首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chlamydia trachomatis , an important cause of human disease, is an obligate intracellular bacterial pathogen that relies on the eukaryotic host cell for its replication. Recent reports have revealed that the C. trachomatis vacuole receives host-derived sphingolipids by fusing with trans -Golgi network (TGN)-derived secretory vesicles. Here, it is shown that these lipids are required for the growth of the bacteria. C. trachomatis was unable to replicate at 39°C in the Chinese hamster ovary (CHO)-derived cell line SPB-1, a cell line incapable of synthesizing sphingolipids at this temperature because of a temperature-sensitive mutation in the serine palmitoyltransferase (SPT) gene. Complementation with the wild-type SPT gene or addition of exogenous cell-permeable sphingolipid precursors to the mutant cells restored their ability to support chlamydial replication. l -cycloserine ( l -CS) and fumonisin B1 (FB1), inhibitors of sphingolipid biosynthesis, decreased the proliferation of the bacteria in eukaryotic cells at concentrations that also decreased host cell sphingolipid synthesis. In the case of FB1, the vacuoles appeared aberrant; the addition of sphingolipid precursors was able to reverse the altered morphology of the FB1-treated vacuoles. Collectively, these data strongly suggest that the growth and replication of chlamydiae is dependent on synthesis of sphingolipids by the eukaryotic host cell and may contribute to this organism's obligate intracellular parasitism.  相似文献   

2.
The obligate intracellular parasite Chlamydia trachomatis has a reduced genome and is thought to rely on its mammalian host cell for nutrients. Although several lines of evidence suggest C. trachomatis utilizes host phospholipids, the bacterium encodes all the genes necessary for fatty acid and phospholipid synthesis found in free living Gram-negative bacteria. Bacterially derived phospholipids significantly increased in infected HeLa cell cultures. These new phospholipids had a distinct molecular species composition consisting of saturated and branched-chain fatty acids. Biochemical analysis established the role of C. trachomatis-encoded acyltransferases in producing the new disaturated molecular species. There was no evidence for the remodeling of host phospholipids and no change in the size or molecular species composition of the phosphatidylcholine pool in infected HeLa cells. Host sphingomyelin was associated with C. trachomatis isolated by detergent extraction, but it may represent contamination with detergent-insoluble host lipids rather than being an integral bacterial membrane component. C. trachomatis assembles its membrane systems from the unique phospholipid molecular species produced by its own fatty acid and phospholipid biosynthetic machinery utilizing glucose, isoleucine, and serine.  相似文献   

3.
Chlamydiae, a diverse group of obligate intracellular pathogens replicating within cytoplasmic vacuoles of eukaryotic cells, are able to acquire lipids from host cells. Here we report that activation of the host Raf-MEK-ERK-cPLA2 signaling cascade is required for the chlamydial uptake of host glycerophospholipids. Both the MAP kinase pathway (Ras/Raf/MEK/ERK) and Ca(2+)-dependent cytosolic phospholipase A2 (cPLA2) were activated in chlamydia-infected cells. The inhibition of cPLA2 activity resulted in the blockade of the chlamydial uptake of host glycerophospholipids and impairment in chlamydial growth. Blocking either c-Raf-1 or MEK1/2 activity prevented the chlamydial activation of ERK1/2, leading to the suppression of both chlamydial activation of the host cPLA2 and uptake of glycerophospholipids from the host cells. The chlamydia-induced phosphorylation of cPLA2 was also blocked by a dominant negative ERK2. Furthermore, activation of both ERK1/2 and cPLA2 was dependent on chlamydial growth and restricted within chlamydia-infected cells, suggesting an active manipulation of the host ERK-cPLA2 signaling pathway by chlamydiae.  相似文献   

