首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
Expression levels of Marek's disease virus (MDV) glycoprotein C (gC) are significantly reduced after serial virus passage in cell culture. Reduced gC expression coincides with enhanced MDV growth in vitro and attenuation. To analyze this phenomenon in detail, a full-length infectious MDV clone was modified by Red-based and shuttle mutagenesis in Escherichia coli. Besides a gC-negative deletion mutant harboring a kanamycin resistance gene, a markerless mutant with the U(L)44 gene deleted was constructed. On the basis of this deletion mutant, the original or a modified U(L)44 gene with a mutated start codon (AUG-->ACG) was reinserted into the authentic locus. Similarly, mutants expressing authentic gC or the start codon mutation under the control of a strong constitutive promoter were generated. In vitro studies demonstrated that gC deletion mutants induced twofold-larger plaques than the parental virus did, whereas constitutive overexpression of the glycoprotein resulted in a more than twofold reduction in plaque size. In addition, plaque sizes of the gC deletion mutant were reduced when virus was grown using supernatants from cells infected with parental virus, but supernatants obtained from cells infected with the gC deletion mutant had no measurable effect on plaque size. The results indicated that (i) expression of MDV gC, albeit at low levels in a highly passaged virus, had a significant negative impact on the cell-to-cell spread capabilities of the virus, which was alleviated in its absence and exacerbated by its overexpression, and that (ii) this activity was mediated by the secreted form of MDV gC.  相似文献   

2.
Marek's Disease Virus (MDV) is an avian alpha-herpesvirus that only spreads from cell-to-cell in cell culture. While its cell-to-cell spread has been shown to be dependent on actin filament dynamics, the mechanisms regulating this spread remain largely unknown. Using a recombinant BAC20 virus expressing an EGFPVP22 tegument protein, we found that the actin cytoskeleton arrangements and cell-cell contacts differ in the center and periphery of MDV infection plaques, with cells in the latter areas showing stress fibers and rare cellular projections. Using specific inhibitors and activators, we determined that Rho-ROCK pathway, known to regulate stress fiber formation, and Rac-PAK, known to promote lamellipodia formation and destabilize stress fibers, had strong contrasting effects on MDV cell-to-cell spread in primary chicken embryo skin cells (CESCs). Inhibition of Rho and its ROCKs effectors led to reduced plaque sizes whereas inhibition of Rac or its group I-PAKs effectors had the adverse effect. Importantly, we observed that the shape of MDV plaques is related to the semi-ordered arrangement of the elongated cells, at the monolayer level in the vicinity of the plaques. Inhibition of Rho-ROCK signaling also resulted in a perturbation of the cell arrangement and a rounding of plaques. These opposing effects of Rho and Rac pathways in MDV cell-to-cell spread were validated for two parental MDV recombinant viruses with different ex vivo spread efficiencies. Finally, we demonstrated that Rho/Rac pathways have opposing effects on the accumulation of N-cadherin at cell-cell contact regions between CESCs, and defined these contacts as adherens junctions. Considering the importance of adherens junctions in HSV-1 cell-to-cell spread in some cell types, this result makes of adherens junctions maintenance one potential and attractive hypothesis to explain the Rho/Rac effects on MDV cell-to-cell spread. Our study provides the first evidence that MDV cell-to-cell spread is regulated by Rho/Rac signaling.  相似文献   

3.
将禽流感病毒M2基因克隆于真核表达质粒pIRES-EGFP中,使其位于pCMV启动子的调控下,并与绿色荧光蛋白基因(EGFP)串联后,将上述串联基因插入到含MDV CVI988的非必需区US基因的重组质粒pUS2中,构建带标记的重组质粒,然后将此重组质粒转染感染了MDV CVI988的鸡胚成纤维细胞,利用同源重组的方法,筛选了表达禽流感病毒M2基因的重组病毒MDV1。经PCR、Dot-blotting,Western-blotting等实验的结果表明,禽流感病毒M2基因的确插入到MDV1(CVI988)基因组中并获得表达。重组MDV1免疫1日龄SPF鸡21天后,用ELISA可检测到M2蛋白的特异性抗体。接种了重组病毒rMDV的鸡体内针对H9N2疫苗血凝素的抗体滴度(p<0.05)明显提高,以禽流感病毒AIV A/Chicken/Guangdong/00(H9N2)攻毒后进行病毒重分离试验的结果发现,重组病毒能有效地降低病毒的排出量(p<0.01),说明该重组病毒可以用于防制禽流感的免疫。  相似文献   

