首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
In the current study, gefitinib loaded PLGA nanoparticles (GFT-PLGA-NPs) and chitosan coated PLGA nanoparticles (GFT-CS-PLGA-NPs) were synthesized to investigate the role of surface charge of NPs for developing drug delivery system for non-small-cell lung cancer (NSCLC). The developed NPs were evaluated for their size, PDI, zeta potential (ZP), drug entrapment, drug loading, DSC, FTIR, XRD, in vitro release profile, and morphology. The anti-cancer activity of GFT loaded PLGA NPs and GFT loaded CS-PLGA-NPs were examined in human A549 lung cancer cell lines. In vitro release studies of GFT-CS-PLGA-NPs showed more sustained release in comparison to GFT-PLGA-NPs due surface charge attraction of chitosan. In addition, viability of A549 cells decreases significantly with the increasing concentration of GFT-PLGA NPs and GFT-CS-PLGA-NPs when compared to that of pure GFT and blank PLGA NPs. In addition, the microscopic analysis and counting of viable cells also validate the cytotoxicity of the developed NPs. This investigation proved that the developed NPs would be efficient carriers to deliver GFT with improved efficacy against NSCLC.  相似文献   

2.
The rapid progress in the development and scientific investments of modified nanoparticles are due to their owed activity to various diseased conditions for which they are prepared. But the toxicity which they cause cannot be overlooked. The present study demonstrates the development of phosphatidylserine (PS)-coated chitosan (CS) nanoparticles (NPs) loaded with curcumin (CU), which was then investigated against human embryonic kidney cells (HEK 293) for its cytotoxic and genotoxic effect in rats. The CU-loaded CNPs (CNPs-CU) have been prepared by ionic gelation method, later which were grafted with PS. CNPs-CU and PS-CNPs-CU have been evaluated for their size, poly dispersity index, amount of drug entrapped, and in vitro CU release. CNPs-CU has an average size 167.6?±?3.53 nm and polydispersity index (PDI) 0.115?±?0.014, whereas PS-CNPs-CU shows average size 220?±?3.67 nm and PDI 0.148?±?0.019. Surface morphology of prepared NPs was confirmed by high-resolution transmission electron microscopy (HR-TEM). There was no major difference in cell viability between PS-CNPs-CU and CNPs-CU when they were exposed to HEK 293 cells at all equivalent concentrations. A series of genotoxic studies were conducted, which revealed the non-genotoxicity potential of the developed complexes. These results demonstrated that PS-CNPs-CU may be useful as potential delivery system.  相似文献   

3.
We describe the design, synthesis and evaluation of a series of N2,N4-diaminoquinazoline analogs as PDE5 inhibitors. Twenty compounds were prepared and these were assessed in terms of their PDE5 and PDE6 activity, ex-vivo vasodilation response, mammalian cytotoxicity and aqueous solubility. Molecular docking was used to determine the binding mode of the series and this was demonstrated to be consistent with the observed SAR. Compound 15 was the most active PDE5 inhibitor (IC50?=?0.072?±?0.008?µM) and exhibited 4.6-fold selectivity over PDE6. Ex-vivo assessment of 15 and 22 in a rat pulmonary artery vasodilation model demonstrated EC50s of 1.63?±?0.72?µM and 2.28?±?0.74?µM respectively.  相似文献   

4.
A conjugate of triphosphorylated 2′,3′-dideoxyuridine (ddU) with SiO2 nanoparticles was obtained via the CuAAC click chemistry between a γ-alkynyl ddU triphosphate and azido-modified SiO2 nanoparticles. Assessment of cytotoxicity in human breast adenocarcinoma MCF7 cells demonstrated that ddU triphosphate conjugated to SiO2 nanoparticles exhibited a 50% decrease in cancer cell growth at a concentration of 183?±?57?µg/mL, which corresponds to 22?±?7?µM of the parent nucleotide, whereas the parent nucleoside, nucleotide and alkynyl triphosphate precursor do not show any cytotoxicity. The data provide an example of remarkable potential of novel conjugates of SiO2 nanoparticles with phosphorylated nucleoside analogues, even those, which have not been used previously as therapeutics, for application as new anticancer agents.  相似文献   