4.
Genome reduction is a hallmark of obligate intracellular pathogens such as Chlamydia, where adaptation to intracellular growth has resulted in the elimination of genes encoding biosynthetic enzymes. Accordingly, chlamydiae rely heavily on the host cell for nutrients yet their specific source is unclear. Interestingly, chlamydiae grow within a pathogen-defined vacuole that is in close apposition to lysosomes. Metabolically-labeled uninfected host cell proteins were provided as an exogenous nutrient source to chlamydiae-infected cells, and uptake and subsequent labeling of chlamydiae suggested lysosomal degradation as a source of amino acids for the pathogen. Indeed, Bafilomycin A1 (BafA1), an inhibitor of the vacuolar H(+)/ATPase that blocks lysosomal acidification and functions, impairs the growth of C. trachomatis and C. pneumoniae, and these effects are especially profound in C. pneumoniae. BafA1 induced the marked accumulation of material within the lysosomal lumen, which was due to the inhibition of proteolytic activities, and this response inhibits chlamydiae rather than changes in lysosomal acidification per se, as cathepsin inhibitors also inhibit the growth of chlamydiae. Finally, the addition of cycloheximide, an inhibitor of eukaryotic protein synthesis, compromises the ability of lysosomal inhibitors to block chlamydial growth, suggesting chlamydiae directly access free amino acids in the host cytosol as a preferred source of these nutrients. Thus, chlamydiae co-opt the functions of lysosomes to acquire essential amino acids.  相似文献   

5.
The obligate intracellular bacterium Chlamydia trachomatis requires iron in order to complete its developmental cycle. Addition of an iron-chelating drug, Desferal (deferoxamine mesylate), to infected cell culture causes Chlamydia to enter persistence. Here, we explore the ability of a stably-transfected cell line with inducible over-expression of the eukaryotic iron efflux protein ferroportin to starve C. trachomatis serovar E for iron. Ferroportin-induced iron removal is perhaps a more direct method of removing iron from the intracellular compartment versus exposure to an exogenous chemical chelator. Following induction, ferroportin-green fluorescent protein (Fpn-GFP) was detected in the plasma membrane, and cells expressing Fpn-GFP remained viable throughout the timescale required for Chlamydia to complete its developmental cycle. Following Fpn-GFP induction in infected cells, chlamydial infectivity remained unchanged, indicating chlamydiae were not in persistence. Ferritin levels indicate only a small decrease in cellular iron following Fpn-GFP expression relative to cultures exposed to Desferal. These data indicate that expression of Fpn-GFP in chlamydiae-infected cells is not capable of reducing iron below the threshold concentration needed to cause chlamydiae to enter persistence.  相似文献   

6.
Chlamydia trachomatis acquires C6-NBD-sphingomyelin endogenously synthesized from C6-NBD-ceramide and transported to the vesicle (inclusion) in which they multiply. Here we explore the mechanisms of this unusual trafficking and further characterize the association of the chlamydial inclusion with the Golgi apparatus. Endocytosed chlamydiae are trafficked to the Golgi region and begin to acquire sphingolipids from the host within a few hours following infection. The transport of NBD-sphingolipid to the inclusion is energy- and temperature-dependent with the characteristics of an active, vesicle-mediated process. Photo-oxidation of C5-DMB-ceramide, in the presence of diaminobenzidine, identified DMB-lipids in vesicles in the process of fusing to the chlamydial inclusion membrane. C6-NBD-sphingomyelin incorporated into the plasma membrane is not trafficked to the inclusion to a significant degree, suggesting the pathway for sphingomyelin trafficking is direct from the Golgi apparatus to the chlamydial inclusion. Lectins and antibody probes for Golgi-specific glycoproteins demonstrate the close association of the chlamydial inclusion with the Golgi apparatus but do not detect these markers in the inclusion membrane. Collectively, the data are consistent with a model in which C.trachomatis inhabits a unique vesicle which interrupts an exocytic pathway to intercept host sphingolipids in transit from the Golgi apparatus to the plasma membrane.  相似文献   

