首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Pesticides have become part of food protection since their inception. Endosulfan, an organochlorine insecticide, has been used against insect pests such as whiteflies, aphids, red spiders and mites. Methods of immunochemical assays have been devised for the determination and analysis of pesticides and commonly used for the analysis of contaminants in food, water, soil and body fluids. Chicken IgY antibodies raised against endosulfan haptens were used for the detection of endosulfan. We have compared colorimetric (CO) and chemiluminescence (CL) enzyme‐linked immunosorbent assay (ELISA) techniques for the detection of endosulfan isomers in a food matrix. CL ELISA assay was found to be more sensitive than CO assay. The mean recovery was 81.2–95.6% for α‐ and β‐endosulfan‐spiked food samples with 2.8–4.6% relative standard deviation. The detection of the endosulfan isomers was linear in the range 100 µg/mL–5 fg/mL, with a limit of detection at 100 µg/mL and 5 fg/mL for the CL ELISA method and 100 µg/mL and 1 ng/mL for the CO ELISA method respectively. These methods can be used for the rapid and reliable detection of organochlorine pesticide endosulfan. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Based on the inhibition effect of transferrin (Tf) on the reaction of the luminol–hydrogen peroxide (H2O2) chemiluminescence (CL) system, catalysed by meso‐tetra‐(3‐methoxyl‐4‐hydroxyl) phenyl manganese porphyrin (MnP) as a mimetic enzyme of peroxides, a sensitive flow‐injection CL method has been developed for the determination of Tf in an alkaline medium. The CL reaction was carefully investigated by examining the variations of reaction conditions. Under optimum conditions, the linear range for the determination of transferrin was 0.04–20.0 μg/mL and the detection limit was 1.62 ng/mL. This proposed method was sensitive, convenient and simple, and has been successfully applied to the determination of transferrin in a serum sample. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Measuring low amounts of anti‐erythropoietin antibodies (anti‐EPO Abs) is important to evaluate the therapeutic safety of recombinant human erythropoietin (rhEPO). In this work, a simple, sensitive and high‐throughput chemiluminescent (CL) imaging assay was developed for the detection of anti‐EPO Abs in human sera. The influence of several physicochemical parameters, such as coating conditions, incubation time, detergent concentration and exposure time, were investigated. A calibration curve was established and the range of quantitative detection was 0.12–13.91 ng/mL. The limit of detection (LOD, 3σ) for the CL‐imaging assay was 0.033 ng/mL. Compared to conventional colorimetric enzyme‐linked immunosorbent assay (ELISA), the LOD of the CL‐imaging assay is 50‐fold lower. The recoveries of anti‐EPO Abs in the fortified serum were in the range 87.1–116.9% using the present method, which highlighted the validity of the CL‐imaging assay system to accurately determine the anti‐EPO Abs in serum samples. CL‐imaging assay was used to evaluate the presence of anti‐EPO Abs in serum samples obtained from chronic renal failure (CRF) patients treated with rhEPO. Contrary to what was expected, the sera from CRF patients did not contain anti‐EPO Abs. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
A chemiluminescence (CL) immunoassay was developed to determine human growth hormone (hGH) based on copper‐enhanced gold nanoparticles. In this method, gold nanoparticles were deposited on polystyrene wells for adsorption of human growth antibodies as well as catalyst for reducing of copper ions from the copper enhancer solution. The reduction of copper ions was prevented where the gold nanoparticles were covered by the antibody–antigen immunocomplex. The deposited copper on Au nanoparticles was then dissolved in HNO3 solution and quantified using the CL method. The CL intensity response was logarithmically dependent on the hGH concentrations over the range 0.2–50 ng/mL, with a detection limit (3σ) of 0.036 ng/mL. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
