribution of recombination along the chromosomes. The segregation of six GATA-containing loci and 47 RAPD markers was also analyzed in subsets of the population. All of the microsatellite loci and 35 (75%) of the RAPDs mapped to clusters associated with centromeric regions.  相似文献   

9.
The tomato I-3 gene introgressed from the Lycopersicon pennellii accession LA716 confers resistance to race 3 of the fusarium wilt pathogen Fusarium oxysporum f. sp. lycopersici. We have improved the high-resolution map of the I-3 region of tomato chromosome 7 with the development and mapping of 31 new PCR-based markers. Recombinants recovered from L. esculentum cv. M82 × IL7-2 F2 and (IL7-2 × IL7-4) × M82 TC1F2 mapping populations, together with recombinants recovered from a previous M82 × IL7-3 F2 mapping population, were used to position these markers. A significantly higher recombination frequency was observed in the (IL7-2 × IL7-4) × M82 TC1F2 mapping population based on a reconstituted L. pennellii chromosome 7 compared to the other two mapping populations based on smaller segments of L. pennellii chromosome 7. A BAC contig consisting of L. esculentum cv. Heinz 1706 BACs covering the I-3 region has also been established. The new high-resolution map places the I-3 gene within a 0.38 cM interval between the molecular markers RGA332 and bP23/gPT with an estimated physical size of 50–60 kb. The I-3 region was found to display almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with Arabidopsis thaliana chromosomes 1, 2 and 3. An S-receptor-like kinase gene family present in the I-3 region of tomato chromosome 7 was found to be present in the microsyntenous region of grape chromosome 12 but was absent altogether from the A. thaliana genome. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

10.
Summary Two somatic hybrid plants generated from a single fusion event between Lycopersicon esculentum and irradiated L. pennellii protoplasts have been analyzed at the molecular level. Over 30 loci have been analyzed using isozymes and RFLPs. All loci tested on chromosomes 2–10 were heterozygous, while those loci on chromosome 12 were homozygous L. pennellii in both somatic hybrids. In one of the somatic hybrids, 2850, loci on chromosome 1 were also homozygous L. pennellii. The other somatic hybrid, 28F5, was heterozygous at all chromosome 1 loci tested, but exhibited altered stoichiometry of parental bands as compared to the sexual hybrid. Loci on chromosome 2 from both somatic hybrids have altered stoichiometry, with L. pennellii alleles being four times more abundant than expected. Both somatic hybrids contain the L. esculentum chloroplast genome, while only L. pennellii polymorphisms have been detected in the mitochondrial genome.  相似文献   

11.
RFLP-defined chromosome segments covering the entire tomato genome were introgressed from the wild green-fruited speciesLycopersicon pennellii into the cultivated tomato (L. esculentum cv M82; Eshed et al. 1992). SixL. pennellii chromosome segments were selected for a detailed evaluation based on previous observations of their effects on the two yield components, fresh tomato yield and total soluble-solids content (Brix). Differences in the quantitative traits measured between M82 and the introgression lines, or their hybrids with different inbred parents, can be attributed to the alien chromosome segments. Replicated field trials, grown at wide and dense spacing, identified three quantitative trait loci (QTLs) for solublesolids content on chromosomes 1, 5 and 7. In plants heterozygous for the chromosome-5 locus there was a 50% increase in soluble-solids yield in wide but not in dense spacing. Plants heterozygous for the chromosome-1 QTL/s were tested over a 2-year period, in three genetic backgrounds, and showed a significant 16% elevation in soluble-solids yield only in dense spacing. These results demonstrate that wild tomato germplasm can be used to improve the yield of the cultivated crop.  相似文献   

12.
Diploid A genome species of wheat harbour immense variability for biotic stresses and productivity traits, and these could be transferred efficiently to hexaploid wheat through marker assisted selection, provided the target genes are tagged at diploid level first. Here we report an integrated molecular linkage map of A genome diploid wheat based on 93 recombinant inbred lines (RILs) derived from Triticum boeoticum × Triticum monococcum inter sub-specific cross. The parental lines were analysed with 306 simple sequence repeat (SSR) and 194 RFLP markers, including 66 bin mapped ESTs. Out of 306 SSRs tested for polymorphism, 74 (24.2%) did not show amplification (null) in both the parents. Overall, 171 (73.7%) of the 232 remaining SSR and 98 (50.5%) of the 194 RFLP markers were polymorphic. Both A and D genome specific SSR markers showed similar transferability to A genome of diploid wheat species. The 176 polymorphic markers, that were assayed on a set of 93 RILs, yielded 188 polymorphic loci and 177 of these as well as two additional morphological traits mapped on seven linkage groups with a total map length of 1,262 cM, which is longer than most of the available A genome linkage maps in diploid and hexaploid wheat. About 58 loci showed distorted segregation with majority of these mapping on chromosome 2Am. With a few exceptions, the position and order of the markers was similar to the ones in other maps of the wheat A genome. Chromosome 1Am of T. monococcum and T. boeoticum showed a small paracentric inversion relative to the A genome of hexaploid wheat. The described linkage map could be useful for gene tagging, marker assisted gene introgression from diploid into hexaploid wheat as well as for map based cloning of genes from diploid A genome species and orthologous genes from hexaploid wheat.  相似文献   