7.
One hypothesis for the mechanism of chlamydial interaction with its eukaryotic host cell invokes a trimolecular mechanism, whereby a Chlamydia -derived glycosaminoglycan bridges a chlamydial acceptor molecule and a host receptor enabling attachment and invasion. We show that a heparan sulphate-specific monoclonal antibody specifically binds a glycosaminoglycan localized to the surface of the chlamydial organism and effectively neutralizes infectivity of both C. trachomatis and C. pneumoniae . In addition to the ability of this antibody to neutralize infectivity, direct visualization using immunofluorescence demonstrated staining of chlamydial organisms localized to the intracellular vacuole. The chlamydial-associated glycosaminoglycan was specifically labelled with [14C]-glucosamine, and the labelled compound was immunoprecipitated and resolved by gel electrophoresis. The chlamydial-associated glycosaminoglycan is a high-molecular-weight compound similar in size to heparin or heparan sulphate and was sensitive to cleavage by heparan sulphate lyase. These data demonstrate that a glucosamine-containing sulphated polysaccharide is produced within the intracellular vacuole containing chlamydiae and is a target for antibody-mediated neutralization of infectivity.  相似文献   

8.
Chlamydia spp. are obligate intracellular bacteria that replicate inside the host cell in a bacterial modified unique compartment called the inclusion. As other intracellular pathogens, chlamydiae exploit host membrane trafficking pathways to prevent lysosomal fusion and to acquire energy and nutrients essential for their survival and replication. The Conserved Oligomeric Golgi (COG) complex is a ubiquitously expressed membrane-associated protein complex that functions in a retrograde intra-Golgi trafficking through associations with coiled-coil tethers, SNAREs, Rabs and COPI proteins. Several COG complex-interacting proteins, including Rab1, Rab6, Rab14 and Syntaxin 6 are implicated in chlamydial development. In this study, we analysed the recruitment of the COG complex and GS15-positive COG complex-dependent vesicles to Chlamydia trachomatis inclusion and their participation in chlamydial growth. Immunofluorescent analysis revealed that both GFP-tagged and endogenous COG complex subunits associated with inclusions in a serovar-independent manner by 8 h post infection and were maintained throughout the entire developmental cycle. Golgi v-SNARE GS15 was associated with inclusions 24 h post infection, but was absent on the mid-cycle (8 h) inclusions, indicating that this Golgi SNARE is directed to inclusions after COG complex recruitment. Silencing of COG8 and GS15 by siRNA significantly decreased infectious yield of chlamydiae. Further, membranous structures likely derived from lysed bacteria were observed inside inclusions by electron microscopy in cells depleted of COG8 or GS15. Our results showed that C. trachomatis hijacks the COG complex to redirect the population of Golgi-derived retrograde vesicles to inclusions. These vesicles likely deliver nutrients that are required for bacterial development and replication.  相似文献   

9.
Confinement of the obligate intracellular bacterium Chlamydia trachomatis to a membrane-bound vacuole, termed an inclusion, within infected epithelial cells neither prevents secretion of chlamydial antigens into the host cytosol nor protects chlamydiae from innate immune detection. However, the details leading to chlamydial antigen presentation are not clear. By immunoelectron microscopy of infected endometrial epithelial cells and in isolated cell secretory compartments, chlamydial major outer membrane protein (MOMP), lipopolysaccharide (LPS) and the inclusion membrane protein A (IncA) were localized to the endoplasmic reticulum (ER) and co-localized with multiple ER markers, but not with markers of the endosomes, lysosomes, Golgi nor mitochondria. Chlamydial LPS was also co-localized with CD1d in the ER. Since the chlamydial antigens, contained in everted inclusion membrane vesicles, were found within the host cell ER, these data raise additional implications for antigen processing by infected uterine epithelial cells for classical and non-classical T cell antigen presentation.  相似文献   

