首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In contrast to the previously held notion that nitrogen catabolite repression is primarily responsible for the ability of yeast cells to use good nitrogen sources in preference to poor ones, we demonstrate that this ability is probably the result of other control mechanisms, such as metabolite compartmentation. We suggest that nitrogen repression is functionally a long-term adaptation to changes in the nutritional environment of yeast cells.  相似文献   

2.
3.
《Autophagy》2013,9(12):1490-1499
The ability to respond and adapt to changes in the physical environment is a universal and essential cellular property. Here we demonstrated that cells respond to mechanical compressive stress by rapidly inducing autophagosome formation. We measured this response in both Dictyostelium and mammalian cells, indicating that this is an evolutionarily conserved, general response to mechanical stress. In Dictyostelium, the number of autophagosomes increased 20-fold within 10 min of 1 kPa pressure being applied and a similar response was seen in mammalian cells after 30 min. We showed in both cell types that autophagy is highly sensitive to changes in mechanical pressure and the response is graduated, with half-maximal responses at ~0.2 kPa, similar to other mechano-sensitive responses. We further showed that the mechanical induction of autophagy is TOR-independent and transient, lasting until the cells adapt to their new environment and recover their shape. The autophagic response is therefore part of an integrated response to mechanical challenge, allowing cells to cope with a continuously changing physical environment.  相似文献   

4.
King JS  Veltman DM  Insall RH 《Autophagy》2011,7(12):1490-1499
The ability to respond and adapt to changes in the physical environment is a universal and essential cellular property. Here we demonstrated that cells respond to mechanical compressive stress by rapidly inducing autophagosome formation. We measured this response in both Dictyostelium and mammalian cells, indicating that this is an evolutionarily conserved, general response to mechanical stress. In Dictyostelium, the number of autophagosomes increased 20-fold within 10 min of 1 kPa pressure being applied and a similar response was seen in mammalian cells after 30 min. We showed in both cell types that autophagy is highly sensitive to changes in mechanical pressure and the response is graduated, with half-maximal responses at ~0.2 kPa, similar to other mechano-sensitive responses. We further showed that the mechanical induction of autophagy is TOR-independent and transient, lasting until the cells adapt to their new environment and recover their shape. The autophagic response is therefore part of an integrated response to mechanical challenge, allowing cells to cope with a continuously changing physical environment.  相似文献   

5.
细菌“活的不可培养状态”的生态意义及研究进展   总被引:1,自引:0,他引:1  
王秀娟  朱琳  陈中智  李宇 《微生物学通报》2008,35(12):1938-1942
"活的不可培养(VBNC)"状态是细菌在不良条件下的一种生存方式.VBNC状态作为细菌的一种生理状态,对传统微生物学产生了深远的影响.进入VBNC状态的细胞发生了一系列变化,无法继续用常规培养方法检测,在医学健康,环境科学等领域产生了巨大的影响,改进检测方法具有重要的意义.本文介绍了进入VBNC状态细菌在DNA、蛋白质组成等方面发生的变化,复苏过程.同时还介绍了VBNC状态的最新检测方法,最后对VBNC状态未来的研究方法进行了讨论.  相似文献   

6.
pH-induced folding of an apoptotic coiled coil   总被引:6,自引:0,他引:6       下载免费PDF全文
Par-4 is a 38-kD protein pivotal to the apoptotic pathways of various cell types, most notably prostate cells and neurons, where it has been linked to prostate cancer and various neurodegenerative disorders including Alzheimer's and Huntington's diseases and HIV encephalitis. The C-terminal region of Par-4 is responsible for homodimerization and the ability of Par-4 to interact with proposed effector molecules. In this study, we show that the C-terminal 47 residues of Par-4 are natively unfolded at physiological pH and temperature. Evidence is rapidly accumulating that natively unfolded proteins play an important role in various cellular functions and signaling pathways, and that folding can often be induced on complexation with effector molecules or alteration of environment. Here we use primarily CD studies to show that changes in the environment, particularly pH and temperature, can induce the Par-4 C terminus to form a self-associated coiled coil.  相似文献   