A rapid and sensitive time‐resolved fluoroimmunoassay (TR–FIA) based on the biotin–streptavidin amplification system was developed for the determination of diethylstilbestrol (DES). Europium‐labelled streptavidin derivatives combined with europium and anhydride of diethylene triamine penta‐acetic acid were used to label streptavidin; biotin was coupled with goat anti‐rabbit IgG to form a biotin–goat anti‐rabbit IgG bridge between streptavidin–europium and the anti‐DES antibody in the immunoassay. The DES assay was carried out by measuring the fluorescence of Eu3+–SA at 615 nm. The presented method produced a wide linear range, 0.001–1000.0 ng/mL, and a detection limit up to 0.81 pg/mL for DES. The method was applied to determine DES in serum samples, with recoveries of 97.4–107.8% and RSD 1.32–4.04%. The assay results by the present method showed that biotin–streptavidin amplified TR–FIA for DES detection; it may offer high sensitivity and promising alternative special methods in biological samples. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The occurrence of many diseases is closely related to the high expression of DNA methyltransferase 1 (DNMT1). However, most studies are focused on the detection of DNMT1 activity, a few are concerned with the detection of DNMT1 content. In this study, we developed a simple and highly sensitive chemiluminescence (CL) assay for the detection of DNMT1 content. In this method, anti‐DNMT1 monoclonal antibody was coated on a polystyrene microplate to capture DNMT1. Then anti‐DNMT1 polyclonal antibody and goat anti‐rabbit immunoglobulin G with horseradish peroxidase (IgG‐HRP) were respectively added to combine with captured DNMT1 to form a sandwich structure. Finally, the HRP could catalyze CL substrate and achieve CL signal response. Based on this novel sensitive strategy, the recovery percents were in the ranges from 71.5% to 91.0%. The precision of intra‐assays and inter‐assays were 5.45%–11.29% and 7.03%–11.25%, respectively. The method was successfully applied for the determination of DNMT1 in human serum. The detection results of serum samples showed that the proposed assay had a high correlation with enzyme‐linked immunosorbent assay (ELISA) kit. Compared with the ELISA kit (limit of detection = 0.1 ng/mL), the method has a lower limit of detection of 0.042 ng/mL. Therefore, our method has the potential for the detection of DNMT1 content in clinical diagnosis.  相似文献   

7.
A new simple, accurate and sensitive sequential injection analysis chemiluminescence (CL) detection method for the determination of cefditoren pivoxil (CTP) has been developed. The developed method was based on the enhancement effect of silver nanoparticles on the CL signal arising from a luminol–potassium ferricyanide reaction in the presence of CTP. The optimum conditions relevant to the effect of luminol, potassium ferricyanide and silver nanoparticle concentrations were investigated. The proposed method showed linear relationships between relative CL intensity and the investigated drug concentration at the range 0.001–5000 ng/mL, (r = 0.9998, n = 12) with a detection limit of 0.5 pg/mL and quantification limit of 0.001 ng/mL. The relative standard deviation was 1.6%. The proposed method was employed for the determination of CTP in bulk drug, in its pharmaceutical dosage forms and biological fluids such as human serum and urine. The interference of some common additive compounds such as glucose, lactose, starch, talc and magnesium stearate was investigated. In addition, the interference of some related cephalosporins was tested. No interference was recorded. The obtained sequential injection analysis‐CL results were statistically compared with those from a reported method and did not show any significant differences. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
Fang Zhao  Qi Fan  Huan Cai 《Luminescence》2014,29(3):219-224
A novel, rapid and sensitive chemiluminescence (CL) method combined with flow‐injection (FI) has been established for the estimation of olanzapine. This method is based on the CL signal generated between N‐chlorosuccinimide and olanzapine in an alkaline medium in the presence of calcein and Zn(II). Under optimum conditions, the CL signal was proportional to the olanzapine concentration ranging from 1.0 × 10‐10 to 3.0 × 10‐7 g/mL. The detection limit is 8.9 × 10‐11 g/mL olanzapine (3σ) and the relative standard deviation for 3.0 × 10‐9 g/mL of olanzapine is 1.9% (n = 11). The current CL method was applied to determine olanzapine in pharmaceutical formulations and biological fluids with satisfactory results. The possible CL reaction mechanism is discussed briefly. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