10.
Adhesion of the obligate intracellular bacterium Chlamydia trachomatis to host cells is associated with a flux of Ca2+ across the cell membrane, and infection is enhanced by treatment of host cells with Ca2+ ionophore. The possibility that Ca2+ might interact with host cell Ca2+ regulatory proteins to promote chlamydial infection was investigated. Treatment of HeLa 229 cells with the calmodulin inhibitors pimozide, trifluoperazine, chlorpromazine, promethazine or haloperidol reduced chlamydial infectivity as measured by inclusion counting or the specific incorporation of [3H]threonine. The inhibitory effect was reversible, dose-related and shown to be associated with impairment of chlamydial adhesion and uptake by the host cells. This effect was clearly distinguished from the delayed maturation of chlamydiae due to continuous exposure to calmodulin inhibitors which may result from a decrease in the availability of high energy compounds from the host cells necessary for chlamydial growth. The possible mechanisms for calmodulin-mediated chlamydial endocytosis are discussed.  相似文献   

11.
Chlamydiae are obligate intracellular pathogens that must coordinate the acquisition of host cell-derived biosynthetic constituents essential for bacterial survival. Purified chlamydiae contain several lipids that are typically found in eukaryotes, implying the translocation of host cell lipids to the chlamydial vacuole. Acquisition and incorporation of sphingomyelin occurs subsequent to transport from Golgi-derived exocytic vesicles, with possible intermediate transport through endosomal multivesicular bodies. Eukaryotic host cell-derived sphingomyelin is essential for intracellular growth of Chlamydia trachomatis, but the precise role of this lipid in development has not been delineated. The present study identifies specific phenotypic effects on inclusion membrane biogenesis and stability consequent to conditions of sphingomyelin deficiency. Culturing infected cells in the presence of inhibitors of serine palmitoyltransferase, the first enzyme in the biosynthetic pathway of host cell sphingomyelin, resulted in loss of inclusion membrane integrity with subsequent disruption in normal chlamydial inclusion development. Surprisingly, this was accompanied by premature redifferentiation to and release of infectious elementary bodies. Homotypic fusion of inclusions was also disrupted under conditions of sphingolipid deficiency. In addition, host cell sphingomyelin synthesis was essential for inclusion membrane stability and expansion that is vital to reactivation of persistent chlamydial infection. The present study implicates both the Golgi apparatus and multivesicular bodies as key sources of host-derived lipids, with multivesicular bodies being essential for normal inclusion development and reactivation of persistent C. trachomatis infection.  相似文献   

12.
Mechanism of C. trachomatis attachment to eukaryotic host cells.   总被引:12,自引:0,他引:12  
J P Zhang  R S Stephens 《Cell》1992,69(5):861-869
A novel trimolecular mechanism of microbial attachment to mammalian host cells was characterized for the obligate intracellular pathogen Chlamydia trachomatis. Using purified glycosaminoglycans (GAGs) and specific GAG lyases, we demonstrated that a heparan sulfate-like GAG present on the surface of chlamydia organisms is required for attachment to host cells. These observations were supported by inhibition of attachment following binding of heparan sulfate receptor analogs to chlamydiae and by demonstrating that chlamydiae synthesize a unique heparan sulfate-like GAG. Furthermore, exogenous heparan sulfate, as an adhesin analog, restored attachment and infectivity to organisms that had lost these attributes following treatment with heparan sulfate lyase. These data suggest that a GAG adhesin ligand mediates attachment by bridging mutual GAG receptors on the host cell surface and on the chlamydial outer membrane surface.  相似文献   

13.
The obligate intracellular bacterium Chlamydia trachomatis possesses a biphasic developmental cycle that is manifested by differentiation of infectious, metabolically inert elementary bodies (EBs) to larger, metabolically active reticulate bodies (RBs). The cycle is completed by asynchronous differentiation of dividing RBs back to a population of dormant EBs that can initiate further rounds of infection upon lysis of the host cell. Chlamydiae express a type III secretion system (T3SS) that is presumably employed to establish and maintain the permissive intracellular niche by secretion of anti-host proteins. We hypothesize that T3SS activity is essential for chlamydial development and pathogenesis. However, the lack of a genetic system has confounded efforts to establish any role of the T3SS. We therefore employed the small molecule Yersinia T3SS inhibitor N'-(3,5-dibromo-2-hydroxybenzylidene)-4-nitrobenzohydrazide, designated compound 1 (C1), to examine the interdependence of the chlamydial T3SS and development. C1 treatment inhibited C. trachomatis but not T4SS-expressing Coxiella burnetii development in a dose-dependent manner. Although chlamydiae remained viable and metabolically active, they failed to divide significantly and RB to EB differentiation was inhibited. These effects occurred in the absence of host cell cytotoxicity and were reversible by washing out C1. We further demonstrate that secretion of T3S substrates is perturbed in C1-treated chlamydial cultures. We have therefore provided evidence that C1 can inhibit C. trachomatis development and T3SS activity and present a model in which progression of the C. trachomatis developmental cycle requires a fully functional T3SS.  相似文献   