13.
Summary Genes introduced into cultivated plants by backcross breeding programs are flanked by introgressed segments of DNA derived from the donor parent. This phenomenon is known as linkage drag and is frequently thought to affect traits other than the one originally targeted. The Tm-2 gene of Lycopersicon peruvianum, which confers resistance to tobacco mosaic virus, was introduced into several different tomato cultivars (L. esculentum) by repeated backcrossing. We have measured the sizes of the introgressed segments flanking the Tm-2 locus in several of these cultivars using a high density map of restriction fragment length polymorphic (RFLP) markers. The smallest introgressed segment is estimated to be 4 cM in length, while the longest is over 51 cM in length and contains the entire short arm of chromosome 9. Additionally, RFLP analysis was performed on remnant seed from different intermediate generations corresponding to two different backcross breeding programs for TMV resistance. The results reveal that plants containing desirable recombination near the resistance gene were rarely selected during backcrossing and, as a result, the backcross breeding method was largely ineffective in reducing the size of linked DNA around the resistance gene. We propose that, by monitoring recombination around genes of interest with linked RFLP markers, one can quickly and efficiently reduce the amount of linkage drag associated with introgression. Using such a procedure, it is estimated that an introgressed segment can be obtained in two generations that is as small as that which would otherwise require 100 backcross generations without RFLP selection.  相似文献   

14.
We constructed a genetic linkage map based on a cross between two Swiss winter wheat (Triticum aestivum L.) varieties, Arina and Forno. Two-hundred and forty F5 single-seed descent (SSD)-derived lines were analysed with 112 restriction fragment length polymorphism (RFLP) anonymous probes, 18 wheat cDNA clones coding for putative stress or defence-related proteins and 179 simple-sequence repeat (SSR) primer-pairs. The 309 markers revealed 396 segregating loci. Linkage analysis defined 27 linkage groups that could all be assigned to chromosomes or chromosome arms. The resulting genetic map comprises 380 loci and spans 3,086 cM with 1,131 cM for the A genome, 920 cM for the B genome and 1,036 cM for the D genome. Seventeen percent of the loci showed a significant (P < 0.05) deviation from a 1:1 ratio, most of them in favour of the Arina alleles. This map enabled the mapping of QTLs for resistance against several fungal diseases such as Stagonospora glume blotch, leaf rust and Fusarium head blight. It will also be very useful for wheat genetic mapping, as it combines RFLP and SSR markers that were previously located on separate maps. S. Paillard and T. Schnurbusch contributed equally to the work  相似文献   

15.
A map-based cloning scheme is being used to isolate the jointless (j) gene of tomato. The jointless locus is defined by a single recessive mutation that completely suppresses the formation of the fruit and flower pedicel and peduncle abscission zone. jointless was mapped in an F2 population of an interspecific cross between Lycopersicon esculentum and Lycopersicon pennellii to a 7.1 cM interval between two restriction fragment length polymorphism (RFLP) markers TG523 and TG194. Isogenic DNA pools were then constructed from a subset of the mapping population and screened with 800 random decamers for random amplification of polymorphic DNA (RAPD) polymorphisms. Five new RAPD markers were isolated and mapped to chromosome 11, two of which were mapped within the targeted interval. One marker, RPD158, was mapped 1.5 cM to the opposite side of jointless relative to TG523 and thus narrowed the interval between the closest flanking markers to 3.0 cM. Physical mapping by pulse-field gel electrophoresis using TG523 and RPD158 as probes demonstrated that both markers hybridize to a common 600 kb SmaI restriction fragment. This provided an estimate of 200 kb/cM for the relationship between physical and genetic distances in the region of chromosome 11 containing the j locus. The combined results provide evidence for the feasibility of the next step toward isolation of the jointless gene by map-based cloning — a chromosome walk or jump to jointless.  相似文献   