A sensitive determination of a synthetic fluoroquinolone antibacterial agent, moxifloxacin (MOX), by an enhanced chemiluminescence (CL) method using a microfluidic chip is described. The microfluidic chip was fabricated by a soft‐lithographic procedure using polydimethyl siloxane (PDMS). The fabricated PDMS microfluidic chip had three‐inlet microchannels for introducing the sample, chemiluminescent reagent and oxidant, and a 500 µm wide, 250 µm deep and 82 mm long microchannel. An enhanced CL system, luminol–ferricyanide, was adopted to analyze the MOX concentration in a sample solution. CL light was emitted continuously after mixing luminol and ferricyanide in the presence of MOX on the PDMS microfluidic chip. The amount of MOX in the luminol–ferricyanide system influenced the intensity of the CL light. The linear range of MOX concentration was 0.14–55.0 ng/mL with a correlation coefficient of 0.9992. The limit of detection (LOD) and limit of quantification (LOQ) were 0.06 and 0.2 ng/mL respectively. The presented method afforded good reproducibility, with a relative standard deviation (RSD) of 1.05% for 10 ng/mL of MOX, and has been successfully applied for the determination of MOX in pharmaceutical and biological samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
11.
A new method for the detection of β2 adrenergic agonists was developed based on the chemiluminescence (CL) reaction of β2 adrenergic agonist with potassium ferricyanide–luminol CL. The effect of β2 adrenergic agonists including isoprenaline hydrochloride, salbutamol sulfate, terbutaline sulfate and ractopamine on the CL intensity of potassium ferricyanide–luminol was discovered. Detection of the β2 adrenergic agonist was carried out in a flow system. Using uniform design experimentation, the influence factors of CL were optimized. The optimal experimental conditions were 1 mmol/L of potassium ferricyanide, 10 µmol/L of luminol, 1.2 mmol/L of sodium hydroxide, a flow speed of 2.6 mL/min and a distance of 1.2 cm from ‘Y2’ to the flow cell. The linear ranges and limit of detection were 10–100 and 5 ng/mL for isoprenaline hydrochloride, 20–100 and 5 ng/mL for salbutamol sulfate, 8–200 and 1 ng/mL for terbutaline sulfate, 20–100 and 4 ng/mL for ractopamine, respectively. The proposed method allowed 200 injections/h with excellent repeatability and precision. It was successfully applied to the determination of three β2 adrenergic agonists in commercial pharmaceutical formulations with recoveries in the range of 96.8–98.5%. The possible CL reaction mechanism of potassium ferricyanide–luminol–β2 adrenergic agonist was discussed from the UV/vis spectra. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
A simple and green flow injection chemiluminescence (FI‐CL) method for determination of the fungicide azoxystrobin was described for the first time. CL signal was generated when azoxystrobin was injected into a mixed stream of luminol and KMnO4. The CL signal of azoxystrobin could be greatly improved when an off‐line ultrasonic treatment was adopted. Meanwhile, the signal intensity increases with the analyte concentration proportionally. Several variables, such as the ultrasonic parameters, flow rate of reagents, concentrations of sodium hydroxide solution and CL reagents (potassium permanganate, luminol) were investigated, and the optimal CL conditions were obtained. Under optimal conditions, the linear range of 1–100 ng/mL for azoxystrobin was obtained and the detection limit (3σ) was determined as 0.13 ng/mL. The relative standard deviation was 1.5% for 10 consecutive measurements of 20 ng/mL azoxystrobin. The method has been applied to the determination of azoxystrobin residues in water samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
A simple, rapid and sensitive chemiluminescent (CL) method for the assay of venlafaxine (VEN) in pharmaceutical formulations and serum samples by a two‐chip device is proposed. The method is based on the reaction of this drug with a tris(2,2′‐bipyridyl) ruthenium(II)–peroxydisulphate CL system. The optimum chemical conditions for CL emission were investigated. The calibration graph was linear for the concentration range 0.02–8.0 µg/mL. The detection and quantification limits were found to be 0.006 and 0.018 µg/mL, respectively, while the relative standard deviation (RSD) was <2.0%. The present CL procedure was applied to the determination of VEN in pharmaceutical formulations and serum samples; the recovery levels were in the range 96.5–101.2%. The results suggest that the method is unaffected by the presence of common formulation excipients found in these samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