5.
This study was conducted to develop timolol maleate (TM)-loaded galactosylated chitosan (GC) nanoparticles (NPs) (TM-GC-NPs) followed by optimization via a four-level and three-factor Box–Behnken statistical experimental design. The optimized nanoparticles showed a particle size of 213.3?±?6.83 nm with entrapment efficiency of 38.58?±?1.31% and drug loading of 17.72?±?0.28%. The NPs were characterized with respect to zeta potential, pH, surface morphology, and differential scanning calorimetry (DSC). The determination of the oil–water partition coefficient demonstrated that the TM-GC-NPs had a high liposolubility at pH 6 as compared to timolol-loaded chitosan nanoparticles (TM-CS-NPs) and commercial TM eye drops. The in vitro release study indicated that TM-GC-NPs had a sustained release effect compared with the commercial TM eye drops. Ocular tolerance was studied by the hen’s egg chorioallantoic membrane (HET-CAM) assay and the formulation was non-irritant and could be used for ophthalmic drug delivery. The in vitro transcorneal permeation study and confocal microscopy showed enhanced penetration, and retention in the cornea was achieved with TM-GC-NPs compared with the TM-CS-NPs and TM eye drops. Preocular retention study indicated that the retention of TM-GC-NPs was significantly longer than that of TM eye drops. The in vivo pharmacodynamic study suggested TM-GC-NPs had a better intraocular pressure (IOP) lowering efficacy and a prolonged working time compared to commercial TM eye drops (P?≤?0.05). The optimized TM-GC-NPs could be prepared successfully promising their use as an ocular delivery system.  相似文献   

6.
A new flavoalkaloid racemate, leucoflavonine (1), together with its flavonoid precursor pectolinarigenin (2), was isolated from the leaves of Leucosceptrum canum collected from Tibet. Its structure was established by comprehensive spectroscopic analysis. Chrial separation of the enantiomers of 1 was achieved, and their absolute configurations were determined as S-(+)- and R-(?)-leucoflavonines ((+)-1a and (?)-1b) by comparison of their computational and experimental optical rotations. Biological assays indicated that both (+)-1a and (?)-1b exhibited inhibitory activity against acetylchlorinesterase (AChE) in vitro (IC50?=?68.0?±?8.6 and 18.3?±?1.8?μM, respectively). Moreover, (?)-1b displayed cytotoxicity against human hepatoma cells HepG2 (IC50?=?52.9?±?3.6?μM), and inhibited the production of interleukelin-2 (IL-2) in Jurkat cells (IC50?=?16.5?±?0.9?μM), while (+)-1a showed no obvious activity in these assays.  相似文献   

7.
Abstract

The interaction ability of bovine serum albumin (BSA) with 2,6-divanillylidenecyclohexanone (DVH) as a stable curcumin derivative was investigated using fluorescence and circular dichroism (CD) spectroscopy techniques under simulative physiological conditions (pH = 7.2). Following the obtained results of binding studies, bovine serum albumin nanoparticles (BSANPs) were synthesized and characterized using Fourier transform infrared spectroscopy (FT-IR), filed emission scanning electron microscopy (FE-SEM), atomic force microscope (AFM) and dynamic light scattering (DLS). The stable BSANPs showed a spherical shape with a diameter of 149.14?±?46.69?nm and the formulation of BSA had no change during the fabrication process. DVH was loaded on BSANPs (DVH@BSANPs) and the release studies showed sustained release of DVH from BSANPs. The validation of DVH@BSANPs system confirmed that the Fickian release mechanism of DVH followed on Korsmeyer–Pepas model. The in vitro studies on HFFF2 and MDA-MB-231 were investigated using MTT assay, DAPI and annexinV/PI staining that showed biocompatible BSANPs reduced the cytotoxicity of DVH in normal cell lines significantly, and antitumor activity of DVH was increased when it was loaded onto BSANPs without necrosis. These results suggest that DVH@BSANPs are a novel biocompatible sustained release system for effective therapeutic approach.

Communicated by Ramaswamy H. Sarma  相似文献   

8.
Gambogic acid (GA) has been proven to be a potent chemotherapeutic agent for the treatment of lung cancer in clinical trials. However, GA is limited in its therapeutic value by properties such as poor water solubility and low chemical stability. In clinical trials, cationic arginine (Arg) was added to solubilize GA, and this may also cause other side effects. Here, we have designed and developed a more efficient human serum albumin (HSA)-based delivery system for GA with low toxicity which helps improve its solubility, chemical stability and increases its antitumor efficacy. The GA-HSA nanoparticles (NPs) were prepared by albumin-bound (nabTM) technology, with a particle size of 135.2?±?35.03 nm, a zeta potential of ?21.81?±?1.24 mV, and a high entrapment efficiency. Compared with GA-Arg solution, the physical and chemical stability of the NPs were improved when stored at pH 7.4 in PBS or freeze-dried. The in vitro drug release showed that GA-HSA NPs had a more sustained release than GA-Arg solution. Furthermore, HSA NPs improved the therapeutic efficacy of GA and were less toxic compared with GA-Arg solution in A549-bearing mice. Therefore, this delivery system is a promising polymeric carrier for GA when used for tumor therapy.  相似文献   