4.
检测流行性出血热病毒滴度和中和抗体效价的半微量空斑法   总被引:21,自引:0,他引:21  
建立了检测流行性出血热病毒滴度和中和抗体效价的半微量空斑法。小牛血清与胎牛血清的培养效果无差异。7株不同来源的出血热病毒均能在E6细胞上形成空斑。接种的病毒浓度与形成的空斑数呈直线关系。用空斑法测得的病毒滴度稍低于荧光TCIE50滴定法。空斑减少中和试验的敏感性较荧光中和试验高30倍左右。同时还初步表明了本方法可用于流行性出血热病毒的抗原性分析。  相似文献   

5.
Marek's disease virus (MDV) is an alphaherpesvirus for which infection is strictly cell associated in permissive cell culture systems. In contrast to most other alphaherpesviruses, no comprehensive ultrastructural study has been published to date describing the different stages of MDV morphogenesis. To circumvent problems linked to nonsynchronized infection and low infectivity titers, we generated a recombinant MDV expressing an enhanced green fluorescent protein fused to VP22, a major tegument protein that is not implicated in virion morphogenesis. Growth of this recombinant virus in cell culture was decreased threefold compared to that of the parental Bac20 virus, but this mutant was still highly replicative. The recombinant virus allowed us to select infected cells by cell-sorting cytometry at late stages of infection for subsequent transmission electron microscopy analysis. Under these conditions, all of the stages of assembly and virion morphogenesis could be observed except extracellular enveloped virions, even at the cell surface. We observed 10-fold fewer naked cytoplasmic capsids than nuclear capsids, and intracellular enveloped virions were very rare. The partial envelopment of capsids in the cytoplasm supports the hypothesis of the acquisition of the final envelope in this cellular compartment. We demonstrate for the first time that, compared to other alphaherpesviruses, MDV seems deficient in three crucial steps of viral morphogenesis, i.e., release from the nucleus, secondary envelopment, and the exocytosis process. The discrepancy between the efficiency with which this MDV mutant spreads in cell culture and the relatively inefficient process of its envelopment and virion release raises the question of the MDV cell-to-cell spreading mechanism.  相似文献   

6.
Pathogenicity for chicks of the MSB-1 line, a cell line derived from the tumorous tissue of a chick with Marek's disease (MD) and established by Akiyama & Kato, was studied. Five groups, including a control one, of 20 chicks each were inoculated with 1 X 10(3), 1 X 10(4), 1 X 10(5), 1 X 10(6) and no cells of a 180-day culture of the cell line at one day of age. They were housed all together in an isolation unit. An attempt was first made successfully to isolate MD virus (MDV) directly in culture of kidney cells 3 weeks after inoculation. Horizontal infection was first detected 4 weeks after inoculation. From 3 weeks after inoculation on, the disease with almost the same clinical and pathological pictures as the infection with a virulent strain of MDV showed a high incidence. Morbidity was closely related to the number of MSB-1 line cells inoculated. Parenchymal destruction was conspicuous in the central lymphoid organs of four chicks given the largest number of MSB-1 line cells and sacrificed in extremis about 4 weeks after inoculation. Establishment of MD in chicks inoculated with MSB-1 line cells carrying MDV genome seemed to be initiated under the circumstances where the line cells which had come into contact with susceptible cells in the peritoneal cavity released virulent MDV per se. Then host chicks might be infected with MDV and suffer from MD at a high rate. There was no great difference in oncogenic potential between MSB-1 line cells cultivated in vitro for 180 days and virulent MDV serially passaged through one-day-old chicks.  相似文献   

7.
Plaque Formation by Mumps Virus and Inhibition by Antiserum   总被引:6,自引:0,他引:6       下载免费PDF全文
Boston and ABC strains of mumps virus produced plaques approximately 1.0 mm in diameter in monolayers of BGM cells. The plaques were circular and either clear or target-like in form. Ricki strain virus produced plaques of similar size and form but, in addition, a red plaque was observed with this agent. The vaccine strain of mumps virus, Jeryl Lynn, produced minute clear plaques approximately 0.3 mm in diameter. Incorporation of diethylaminoethyl (DEAE)-dextran into the overlay medium did not affect the size difference between Jeryl Lynn plaques and those of the other strains. However plaques of the Jeryl Lynn and Ricki strains were more easily visualized when the overlay medium contained 400 mug/ml of DEAE-dextran. Simultaneous titration by plaque formation and roller tube infectivity showed that these two methods were of equal sensitivity. Virus neutralization by antibody was demonstrated by plaque reduction. Rise in antibody titer was observed in sera from human and animal infection, human vaccination, and rabbit immunization.  相似文献   