16.
 A detailed map of part of the short arm of chromosome 1 proximal to the Cf-4/Cf-9 gene cluster was generated by using an F2 population of 314 plants obtained from the cross between the remotely related species Lycopersicon esculentum and L. peruvianum. Six markers that cosegregate in an L. esculentum×L. pennellii F2 population showed high recombination frequencies in the present interspecific population, spanning an interval of approximately 13 cM. Physical distances between RFLP markers were estimated by pulsed field gel electrophoresis of high-molecular-weight DNA and by identifying YACs that recognized more than one RFLP marker. In this region 1 cM corresponded to 55–110 kb. In comparsion with the value of 730 kb per cM averaged over the entire genome, this reflects the remarkably high recombination frequencies in this region in the hybrid L. esculentum×L. peruvianum progeny population. The present data underline the fact that recombination is not a process that occurs randomly over the entire genome, but can vary dramatically in intensity between chromosomal regions and among populations. Received: 20 May 1996 / Accepted: 10 September 1996  相似文献   

17.
The Sw-5 locus confers dominant resistance to tomato spotted wilt virus (TSWV). To map the location and facilitate the identification of markers linked to Sw-5 we developed a pair of near-isogenic lines (NILs) and an F2 Lycopersicon esculentum x L. pennellii population segregating for resistance to TSWV. DNA from the NILs was analyzed using 748 random 10-mer oligonucleotides to discern linked molecular markers using a random amplified polymorphic DNA (RAPD) approach. One random primer (GAGCACGGGA) was found to produce a RAPD band of about 2200 bp that demonstrates linkage to Sw-5. Data from co-segregation of resistance and restriction fragment length polymorphisms (RFLPs) in a F2 interspecific population position Sw-5 between the markers CT71 and CT220 near the telomere of the long arm of chromosome 9.  相似文献   

18.
Zhang L  Yang C  Zhang Y  Li L  Zhang X  Zhang Q  Xiang J 《Genetica》2007,131(1):37-49
Pacific white shrimp (Litopenaeus vannamei) is the leading species farmed in the Western Hemisphere and an economically important aquaculture species in China. In this project, a genetic linkage map was constructed using amplified fragment length polymorphism (AFLP) and microsatellite markers. One hundred and eight select AFLP primer combinations and 30 polymorphic microsatellite markers produced 2071 markers that were polymorphic in either of the parents and segregated in the progeny. Of these segregating markers, 319 were mapped to 45 linkage groups of the female framework map, covering a total of 4134.4 cM; and 267 markers were assigned to 45 linkage groups of the male map, covering a total of 3220.9 cM. High recombination rates were found in both parental maps. A sex-linked microsatellite marker was mapped on the female map with 6.6 cM to sex and a LOD of 17.8, two other microsatellite markers were also linked with both 8.6 cM to sex and LOD score of 14.3 and 16.4. The genetic maps presented here will serve as a basis for the construction of a high-resolution genetic map, quantitative trait loci (QTLs) detection, marker-assisted selection (MAS) and comparative genome mapping.  相似文献   

19.
The existence of different levels of susceptibility to fire blight (Erwinia amylovora) in European pear (Pyrus communis L.) cultivars suggests that it is possible to identify QTLs related to resistance in pear germplasm. Given the polygenic nature of this trait, we designed two genetic maps of the parental lines 'Passe Crassane' (susceptible) and 'Harrow Sweet' (resistant) using SSRs, MFLPs, AFLPs, RGAs and AFLP-RGAs markers. RGA-related markers should theoretically map in chromosome regions coding for resistance genes. The 'Passe Crassane' map includes 155 loci, for a total length of 912 cM organised in 18 linkage groups, and the 'Harrow Sweet' map 156 loci, for a total length of 930 cM divided in 19 linkage groups; both maps have a good genome coverage when compared to the more detailed apple maps. Four putative QTLs related to fire blight resistance were identified in the map. A suite of molecular markers, including two AFLP-RGAs, capable of defining resistant and susceptible haplotypes in the analysed population was developed.  相似文献   

20.
The parthenocarpic fruit (pat) gene of tomato is a recessive mutation conferring parthenocarpy, which is the capability of a plant to set seedless fruits in the absence of pollination and fertilization. Parthenocarpic mutants offer a useful method to regulate fruit production and a suitable experimental system to study ovary and fruit development. In order to map the Pat locus, two populations segregating from the interspecific cross Lycopersicon esculentum × Lycopersicon pennellii were grown, and progeny plants were classified as parthenocarpic or wild-type by taking into account some characteristic aberrations affecting mutant anthers and ovules. Through bulk segregant analysis, we searched for both random and mapped AFLPs linked to the target gene. In this way, the Pat locus was assigned to the long arm of chromosome 3, as also confirmed by the analysis of a set of L. pennellii substitution and introgression lines. Afterwards, the Pat position was refined by using simple sequence repeats (SSRs) and conserved ortholog set (COS) markers mapping in the target region. The tightest COSs were converted into CAPS or SCAR markers. At present, two co-dominant SCAR markers encompassing a genetic window of 1.2 cM flank the Pat locus. Considering that these markers are orthologous to Arabidopsis genes, a positional cloning exploiting the tomato-Arabidopsis microsynteny seems to be a short-term objective.Communicated by F. Salamini  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号