9.
We describe the formulation of bovine serum albumin nanoparticles (BSA‐NPs) by the coacervation method using surfactants. Plasmids (pUC18, pUC18egfp and pBBR1MCS‐2) isolated from E. coli were incorporated into the BSA matrix by incubating in albumin solution prior to formulation of NPs. Plasmid incorporation was calculated by % yield, entrapment efficiency, DNA loading capacity and release of entrapped DNA by comparing with blank NPs. BSA‐DNA binding studies were carried out by using fluorescence spectroscopy and Fourier Transform Infra Red Spectroscopy (FT‐IR). The surface charge distribution of the NPs loaded with plasmid was calculated using zeta potential. The photoluminescence of BSA‐NPs was quenched when loaded with pDNA, confirming the interaction of DNA with BSA. Altogether, these results provide evidences for the excellent DNA carrying efficiency of BSA‐NPs without loss of plasmid's integrity. The NPs were used to transfect E. coli DH5α strain lacking ampicillin resistance. They, however, showed ampicillin resistance subsequent to transfection with plasmid encoding ampicillin resistance gene. Effect of transfection was confirmed by confocal microscopy and by the isolation of the plasmid by agarose gel electrophoresis from the transfected bacterial culture. This study clearly demonstrates the efficacy of BSA‐NPs as delivery vehicle for pDNA transfection. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
A facile method for the construction of double bond between 3-ylidene oxindoles and α-azido ketones has been successfully accomplished with a mild base. This method features azido reduction with concomitant double bond formation to provide the new class of bioactive enamino-2-oxindoles. These new compounds were screened for their in vitro cytotoxic potential on selected human cancer cell lines such as colon, lung, breast, and cervical cancer cells. Among them, representative compounds 3a, 3h, 3k, 3p, 3w and 3x showed notable cytotoxicity profile with IC50 values ranging from 1.40?±?0.10 to 28.7?±?0.36?µM. Compound 3k displayed most potent cytotoxicity against lung cancer (NCI-H460) cells with an IC50 value of 1.40?±?0.10?µM. 3k also arrested the G2/M phase of the cell cycle and induced distinctive apoptotic features on lung cancer cells. The apoptosis induction is supported by various cellular assays such as AO/EB, DAPI, and DCFDA staining studies including clonogenic assay. Extent of apoptosis was also analyzed by Annexin binding and JC-1 staining. Moreover, this method is amenable for the generation of a library of new class of stable bioactive enamino-2-oxindoles.  相似文献   

11.
Abstract

Ropivacaine, a novel long-acting local anesthetic, has been proved to own superior advantage. However, Naropin® Injection, the applied form in clinic, can cause patient non-convenience. The purpose of this study was to formulate ropivacaine (RPV) in ethosomes and evaluate the potential of ethosome formulation in delivering RPV transdermally. The RPV-loaded ethosomes were prepared with thin-film dispersion technique and the formulation was characterized in terms of size, zeta potential, differential scanning calorimetry (DSC) analysis and X-ray diffraction (XRD) study. The results showed that the optimized RPV-ethosomes displayed a typical lipid bilayer structure with a narrow size distribution of 73.86?±?2.40?nm and drug loading of 8.27?±?0.37%, EE of 68.92?±?0.29%. The results of DSC and XRD study indicated that RPV was in amorphous state when encapsulated into ethosomes. Furthermore, the results of ex vivo permeation study proved that RPV-ethosomes could promote the permeability in a high-efficient, rapid way (349.0?±?11.5?μg?cm?2 at 12?h and 178.8?±?7.1?μg?cm?2 at 0.5?h). The outcomes of histopathology study forecasted that the interaction between ethosomes and skin could loosen the tight conjugation of corneocyte layers and weaken the permeation barrier. In conclusion, RPV-ethosomes could be a promising delivery system to encapsulate RPV and deliver RPV for transdermal administration.  相似文献   