8.
目的:预防马立克氏病病毒(MDV)和新城疫病毒(NDV)混合感染鸡引起的疾病,构建表达NDV F蛋白的MDV疫苗株CVI988 BAC重组载体,并包装成重组病毒,为疫苗免疫提供更多的重组疫苗选择。方法:首先利用PCR扩增带有卡那霉素(Kanamycin,Kana)抗性基因片段的F基因,采用同源重组的方法将其整合到CVI988 BAC上,进一步诱导I-SceI表达敲除Kana基因而获得重组质粒CVI988 BAC-F。通过磷酸钙法转染鸡胚成纤维细胞获得重组病毒。结果:Western blot和间接免疫荧光实验证实重组病毒能够表达F蛋白。病毒生长曲线和蚀斑大小测定结果表明,F基因的插入不影响病毒的体外增殖。结论:利用BAC技术成功构建了整合F基因的重组MDV病毒CVI988 BAC-F,为MDV重组疫苗研发,防控NDV与MDV共感染奠定了基础。  相似文献   

9.
Marek's disease virus (MDV) encodes a protein exhibiting high amino acid similarity to the US3 protein of herpes simplex virus type 1 and the gene 66 product of varicella-zoster virus. The MDV US3 orthologue was replaced with a kanamycin resistance gene in the infectious bacterial artificial chromosome clone BAC20. After transfection of US3-negative BAC20 DNA (20DeltaUS3), the resulting recombinant 20DeltaUS3 virus exhibited markedly reduced growth kinetics. Virus titers on chicken embryo cells were reduced by approximately 10-fold, and plaque sizes were significantly smaller (65% reduction) compared to parental BAC20 virus. The defect of the US3-negative MDV was completely restored in a revertant virus (20US3*) expressing a US3 protein with a carboxy-terminal FLAG tag. Electron microscopical studies revealed that the defect of the 20DeltaUS3 mutant to efficiently spread from cell to cell was concomitant with an accumulation in the perinuclear space of primarily enveloped virions in characteristic vesicles containing several virus particles, which resulted in reduced numbers of particles in the cytoplasm. The formation of these vesicles was not observed in cells infected with either parental BAC20 virus or the 20US3* revertant virus. The role of the MDV US3 protein in actin stress fiber breakdown was investigated by visualizing actin with phalloidin-Alexa 488 after infection or transfection of a US3 expression plasmid. Addition of the actin-depolymerizing drug cytochalasin D to cells transfected or infected with BAC20 resulted in complete inhibition of plaque formation with as little as 50 nM of the drug, while concentrations of nocodazole as high as 50 microM only had a relatively minor effect on MDV plaque formation. The results indicated that the MDV US3 serine-threonine protein kinase is transiently involved in MDV-mediated stress fiber breakdown and that polymerization of actin, but not microtubules, plays an important role in MDV cell-to-cell spread.  相似文献   

10.
In HeLa cells the assembly of modified vaccinia virus Ankara (MVA), an attenuated vaccinia virus (VV) strain, is blocked. No intracellular mature viruses (IMVs) are made and instead, immature viruses accumulate, some of which undergo condensation and are released from the cell. The condensed particles may undergo wrapping by membranes of the trans-Golgi network and fusion with the plasma membrane prior to their release (M. W. Carroll and B. Moss, Virology 238:198-211, 1997). The present study shows by electron microscopy (EM), however, that the dense particles made in HeLa cells are also released by a budding process at the plasma membrane. By labeling the plasma membrane with antibodies to B5R, a membrane protein of the extracellular enveloped virus, we show that budding occurs at sites that concentrate this protein. EM quantitation revealed that the cell surface around a budding profile was as strongly labeled with anti-B5R antibody as were the extracellular particles, whereas the remainder of the plasma membrane was significantly less labeled. To test whether budding was a characteristic of MVA infection, HeLa cells were infected with the replication competent VV strains Western Reserve strain (WR) and International Health Department strain-J (IHD-J) and also prepared for EM. EM analyses, surprisingly, revealed for both virus strains IMVs that evidently budded at the cell surface at sites that were significantly labeled with anti-B5R. EM also indicated that budding of MVA dense particles was more efficient than budding of IMVs from WR- or IHD-J-infected cells. This was confirmed by semipurifying [(35)S]methionine-labeled dense particles or extracellular enveloped virus (EEVs) from the culture supernatant of MVA- or IHD-J-infected HeLa cells, respectively, showing that threefold more labeled dense particles were secreted than EEVs. Finally, although the released MVA dense particles contain some DNA, they are not infectious, as assessed by plaque assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号