首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A sulphated glycosaminoglycan-dependent mechanism of microbial infection for mammailan cells was characterized for the Chlamydia trachomatis trachoma and lymphogranuloma venereum (LGV) biovars. We demonstrated that the trachoma and LGV biovars compete for the same receptor(s) on host cells and that their infectivity was inhibited by heparin or heparan sulphate. Using a specific heparan suiphate lyase (heparitinase) to treat organisms, the Infectivity of both biovars was abolished. Furthermore, exogenous heparan sulphate rescued chlamydial infectivity following treatment with heparitinase and the restored infectivity was neutralized by an anti-heparan sulphate monoclonal antibody. These data suggest that heparan sulphate-like-mediated Interactions between C. trachomatis and eukaryotic cells are essential for infectivity.  相似文献   

2.
Mechanism of C. trachomatis attachment to eukaryotic host cells.   总被引:12,自引:0,他引:12  
J P Zhang  R S Stephens 《Cell》1992,69(5):861-869
A novel trimolecular mechanism of microbial attachment to mammalian host cells was characterized for the obligate intracellular pathogen Chlamydia trachomatis. Using purified glycosaminoglycans (GAGs) and specific GAG lyases, we demonstrated that a heparan sulfate-like GAG present on the surface of chlamydia organisms is required for attachment to host cells. These observations were supported by inhibition of attachment following binding of heparan sulfate receptor analogs to chlamydiae and by demonstrating that chlamydiae synthesize a unique heparan sulfate-like GAG. Furthermore, exogenous heparan sulfate, as an adhesin analog, restored attachment and infectivity to organisms that had lost these attributes following treatment with heparan sulfate lyase. These data suggest that a GAG adhesin ligand mediates attachment by bridging mutual GAG receptors on the host cell surface and on the chlamydial outer membrane surface.  相似文献   

3.
Chlamydia pneumoniae, an obligate intracellular human pathogen, causes a number of respiratory diseases. We explored the role of the conserved OmcB protein in C. pneumoniae infections, using yeast display technology. (i) Yeast cells presenting OmcB were found to adhere to human epithelial cells. (ii) Pre-incubation of OmcB yeast cells with heparin, but not other glycosaminoglycans (GAGs), abrogated adhesion. (iii) Pre-treatment of the target cells with heparinase inhibited adherence, and GAG-deficient CHO cell lines failed to bind OmcB yeast. (iv) A heparin-binding motif present near the N-terminus of OmcB is required for host cell binding. (v) Pre-treatment of chlamydial elementary bodies (EBs) with anti-OmcB antibody or pre-incubation of target cells with recombinant OmcB protein reduced infectivity upon challenge with C. pneumoniae. (vi) Adhesion of fluorescently labelled EBs to epithelial or endothelial cells was abrogated by prior addition of heparin or OmcB protein. Thus, C. pneumoniae OmcB is an adhesin that binds heparan sulphate-like GAGs. OmcB from Chlamydia trachomatis serovar L1 also adheres to human cells in a heparin-dependent way, unlike its counterpart from serovar E. We show that a single position in the OmcB sequence determines heparin dependence/independence, and variations there may reflect differences between the two serovars in cell tropism and disease pattern.  相似文献   

4.
As an intracellular pathogen, the mechanism by which Chlamydia invade eukaryotic cells represents a cornerstone to understanding chlamydial biology. The ability of chlamydiae specifically to bind heparan sulphate or heparin and the association of this ability to bind and enter mammalian host cells was approached by searching experimentally for chlamydial outer membrane proteins that bind heparin. The 60 000 molecular weight cysteine-rich outer membrane complex protein, OmcB, bound heparin. The ability of OmcB to bind heparin was supported by mapping the region of the protein with heparin-binding capacity and demonstrating that an OmcB synthetic 20-mer peptide from this region specifically bound heparin. Surface localization of OmcB was shown using monospecific antisera specific to the 20-mer OmcB peptide that bound the surfaces of elementary bodies (EB) and by heparin-binding peptide cross-linking of EB surface proteins.  相似文献   