A sensitive and selective immuno‐nanogold resonance scattering spectral assay was developed for the determination of trace hapten penicillin G, based on the resonance scattering (RS) effect of the nanogold at 560 nm, and the nanogold‐labelled immunoreaction took place in pH 5.4 phosphate citric acid buffer solutions and in the presence of polythylene glycol (PEG). The nanogold‐labelled immunocomplex formed more and more with addition of penicillin G. The enhanced RS intensity at 560 nm ΔIRS was linear to the penicillin G concentration in the range 7.5–1700 ng/mL, with a detection limit of 0.78 ng/mL. The results indicate that the immunonanogold‐labelled RS spectral assay has a high specificity and sensitivity for quantitative determination of penicillin G in raw milk samples. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
A highly sensitive, rapid and economical method for the determination of amlodipine (AM) in biological fluids was developed using a peroxyoxalate chemiluminescence (CL) system in a lab‐on‐a‐chip device. Peroxyoxalate‐CL is an indirect type of CL that allows the detection of native fluorophores or compounds derivatized with fluorescent labels. Here, fluorescamine was reacted with AM, and the derivatization product was used in a bis‐(2,4,6‐trichlorophenyl)oxalate‐CL system. Fluorescamine reacts selectively with aliphatic primary amine at neutral or basic pH. As most of the calcium channel blocker and many cardiovascular drugs do not contain primary amine, the developed method is highly selective. The parameters that influenced the CL signal intensity were studied carefully. These included the chip geometry, pH, concentration of reagents used and flow rates. Moreover, we confirmed our previous observation about the effects of imidazole, which is commonly used in the bis‐(2,4,6‐trichlorophenyl)oxalate‐CL system as a catalyst, and found that the signal was significantly improved when imidazole was absent. Under optimized conditions, a calibration curve was obtained with a linear range (10–100 µg/L). The limit of detection was 3 µg/L, while the limit of quantification was 10 µg/L. Finally the method was applied for the determination of AM in biological fluids successfully. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
Chemiluminescence (CL) detection for the determination of estrogen benzoate, using the reaction of tris(1,10–phenanthroline)ruthenium(II)–Na2SO3–permanganate, is described. This method is based on the CL reaction of estrogen benzoate (EB) with acidic potassium permanganate and tris(1,10–phenanthroline)ruthenium(II). The CL intensity is greatly enhanced when Na2SO3 is added. After optimization of the different experimental parameters, a calibration graph for estrogen benzoate is linear in the range 0.05–10 µg/mL. The 3 s limit of detection is 0.024 µg/mL and the relative standard deviation was 1.3% for 1.0 µg/mL estrogen benzoate (n = 11). This proposed method was successfully applied to commercial injection samples and emulsion cosmetics. The mechanism of CL reaction was also studied. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
A flow injection chemiluminescence (FI–CL) method was developed for the determination of cyanide (CN) based on the recovered CL signal by Cu2+ inhibiting a glutathione (GSH)‐capped CdTe quantum dot (QD) and hydrogen peroxide system. In an alkaline medium, strong CL signals were observed from the reaction of CdTe QDs and H2O2, and addition of Cu2+ could cause significant CL inhibition of the CdTe QDs–H2O2 system. In the presence of CN, Cu2+ can be removed from the surface of CdTe QDs via the formation of particularly stable [Cu(CN)n](n‐1)– species, and the CL signal of the CdTe QDs–H2O2 system was efficiently recovered. Thus, the CL signals of CdTe QDs–H2O2 system were turned off and turned on by the addition of Cu2+ and CN, respectively. Further, the results showed that among the tested ions, only CN could recover the CL signal, which suggested that the CdTe QDs–H2O2–Cu2+ CL system had highly selectivity for CN. Under optimum conditions, the CL intensity and the concentration of CN show a good linear relationship in the range 0.0–650.0 ng/mL (R2 = 0.9996). The limit of detection for CN was 6.0 ng/mL (3σ). This method has been applied to detect CN in river water and industrial wastewater with satisfactory results. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