7.
Aging is the major risk factor for many cancers, and age-related changes in the tissue microenvironment can facilitate tumor growth. This study uses human endometrial cells to begin to test the hypothesis that age-related changes in pigment epithelium-derived factor/early population doubling cDNA-1 (PEDF/EPC-1) levels create an environment that is more permissive to tumor growth. Endometrial stromal fibroblasts (ESF) are the predominant cell type in the human endometrium and exert regulatory control over the glandular epithelial cells, which are the source of most tumors. As ESF age in vitro, their ability to regulate appropriate growth and differentiation of epithelial cells declines. Endometrial epithelial cells in primary culture expressed relatively low levels of PEDF/EPC-1 mRNA. In contrast, early passage quiescent ESF from adult donors produce higher levels of the 1.5-kb PEDF/EPC-1 mRNA and 50-kDa secreted protein than epithelial cells. As ESF age in vitro the relative abundance of PEDF/EPC-1 mRNA declines, as does the level of PEDF/EPC-1 protein secreted into cell culture medium. Treatment with PEDF/EPC-1 protein had no effect on ESF proliferation but did inhibit anchorage-dependent and anchorage-independent proliferation of endometrial carcinoma cells in a dose- and time-dependent manner. These findings imply that an age-related loss of PEDF/EPC-1 expression by ESF could eliminate a negative regulator of cancer cell growth and, thereby, contribute to the age-related increase in cancer incidence.  相似文献   

8.
Ubiquitin has emerged as an important regulator of protein stability and function in organisms ranging from yeast to mammals. The ability to detect in situ changes in protein ubiquitination without perturbing the physiological environment of cells would be a major step forward in understanding the ubiquitination process and its consequences. Here, we describe a new method to study this dynamic post-translational modification in intact human embryonic kidney cells. Using bioluminescence resonance energy transfer (BRET), we measured the ubiquitination of beta-arrestin 2, a regulatory protein implicated in the modulation of G protein-coupled receptors. In addition to allowing the detection of basal and GPCR-regulated ubiquitination of beta-arrestin 2 in living cells, real-time BRET measurements permitted the recording of distinct ubiquitination kinetics that are dictated by the identity of the activated receptor. The ubiquitination BRET assay should prove to be a useful tool for studying the dynamic ubiquitination of proteins and for understanding which cellular functions are regulated by this post-translational event.  相似文献   

9.
In the infected host, the Nef protein of HIV/SIV is required for high viral loads and thus disease progression. Recent evidence indicates that Nef enhances replication in the T cell compartment after the virus is transmitted from dendritic cells (DC). The underlying mechanism, however, is not clear. Here, we report that a natural variability in the proline-rich motif (R71T) profoundly modulated Nef-stimulated viral replication in primary T cells of immature dendritic cell/T cell cocultures. Whereas both Nef variants (R/T-Nef) downregulated CD4, only the isoform supporting viral replication (R-Nef) efficiently interacted with signaling molecules of the T cell receptor (TCR) environment and stimulated cellular activation. Structural analysis suggested that the R to T conversion induces conformational changes, altering the flexibility of the loop containing the PxxP motif and hence its ability to bind cellular partners. Our report suggests that functionally and conformationally distinct Nef isoforms modulate HIV replication on the interaction level with the TCR-signaling environment once the virus enters the T cell compartment.  相似文献   