5.
Chlamydiae are obligate intracellular pathogens that spend their entire growth phase sequestered in a membrane-bound vacuole called an inclusion. A set of chlamydial proteins, labelled Inc proteins, has been identified in the inclusion membrane (IM). The predicted IncA, IncB and IncC amino acid sequences share very limited similarity, but a common hydrophobicity motif is present within each Inc protein. In an effort to identify a relatively complete catalogue of Chlamydia trachomatis proteins present in the IM of infected cells, we have screened the genome for open reading frames encoding this structural motif. Hydropathy plot analysis was used to screen each translated open reading frame in the C. trachomatis genome database. Forty-six candidate IM proteins (C-lncs) that satisfied the criteria of containing a bilobed hydrophobic domain of at least 50 amino acids were identified. The genome of Chlamydia pneumoniae encodes a larger collection of C-lnc proteins, and only approximately half of the C-lncs are encoded within both genomes. In order to confirm the hydropathy plot screening method as a valid predictor of C-lncs, antisera and/or monoclonal antibodies were prepared against six of the C. trachomatis C-lncs. Immunofluorescence microscopy of C. trachomatis-infected cells probed with these antibodies showed that five out of six C-lncs are present in the chlamydial IM. Antisera were also produced against C. pneumoniae p186, a protein sharing identity with Chlamydia psittaci lncA and carrying a similar bilobed hydrophobic domain. These antisera labelled the inclusion membrane in C. pneumoniae infected cells, confirming that proteins sharing the unique secondary structural characteristic also localize to the inclusion membrane of C. pneumoniae. Sera from patients with high-titre antibodies to C. trachomatis were examined for reactivity with each tested C-lnc protein. Three out of six tested C-lncs were recognized by a majority of these patient sera. Collectively, these studies identify and characterize novel proteins localized to the chlamydial IM and demonstrate the existence of a potential secondary structural targeting motif for localization of chlamydial proteins to this unique intracellular environment.  相似文献   

6.
Chlamydiae are obligate intracellular bacteria that replicate within a non-acidified vacuole called an inclusion. Chlamydia psittaci (strain GPIC) produces a 39 kDa protein (IncA) that is localized to the inclusion membrane. While IncA is present as a single 39 kDa species in purified reticulate bodies, two additional higher M r forms are found in C. psittaci -infected cells. This finding suggested that IncA may be post-translationally modified in the host cell. Here we present evidence that IncA is a serine/threonine phosphoprotein that is phosphorylated by host cell enzymes. This conclusion is supported by the following experimental findings: (i) treatment of infected cells with inhibitors of host cell phosphatases or kinases altered the electrophoretic migration pattern of IncA; (ii) treatment with calf intestinal alkaline phosphatase eliminated the multiple-banding pattern of IncA, leaving only the protein band with the lowest relative molecular weight; and (iii) radioimmunoprecipitation of lysates of [32P]-orthophosphate-labelled infected HeLa cells with anti-IncA antisera demonstrated that the two highest M r IncA bands were phosphorylated. A vaccinia-virus recombinant expressing incA was used to determine if HeLa cells can phosphorylate IncA in the absence of a chlamydial background. IncA in lysates of these cells migrated identically to that seen in C. psittaci -infected cells, indicating the host cell was responsible for the phosphorylation of the protein. Microinjection of fluorescently labelled anti-IncA antibodies into C. psittaci -infected HeLa cells resulted in immunostaining of the outer face of the inclusion membrane. Collectively, these results demonstrate that IncA is phosphorylated by the host cell, and regions of IncA are exposed at the cytoplasmic face of the inclusion.  相似文献   

7.
The chlamydial glycolipid exoantigen, GLXA, is associated with the bacterial membrane, intracellular inclusion, and can also be found secreted into the microenvironment of Chlamydia trachomatis-infected cells. The aim of this study was to investigate the function of GLXA in chlamydial pathogenesis. Pretreatment of HeLa 229 cells with affinity-purified GLXA resulted in a significant enhancement of chlamydial infectivity as determined by inclusion body enumeration. The GLXA-mediated enhancement was shown to be time- and dose-dependent and, more importantly, GLXA-specific, as the effect was abrogated by anti-GLXA antibody. In vitro neutralization assays on HEp-2 cells revealed that an anti-anti-idiotypic antibody to GLXA effectively reduced the infectivity of C. trachomatis, C. pneumoniae, and C. psittaci. In vivo, the co-inoculation of GLXA at the time of C. trachomatis serovar K intravaginal challenge of C3H/HeJ mice resulted in a significant increase in the numbers of shed organisms on days 4, 7, 14, 21, and 28. Taken together, these observations suggest that GLXA, both organism bound and secreted, is important in facilitating the initiation of infection. Received: 12 April 2002 / Accepted: 8 June 2002  相似文献   