14.
Chlamydia trachomatis causes common infections of the eyes and genital tract in man. The mechanism by which this obligate intracellular bacterium is taken into epithelial cells is unclear. The results described here support the concept that chlamydial infections of HeLa cells is under bidirectional cyclic nucleotide control, with guanosine 3':5'-cyclic monophosphate (cGMP) acting as a stimulator, and adenosine 3':5'-cyclic monophosphate (cAMP) as an inhibitor. Treatment of the HeLa cells with the divalent cation ionophore A23187, with carbamoylcholine, or with prostaglandins known to increase the concentration of endogenous cGMP, also increased host cell susceptibility to chlamydial infection. Cyclic GMP was only effective if added at or before chlamydial inoculation, suggesting that its main effect was on chlamydial uptake. The stimulatory effect of cGMP, but nt antagonism, by cAMP, was abolished if the cells were first treated with any of four different inhibitors of prostaglandin synthesis, suggesting a critical role for endogenous prostaglandin synthesis. Centrifugation of chlamydiae on to host cells was followed by a rapid increase in the mobility of Ca2+ across the cell membrane. The interrelationships of these observations and the possibility that chlamydiae and other intracellular pathogens might evoke alterations in host cell prostaglandin and cyclic nucleotide concentrations to aid their own uptake are discussed.  相似文献   

15.
16.
The mechanism by which Chlamydia trachomatis is endocytosed by host cells is unclear. Studies of the kinetics of chlamydial attachment and uptake in the susceptible HeLa 229 cell line showed that chlamydial endocytosis was rapid and saturable but limited by the slow rate of chlamydial attachment. To overcome this limitation and to investigate the mechanism of endocytosis, chlamydiae were centrifuged onto the host cell surface in the cold to promote attachment. Endocytosis of the adherent chlamydiae was initiated synchronously by rapid warming to 36 degrees C. Electron micrographs of chlamydial uptake 5 min after onset showed that chlamydial ingestion involves movement of the host cell membrane, leading to interiorization in tight, endocytic vacuoles which were not clathrin coated. Chlamydial ingestion was not inhibited by monodansylcadaverine or amantadine, inhibitors of receptor-mediated endocytosis and chlamydiae failed to displace [3H]sucrose from micropinocytic vesicles. Chlamydial endocytosis was markedly inhibited by cytochalasin D, an inhibitor of host cell microfilament function, and by vincristine or vinblastine, inhibitors of host cell microtubules. Hyperimmune rabbit antibody prevented the ingestion of adherent chlamydiae, suggesting that endocytosis requires the circumferential binding of chlamydial and host cell surface ligands. These findings were incompatible with the suggestion that chlamydiae enter cells by taking advantage of the classic mechanism of receptor-mediated endocytosis into clathrin-coated vesicles, used by the host cell for the internalization of beta-lipoprotein and other macromolecules, but were consistent with the hypothesis that chlamydiae enter cells by a microfilament-dependent zipper mechanism.  相似文献   