10.
Cytometric analysis of larval fat body cells of normal and mutant genotypes was done to ascertain changes in the average cell size, the distribution of cell sizes, and changes in the amounts of cellular reserves after various incubation times in lytic and permissive environments during the lytic phase of cell death. The average cell size becomes smaller in both environments but less rapidly in the permissive environments. The distribution of cell sizes is strikingly broader in the permissive than the lytic environment. Glycogen, lipid, and protein reserves are lost from the cells during the lytic phase but at different rates. Glycogen and lipid reserves are lost independently of the environment. Regardless of whether the environment was lytic or permissive, glycogen disappeared from the cells completely and extremely rapidly whereas lipid disappeared from the cells at a slower rate. Protein was also lost from the cells but the rate was dependent on the environment. There was a rapid loss of protein in the environment which causes rapid cell death, but a gradual loss of protein in the environment where cell death occurs gradually. The relationship of the decrease in cell size and the loss of reserves to the permissiveness of the environment is discussed.  相似文献   

11.
Expression of a retroviral protein, Gag, in mammalian cells is sufficient for assembly of immature virus-like particles (VLPs). VLP assembly is mediated largely by interactions between the capsid (CA) domains of Gag molecules but is facilitated by binding of the nucleocapsid (NC) domain to nucleic acid. We have investigated the role of SP1, a spacer between CA and NC in HIV-1 Gag, in VLP assembly. Mutational analysis showed that even subtle changes in the first 4 residues of SP1 destroy the ability of Gag to assemble correctly, frequently leading to formation of tubes or other misassembled structures rather than proper VLPs. We also studied the conformation of the CA-SP1 junction region in solution, using both molecular dynamics simulations and circular dichroism. Consonant with nuclear magnetic resonance (NMR) studies from other laboratories, we found that SP1 is nearly unstructured in aqueous solution but undergoes a concerted change to an α-helical conformation when the polarity of the environment is reduced by addition of dimethyl sulfoxide (DMSO), trifluoroethanol, or ethanol. Remarkably, such a coil-to-helix transition is also recapitulated in an aqueous medium at high peptide concentrations. The exquisite sensitivity of SP1 to mutational changes and its ability to undergo a concentration-dependent structural transition raise the possibility that SP1 could act as a molecular switch to prime HIV-1 Gag for VLP assembly. We suggest that changes in the local environment of SP1 when Gag oligomerizes on nucleic acid might trigger this switch.  相似文献   

12.
The ability of the mouse neuroblastoma cell line NTR to proliferate at 40 degrees C correlates with the position of the temperature optimum of protein kinases A and C activities in the region of higher temperatures compared to those for cells of the original line N18AI, and with higher thermostability of protein kinase A after its heating at various elevated temperatures. The found changes in protein kinases A and C in the cells of NTR line mean that the selection of variants, capable of growing at elevated temperatures, is accompanied with conformational protein changes.  相似文献   

13.
用ESR波谱方法研究了完整大豆根瘤里的根瘤细胞及根瘤细胞中的类菌体对环境的敏感性,分别比较了三种不同类型(快生,慢生,超慢生)的根瘤菌侵染所结的根瘤,测量了不同的发育时期和不同氧化时间ESR波谱的变化,观察到根瘤细胞及根瘤内类菌体的豆血红蛋白和钼铁蛋白的ESR波谱由氧化而产生的改变,表明了大豆根瘤细胞和根瘤内类苗体所处的状态以及对环境敏感性的不同。  相似文献   

14.
15.
Vinculin helps cells regulate and respond to mechanical forces. It is a scaffolding protein that tightly regulates its interactions with potential binding partners within adhesive structures—including focal adhesions that link the cell to the extracellular matrix and adherens junctions that link cells to each other—that physically connect the force-generating actin cytoskeleton (CSK) with the extracellular environment. This tight control of binding partner interaction—mediated by vinculin's autoinhibitory head–tail interaction—allows vinculin to rapidly interact and detach in response to changes in the dynamic forces applied through the cell. In doing so, vinculin modulates the structural composition of focal adhesions and the cell's ability to generate traction forces and adhesion strength. Recent evidence suggests that vinculin plays a similar role in regulating the fate and function of cell–cell junctions, further underscoring the importance of this protein. Using our lab's recent work as a starting point, this commentary explores several outstanding questions regarding the nature of vinculin activation and its function within focal adhesions and adherens junctions.  相似文献   