8.
9.
Confinement of the obligate intracellular bacterium Chlamydia trachomatis to a membrane-bound vacuole, termed an inclusion, within infected epithelial cells neither prevents secretion of chlamydial antigens into the host cytosol nor protects chlamydiae from innate immune detection. However, the details leading to chlamydial antigen presentation are not clear. By immunoelectron microscopy of infected endometrial epithelial cells and in isolated cell secretory compartments, chlamydial major outer membrane protein (MOMP), lipopolysaccharide (LPS) and the inclusion membrane protein A (IncA) were localized to the endoplasmic reticulum (ER) and co-localized with multiple ER markers, but not with markers of the endosomes, lysosomes, Golgi nor mitochondria. Chlamydial LPS was also co-localized with CD1d in the ER. Since the chlamydial antigens, contained in everted inclusion membrane vesicles, were found within the host cell ER, these data raise additional implications for antigen processing by infected uterine epithelial cells for classical and non-classical T cell antigen presentation.  相似文献   

10.
Chlamydiae are obligate intracellular bacteria that replicate within the confines of a membrane-bound vacuole termed the inclusion. The final event in the infectious process is the disruption of the inclusion membrane and release of a multitude of infectious elementary bodies, each capable of eliciting a new infection. Strains of the trachoma biovar of Chlamydia trachomatis are released from the host cell without concomitant host cell death. In this study, analysis of events associated with chlamydial egress revealed that the integrity of the host cell plasma membrane was compromised prior to the inclusion membrane. This disruption was accompanied by the appearance of LAMP-1 at the infected cell surface, implicating lysosome repair of plasma membrane lesions in response to infection. Analysis of the effects of calcium chelators and actin stabilizing agents, indicated calcium-induced actin depolymerization as a requisite to lysosome-plasma membrane fusion and host cell survival. A consequence of this lysosome-mediated repair process, was the retention of residual bacteria within the surviving host cell, providing a unique mechanism for intracellular persistence of C. trachomatis.  相似文献   

11.
Adhesion of the obligate intracellular bacterium Chlamydia trachomatis to host cells is associated with a flux of Ca2+ across the cell membrane, and infection is enhanced by treatment of host cells with Ca2+ ionophore. The possibility that Ca2+ might interact with host cell Ca2+ regulatory proteins to promote chlamydial infection was investigated. Treatment of HeLa 229 cells with the calmodulin inhibitors pimozide, trifluoperazine, chlorpromazine, promethazine or haloperidol reduced chlamydial infectivity as measured by inclusion counting or the specific incorporation of [3H]threonine. The inhibitory effect was reversible, dose-related and shown to be associated with impairment of chlamydial adhesion and uptake by the host cells. This effect was clearly distinguished from the delayed maturation of chlamydiae due to continuous exposure to calmodulin inhibitors which may result from a decrease in the availability of high energy compounds from the host cells necessary for chlamydial growth. The possible mechanisms for calmodulin-mediated chlamydial endocytosis are discussed.  相似文献   

12.
For Chlamydia, an intracellular pathogen of humans, host cell invasion is obligatory for survival, growth and pathogenesis. At the molecular level, little is known about the binding and entry of Chlamydia into the mammalian host cell. Chlamydia are genetically intractable therefore experimental approaches targeting the host are often necessary. CHO6 is a mutagenized cell line resistant to attachment and infection by Chlamydia. In this study, CHO6 was shown using proteomic methods to have a defect in processing of the leader sequence for protein disulfide isomerase (PDI). Complementation by expression of full-length PDI restored C. trachomatis binding and infectivity in the CHO6 mutant cell line. The cell line was also resistant to diphtheria toxin and required complemented cell-surface PDI for toxin entry. These data demonstrate that native PDI at the cell surface is required for effective chlamydial attachment and infectivity.  相似文献   