12.
13.
Malaria, particularly in endemic countries remains a threat to the human health and is the leading the cause of mortality in the tropical and sub-tropical areas. Herein, we explored new C2 symmetric hydroxyethylamine analogs as the potential inhibitors of Plasmodium falciparum (P. falciparum; 3D7) in in-vitro cultures. All the listed compounds were also evaluated against crucial drug targets, plasmepsin II (Plm II) and IV (Plm IV), enzymes found in the digestive vacuole of the P. falciparum. Analog 10f showed inhibitory activities against both the enzymes Plm II and Plm IV (Ki, 1.93?±?0.29?µM for Plm II; Ki, 1.99?±?0.05?µM for Plm IV). Among all these analogs, compounds 10g selectively inhibited the activity of Plm IV (Ki, 0.84?±?0.08?µM). In the in vitro screening assay, the growth inhibition of P. falciparum by both the analogs (IC50, 2.27?±?0.95?µM for 10f; IC50, 3.11?±?0.65?µM for 10g) displayed marked killing effect. A significant growth inhibition of the P. falciparum was displayed by analog 12c with IC50 value of 1.35?±?0.85?µM, however, it did not show inhibitory activity against either Plms. The hemolytic assay suggested that the active compounds selectively inhibit the growth of the parasite. Further, potent analogs (10f and 12c) were evaluated for their cytotoxicity towards mammalian HepG2 and vero cells. The selectivity index (SI) values were noticed greater than 10 for both the analogs that suggested their poor toxicity. The present study indicates these analogs as putative lead structures and could serve as crucial for the development of new drug molecules.  相似文献   

14.
Raloxifene (RLX) has been strongly recommended for postmenopausal women at high risk of invasive breast cancer and for prevention of osteoporosis. However, low aqueous solubility and reduced bioavailability hinder its clinical application. The objective of this study was to explore the potential of RLX loaded mixed micelles (RLX-MM) using Pluronic F68 and Gelucire 44/14 for enhanced bioavailability and improved anticancer activity on human breast cancer cell line (MCF-7). RLX-MM were prepared by solvent evaporation method and optimized using 32 factorial design. The average size, entrapment efficiency and zeta potential of the optimized formulation were found to be 190?±?3.3 nm, 79?±?1.3%, 13?±?0.8 mV, respectively. In vitro study demonstrated 74.68% drug release from RLX-MM in comparison to 42.49% drug release from RLX dispersion. According to the in vitro cytotoxicity assay, GI50 values on MCF-7 breast cancer cell line for RLX-MM and free RLX were found to be 22.5 and 94.71 μg/mL, respectively. Significant improvement (P?<?0.05) in the anticancer activity on MCF-7 cell line was observed in RLX-MM over RLX pure drug. Additionally, oral bioavailability of RLX-MM was improved by 1.5-fold over free RLX when administered in female Wistar rats. Incorporation of RLX in the hydrophobic core and improved solubility of the drug due to hydrophilic shell attributed to the enhanced cytotoxicity and bioavailability of RLX-MM. This research establishes the potential of RLX loaded mixed micelles of Pluronic F68 and Gelucire 44/14 for improved bioavailability and anticancer activity on MCF-7 cell line.  相似文献   

15.
Depression, a severe mental disease, is greatly difficult to treat and easy to induce other neuropsychiatric symptoms, the most frequent one is cognitive impairment. In this study, a series of novel vilazodone-tacrine hybrids were designed, synthesized and evaluated as multitarget agents against depression with cognitive impairment. Most compounds exhibited good multitarget activities and appropriate blood-brain barrier permeability. Specifically, compounds 1d and 2a exhibited excellent 5-HT1A agonist activities (1d, EC50?=?0.36?±?0.08?nM; 2a, EC50?=?0.58?±?0.14?nM) and 5-HT reuptake inhibitory activities (1d, IC50?=?20.42?±?6.60?nM; 2a, IC50?=?22.10?±?5.80?nM). In addition, they showed moderate ChE inhibitory activities (1d, AChE IC50?=?1.72?±?0.217?μM, BuChE IC50?=?0.34?±?0.03?μM; 2a, AChE IC50?=?2.36?±?0.34?μM, BuChE IC50?=?0.10?±?0.01?μM). Good multitarget activities with goodt blood-brain barrier permeability of 1d and 2a make them good lead compounds for the further study of depression with cognitive impairment.  相似文献   