16.
Greer PL  Greenberg ME 《Neuron》2008,59(6):846-860
One of the unique characteristics of higher organisms is their ability to learn and adapt to changes in their environment. This plasticity is largely a result of the brain's ability to convert transient stimuli into long-lasting alterations in neuronal structure and function. This process is complex and involves changes in receptor trafficking, local mRNA translation, protein turnover, and new gene synthesis. Here, we review how neuronal activity triggers calcium-dependent gene expression to regulate synapse development, maturation, and refinement. Interestingly, many components of the activity-dependent gene expression program are mutated in human cognitive disorders, which suggest that this program is essential for proper brain development and function.  相似文献   

17.
Nearly 85% of the men who will die of prostate cancer (PCa) have skeletal metastases present. The ability of PCa cells to interact with the microenvironment determines the success of the tumor cell to form metastatic lesions. The ability to bind to human bone marrow endothelial (HBME) cells and undergo transendothelial cell migration are key steps in allowing the PCa cell to extravasate from the bone microvasculature and invade the bone stroma. We have previously demonstrated that monoctyte chemoattractant protein 1 (MCP-1; CCL2) is expressed by HBME cells and promotes PCa proliferation and migration. In the current study, we demonstrate that the CCL2 stimulation of PCa cells activates the small GTPase, Rac through the actin-associated protein PCNT1. Activation of Rac GTPase is accompanied by morphologic changes and the ability of the cells to undergo diapedesis through HBME cells. These data suggest a role for HBME-secreted CCL2 in promoting PCa cell extravasation into the bone microenvironment.  相似文献   

18.
19.
It is well established that the response of the cell to environmental stress is a major basis for cell modification. Such modification is believed to adapt the cell to better survive its environment. Oxidative stress, a major and ubiquitous stressing factor, was selected for investigating the cellular response to stress. Most studies investigating such cellular response have employed examination of the cell either during or shortly after exposure to stress. We have employed a different approach arguing that the short-term response to stress obscures the biological changes that allow the cell to continue to thrive in its new environment. Reflecting this concept, murine and human cell lines capable of surviving regular exposure to toxic levels of H(2)O(2) or TBOOH have been developed. It was found that certain fundamental long-term changes in cell biology had occurred. The peroxide-resistant cells are diploid rather than aneuploid, show fundamental changes in the cytoskeletal cellular structure, suggesting less rigid more flexible cells, express a new lower molecular mass of p53, a key stress protein responder involved in adaptation, and finally have an immunochemical modification in alphaA-crystallin, a small heat-shock protein. Previously, it was found that there is a dramatic increase in catalase and gluthathione S-transferase activity and a remarkable limited change in expression in other antioxidative genes in these cells. The impact of these changes is discussed. It is apparent that evolutionary cell modifications can occur in response to relatively rapid changes in environment over periods ranging from days to months rather than the thousands of years considered in most evolutionary modifications.  相似文献   

20.
The actin cytoskeleton plays a fundamental role in all eukaryotic cells it is a major determinant of cell morphology and polarity and the assembly and disassembly of filamentous actin structures provides a driving force for dynamic processes such as cell motility, phagocytosis, growth cone guidance and cytokinesis. The ability to reorganize actin filaments is a fundamental property of embryonic cells during development; the shape changes accompanying gastrulation and dorsal closure, for example, are dependent on the plasticity of the actin cytoskeleton, while the ability of cells or cell extensions, such as axons, to migrate within the developing embryo requires rapid and spatially organized changes to the actin cytoskeleton in response to the external environment. Work in mammalian cells over the last decade has demonstrated the central role played by the highly conserved Rho family of small GTPases in signal transduction pathways that link plasma membrane receptors to the organization of the actin cytoskeleton.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号