13.
《Autophagy》2013,9(1):50-62
Interferon γ (IFNG) is a key host response regulator of intracellular pathogen replication, including that of Chlamydia spp The antichlamydial functions of IFNG manifest in a strictly host, cell-type and chlamydial strain dependent manner. It has been recently shown that the IFNG-inducible family of immunity-related GTPases (IRG) proteins plays a key role in the defense against nonhost adapted chlamydia strains in murine epithelial cells. In humans, IFN-inducible guanylate binding proteins (hGBPs) have been shown to potentiate the antichlamydial effect of IFNG; however, how hGBPs regulate this property of IFNG is unknown. In this study, we identified hGBP1/2 as important resistance factors against C. trachomatis infection in IFNG-stimulated human macrophages. Exogenous IFNG reduced chlamydial infectivity by 50 percent in wild-type cells, whereas shRNA hGBP1/2 knockdown macrophages fully supported chlamydial growth in the presence of exogenous IFNG. hGBP1/2 were recruited to bacterial inclusions in human macrophages upon stimulation with IFNG, which triggered rerouting of the typically nonfusogenic bacterial inclusions for lysosomal degradation. Inhibition of lysosomal activity and autophagy impaired the IFNG-mediated elimination of inclusions. Thus, hGBP1/2 are critical effectors of antichlamydial IFNG responses in human macrophages. Through their capacity to remodel classically nonfusogenic chlamydial inclusions and stimulate fusion with autophagosomes, hGBP1/2 disable a major chlamydial virulence mechanism and contribute to IFNG-mediated pathogen clearance.  相似文献   

14.
Chlamydiae are Gram‐negative obligate intracellular bacteria that cause diseases with significant medical and economic impact. Chlamydia trachomatis replicates within a vacuole termed an inclusion, which is extensively modified by the insertion of a number of bacterial effector proteins known as inclusion membrane proteins (Incs). Once modified, the inclusion is trafficked in a dynein‐dependent manner to the microtubule‐organizing centre (MTOC), where it associates with host centrosomes. Here we describe a novel structure on the inclusion membrane comprised of both host and bacterial proteins. Members of the Src family of kinases are recruited to the chlamydial inclusion in an active form. These kinases display a distinct, localized punctate microdomain‐like staining pattern on the inclusion membrane that colocalizes with four chlamydial inclusion membrane proteins (Incs) and is enriched in cholesterol. Biochemical studies show that at least two of these Incs stably interact with one another. Furthermore, host centrosomes associate with these microdomain proteins in C. trachomatis‐infected cells and in uninfected cells exogenously expressing one of the chlamydial effectors. Together, the data suggest that a specific structure on the C. trachomatis inclusion membrane may be responsible for the known interactions of chlamydiae with the microtubule network and resultant effects on centrosome stability.  相似文献   

15.
The mechanism and kinetics of intracellular growth of Rickettsia tsutsugamushi were investigated by electron microscopic observations, parallel with quantitative analysis by counting the rickettsiae seen in electron micrographs and by plaque assay for infectivity of the culture. The observations demonstrated the existence of electron-less dense and -dense types of rickettsiae in the early stage of infection, binary fission and the process of release of the microorganisms in the host cell cytoplasm and from the cell surface, formation of abnormally long rickettsiae, and the process of lysis of the host cell in the later stage of infection with vacuole formation between the inner and outer leaflets of the host cell nuclear membrane. Separate titrations of infectivity of the cells and the culture fluid showed a very slow increase in infectivity in the culture fluid compared with the intracellular titer, suggesting that the progeny rickettsiae stay in the cell or at the cell surface for a relatively long period. Doubling time of the rickettsia was found to be about 9 hr.  相似文献   