This review will discuss various approaches and techniques in which analysis using microfluidics–chemiluminescence systems (MF–CL) has been reported. A variety of applications is examined, including environmental, pharmaceutical, biological, food and herbal analysis. Reported uses of CL reagents, sample introduction techniques, sample pretreatment methods, CL signal enhancement and detection systems are discussed. A hydrodynamic pumping system is predominately used for these applications. However, several reports are available in which electro‐osmotic (EO) pumping has been implemented. Various sample pretreatment methods have been used, including liquid–liquid extraction, solid‐phase extraction and molecularly imprinted polymers. A wide range of innovative techniques has been reported for CL signal enhancement. Most of these techniques are based on enhancement of the mixing process in the microfluidics channels, which leads to enhancement of the CL signal. However, other techniques are also reported, such as mirror reaction, liquid core waveguide, on‐line pre‐derivatization and the use of an opaque white chip with a thin transparent seal. Photodetectors are the most commonly used detectors; however, other detection systems have also been used, including integrated electrochemiluminescence (ECL) and organic photodiodes (OPDs). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
Human leukemic THP‐1 promonocytes are widely used as a model for peripheral blood monocytes. However, superoxide production during respiratory burst (RB) of non‐differentiated THP‐1 (nd‐THP‐1) cells is very low. Here we present a rapid and low‐cost method for measuring the chemiluminescence (CL) of opsonized zymosan (OZ) induced RB which allows detection of Escherichia coli lipopolysaccharide (LPS) induced priming of nd‐THP‐1 cells on the basis of CL reaction kinetics. Maximum CL intensity obtained was 2.20 ± 0.25 and 1.30 ± 0.11 relative light units, while CL peak time was achieved at 18.1 ± 2.6 and 28.7 ± 1.3 min in primed and non‐primed cells, respectively. The priming of nd‐THP‐1 cells with LPS evoked typical TNF‐α and IL‐6 production. We tested the effects of bovine lactoferrin and protein fractions from Lactobacillus helveticus BGRA43 fermented milk for potential anti‐inflammatory effects on LPS primed nd‐THP‐1 cells. Four fractions were found to inhibit the OZ‐induced CL in a dose‐dependent manner (IC50 3–30 µg/mL), while lactoferrin inhibited CL to a lesser extent (IC50 270 µg/mL). These results suggest that measuring CL response of nd‐THP‐1 cells can serve as a method for screening anti‐inflammatory compounds which could be used in reducing the risk of phagocyte‐mediated inflammatory diseases. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
Rapid, simple and highly sensitive flow‐injection (FI) chemiluminescence (CL) and flow‐injection electrogenerated chemiluminescence (ECL) methods were developed for the determination of escitalopram oxalate (ESC), a selective serotonin reuptake inhibitor used as an antidepressant drug. The CL method was based on the CL reaction of ESC with acidic cerium(IV) and tris(2,2'‐bipyridyl)ruthenium(II) (Ru). Various experimental parameters affecting CL intensity were carefully studied and optimised. The method enabled the determination of 0.001‐50 µg/mL of ESC in bulk form with a correlation coefficient r = 0.9999. The limit of detection (LOD) was 0.01 ng/mL (S/N = 3). The ECL method was based on the ECL reaction of Ru with the drug in an acidic medium, permitting the determination of ESC in the range of 0.00001‐70 µg/mL with r = 0.9999 and LOD of 1 x 10‐4 ng/mL. The proposed methods were applied to the determination of ESC in commercial tablets. The results were compared statistically with those obtained from a published method using t‐ and F‐tests. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号