16.
A series of 5-substitutedbenzylideneamino-2-butylbenzofuran-3-yl-4-methoxyphenyl methanones is synthesized and evaluated for antileishmanial and antioxidant activities. Compounds 4f (IC50?=?52.0?±?0.09?µg/ml), 4h (IC50?=?56.0?±?0.71?µg/ml) and 4l (IC50?=?59.3?±?0.55?µg/ml) were shown significant antileishmanial when compared with standard sodium stibogluconate (IC50?=?490.0?±?1.5?µg/ml). Antioxidant study revealed that compounds 4i (IC50?=?2.44?±?0.47?µg/ml) and 4l (IC50?=?3.69?±?0.44?µg/ml) have shown potent comparable activity when compared with standard ascorbic acid (IC50?=?3.31?±?0.34?µg/ml). Molecular docking study was carried out which replicating results of biological activity in case of initial hits 4f and 4h suggesting that these compounds have a potential to become lead molecules in drug discovery process. In silico ADME study was performed for predicting pharmacokinetic profile of the synthesised antileishmanial agents and expressed good oral drug like behaviour.  相似文献   

17.
This study was conducted to investigate the ecotoxicological effects of exposure to copper oxide nanoparticles (CuO NPs) on the gill of the swan mussel Anodonta cygnea using several approaches including qualitative and quantitative histopathology, ultra-morphology (scanning electron microscopy [SEM]) and measures of clearance rate (CR) and bioaccumulation of CuO NPs. Histological alterations in mussels exposed to 0.25 (T1), 2.5 (T2) and 25.0?µg L?1 (T3) CuO NPs for 12 days include changes in the length and form of gill lamellae, changes in inter-lamellar spaces, epithelial hyperplasia, atrophy and tissue rupture. Ultra-morphological changes following CuO NP exposure included epithelial hyperplasia and hypertrophy, epithelial lifting, tissue rupture (water channel fusion) and extensive necrosis of the gill surfaces. IGill (gill damage severity) index values for both histopathological and ultra-morphological data were significantly (P?0.05) higher in T3. The CR of mussels was significantly (P??1 g?1 dry weight]) in comparison to controls (CR?=?108?±?47.14 [L min?1 g?1 dry weight]). CuO NPs accumulated in exposed mussels at all exposure concentrations until day 4, but there was no further change in accumulation levels by the end of the exposure period. The accumulated content of CuO NPs was significantly (P??1 exposure concentration. Based on these results, significant accumulation of CuO NPs in the gills of swan mussel could affect histological and ultra-structural characteristics of this organ and consequently have deleterious impacts on its filtration activity.  相似文献   

18.
Ag nanoparticles (NPs) were loaded onto the surface of phenol formaldehyde resin (PFR) NPs without any reducing agent. The as‐synthesized PFR@Ag composites have low cytotoxicity, which makes them promising antibacterial agents. Furthermore, the good fluorescence of PFR could be used for cell imaging. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

19.
Previously we have reported that 25-OCH3-PPD could suppress the reproduction of cancer cells and cause apoptosis without obvious toxicity. Herein, we aimed to enhance its bioactivity by introducing aromatic groups to its dammarane-type skeleton. These synthesized derivatives were tested for their inhibitory activities against five cancer cell lines. Of them, compounds 3a, 14a and 18a had the strongest antiproliferative activities against tumor cells (IC50?<?15?µM, 5-fold to 10-fold increases than 25-OCH3-PPD). Especially compound 14a displayed the most potent activity against DU145, MCF-7 and HepG2 cells (IC50?=?6.7?±?0.8, 4.3?±?0.8 and 5.8?±?0.6?µM, respectively). Structure-activity relationships demonstrated that having aromatic ester at the C3 position could improve the bioactivity. The data provided new insights into exploring novel antiproliferative lead compounds.  相似文献   

20.
Bioassay-guided fractionation of an extract of Carpha glomerata (Cyperaceae) led to the isolation of seven compounds. Compounds 1 (carphorin A), 3 (carphorin C), 4 (carphorin D), and 5 (carphabene) are new compounds, and compound 2 (8-(3″-hydroxyisoamyl)-naringenin) was isolated for the first time as a natural product. All structures were elucidated based on analyses of their HR-ESIMS and 1D and 2D NMR data. Compounds 1, 2, and 6, which have prenyl or hydroxyprenyl side chains, exhibited antiplasmodial activities with IC50 values of 5.2?±?0.6, 3.4?±?0.4, and 6.7?±?0.8?µM against the drug-resistant Dd2 strain of Plasmodium falciparum. In addition the prenylated stilbene 5 also showed good activity, with IC50 5.8?±?0.7?µM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号