16.
17.
Chlamydiae are obligate intracellular pathogens that must coordinate the acquisition of host cell-derived biosynthetic constituents essential for bacterial survival. Purified chlamydiae contain several lipids that are typically found in eukaryotes, implying the translocation of host cell lipids to the chlamydial vacuole. Acquisition and incorporation of sphingomyelin occurs subsequent to transport from Golgi-derived exocytic vesicles, with possible intermediate transport through endosomal multivesicular bodies. Eukaryotic host cell-derived sphingomyelin is essential for intracellular growth of Chlamydia trachomatis, but the precise role of this lipid in development has not been delineated. The present study identifies specific phenotypic effects on inclusion membrane biogenesis and stability consequent to conditions of sphingomyelin deficiency. Culturing infected cells in the presence of inhibitors of serine palmitoyltransferase, the first enzyme in the biosynthetic pathway of host cell sphingomyelin, resulted in loss of inclusion membrane integrity with subsequent disruption in normal chlamydial inclusion development. Surprisingly, this was accompanied by premature redifferentiation to and release of infectious elementary bodies. Homotypic fusion of inclusions was also disrupted under conditions of sphingolipid deficiency. In addition, host cell sphingomyelin synthesis was essential for inclusion membrane stability and expansion that is vital to reactivation of persistent chlamydial infection. The present study implicates both the Golgi apparatus and multivesicular bodies as key sources of host-derived lipids, with multivesicular bodies being essential for normal inclusion development and reactivation of persistent C. trachomatis infection.  相似文献   

18.
Toxoplasma gondii is an obligate intracellular parasite that actively invades a wide variety of vertebrate cells, although the basis of its pervasive cell invasion is not completely understood. Here, we demonstrate, using several independent assays, that Toxoplasma invasion of host cells is tightly coupled to the release of proteins stored within apical secretory granules called micronemes. Both microneme secretion and cell invasion were highly temperature dependent, and partial depletion of microneme resulted in a transient loss of infectivity. Chelation of parasite intracellular calcium strongly inhibited both microneme release and invasion of host cells, and this effect was partially reversed by raising intracellular calcium using the ionophore A23187. We also provide evidence that a staurosporine-sensitive kinase activity regulates microneme discharge and is required for parasite invasion of host cells. Additionally, we demonstrate that, during apical attachment to the host cell, the micronemal protein MIC2 is released at the junction between the parasite and the host cell. During invasion, MIC2 is successively translocated towards the posterior end of the parasite and is shed before entry of the parasite into the vacuole. Furthermore, we show that the full-length cellular form of MIC2, but not the proteolytically modified secreted form of MIC2, binds specifically to host cells. Collectively, these observations strongly imply that micronemal proteins play a role in Toxoplasma invasion of host cells.  相似文献   

19.
Chlamydiae are obligate intracellular pathogens that reside within a membrane-bound vacuole throughout their developmental cycle. In this study, the intraphagosomal pH of Chlamydia pneumoniae ( Cpn ) was qualitatively assessed, and the intracellular fate of the pathogen-containing vacuole and its interaction with endocytic organelles in human epithelial cells were analysed using conventional immunofluorescence and confocal microscopy. The pH-sensitive probes acridine orange (AO), LysoTracker (LyT) and DAMP did not accumulate in the bacterial inclusion. In addition, exposure of cells to bafilomycin A1 (BafA1), a potent acidification inhibitor, did not inhibit or delay chlamydial growth. The chlamydial compartment was not accessible to the fluid-phase tracer Texas Red (TR)-dextran and did not exhibit any level of staining for the late endosomal marker cation-independent mannose-6-phosphate receptor (Ci-M6PR) or for the lysosomal-associated membrane proteins (LAMP-1 and -2) and CD63. In addition, transferrin receptor (TfR)-enriched vesicles were observed close to Cpn vacuoles, potentially indicating a specific translocation of these organelles through the cytoplasm to the vicinity of the vacuole. We conclude that Cpn , like other chlamydial spp., circumvents the host endocytic pathway and inhabits a non-acidic vacuole, which is dissociated from late endosomes and lysosomes, but selectively accumulates early endosomes.  相似文献   

20.
The chlamydiae are obligate intracellular pathogens that occupy a nonacidified vacuole (the inclusion) during their entire developmental cycle. Several proteins have recently been identified that are localized to the inclusion membrane. The following is a discussion of how inclusion membrane proteins might participate in the chlamydial developmental process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号