17.
The major phospholipid classes of the obligate intracellular bacterial parasite Chlamydia trachomatis are the same as its eukaryotic host except that they also contain chlamydia-made branched-chain fatty acids in the 2-position. Genomic analysis predicts that C. trachomatis is capable of type II fatty acid synthesis (FASII). AFN-1252 was deployed as a chemical tool to specifically inhibit the enoyl-acyl carrier protein reductase (FabI) of C. trachomatis to determine whether chlamydial FASII is essential for replication within the host. The C. trachomatis FabI (CtFabI) is a homotetramer and exhibited typical FabI kinetics, and its expression complemented an Escherichia coli fabI(Ts) strain. AFN-1252 inhibited CtFabI by binding to the FabI·NADH complex with an IC50 of 0.9 μm at saturating substrate concentration. The x-ray crystal structure of the CtFabI·NADH·AFN-1252 ternary complex revealed the specific interactions between the drug, protein, and cofactor within the substrate binding site. AFN-1252 treatment of C. trachomatis-infected HeLa cells at any point in the infectious cycle caused a decrease in infectious titers that correlated with a decrease in branched-chain fatty acid biosynthesis. AFN-1252 treatment at the time of infection prevented the first cell division of C. trachomatis, although the cell morphology suggested differentiation into a metabolically active reticulate body. These results demonstrate that FASII activity is essential for C. trachomatis proliferation within its eukaryotic host and validate CtFabI as a therapeutic target against C. trachomatis.  相似文献   

18.
A number of bacteriophages belonging to the Microviridae have been described infecting chlamydiae. Phylogenetic studies divide the Chlamydiaceae into two distinct genera, Chlamydia and Chlamydophila, containing three and six different species, respectively. In this work we investigated the biological properties and host range of the recently described bacteriophage Chp2 that was originally discovered in Chlamydophila abortus. The obligate intracellular development cycle of chlamydiae has precluded the development of quantitative approaches to assay bacteriophage infectivity. Thus, we prepared hybridomas secreting monoclonal antibodies (monoclonal antibodies 40 and 55) that were specific for Chp2. We demonstrated that Chp2 binds both C. abortus elementary bodies and reticulate bodies in an enzyme-linked immunosorbent assay. Monoclonal antibodies 40 and 55 also detected bacteriophage Chp2 antigens in chlamydia-infected eukaryotic cells. We used these monoclonal antibodies to monitor the ability of Chp2 to infect all nine species of chlamydiae. Chp2 does not infect members of the genus Chlamydia (C. trachomatis, C. suis, or C. muridarum). Chp2 can infect C. abortus, C. felis, and C. pecorum but is unable to infect other members of this genus, including C. caviae and C. pneumoniae, despite the fact that these chlamydial species support the replication of very closely related bacteriophages.  相似文献   

19.
Bacterial pathogens that reside in membrane bound compartment manipulate the host cell machinery to establish and maintain their intracellular niche. The hijacking of inter-organelle vesicular trafficking through the targeting of small GTPases or SNARE proteins has been well established. Here, we show that intracellular pathogens also establish direct membrane contact sites with organelles and exploit non-vesicular transport machinery. We identified the ER-to-Golgi ceramide transfer protein CERT as a host cell factor specifically recruited to the inclusion, a membrane-bound compartment harboring the obligate intracellular pathogen Chlamydia trachomatis. We further showed that CERT recruitment to the inclusion correlated with the recruitment of VAPA/B-positive tubules in close proximity of the inclusion membrane, suggesting that ER-Inclusion membrane contact sites are formed upon C. trachomatis infection. Moreover, we identified the C. trachomatis effector protein IncD as a specific binding partner for CERT. Finally we showed that depletion of either CERT or the VAP proteins impaired bacterial development. We propose that the presence of IncD, CERT, VAPA/B, and potentially additional host and/or bacterial factors, at points of contact between the ER and the inclusion membrane provides a specialized metabolic and/or signaling microenvironment favorable to bacterial development.  相似文献   

20.

Background  

Ancient endosymbioses are responsible for the origins of mitochondria and plastids, and they contribute to the divergence of several major eukaryotic groups. Although chlamydiae, a group of obligate intracellular bacteria, are not found in plants, an unexpected number of chlamydial genes are most similar to plant homologs, which, interestingly, often contain a plastid-targeting signal. This observation has prompted several hypotheses, including gene transfer between chlamydiae and plant-related groups and an ancestral relationship between chlamydiae and cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号