首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
综述了近年来关于IGF-Ⅰ和胰岛素表现生理功能的结构基础和分子基础研究进展.IGF-Ⅰ和胰岛素是胰岛素家族中的2个重要成员, 两者的分子结构高度同源, 两者的受体相似且属同一家族, 两者的生理功能可彼此交叉, 但各自具有主要的生理功能.IGF-Ⅰ的主要生理功能是促进细胞生长, 胰岛素的主要生理功能是促进葡萄糖的摄取和代谢.生物大分子的功能及其表现的基础是分子结构及参与功能表现的诸多分子, 如受体、信号分子等等.  相似文献   

2.
就胰岛素与其受体结合后, 信号传递的过程及参与信号传递的细胞内信号分子进行了综述.胰岛素作为一种重要激素,参与机体的新陈代谢, 调节细胞的生长分化.其发挥生理功能的第一步是与靶细胞膜上的受体相结合, 激活胰岛素受体的酪氨酸激酶活性, 随之磷酸化细胞内的信号分子, 从而使胰岛素的刺激信号转化为细胞反应.  相似文献   

3.
肥胖引起胰岛素耐受的分子机理胰岛素经血液循环到达靶细胞后,与细胞膜上胰岛素受体(IR)结合,引起IRβ亚单位上的酪氨酸残基自身磷酸化(IR本身具有酪氨酸激酶活性),随即引发胰岛素受体底物1(insulinreceptorsubstratel,IRS-...  相似文献   

4.
IGF-1对细胞凋亡的抑制调控   总被引:5,自引:0,他引:5  
胰岛素样生长因子-1(insulin—like growth factor,IGF—1)是胰岛素样生长因子家族中的一种,通过与IGF-1受体相结合产生生物学效应,是通过内分泌、自分泌和旁分泌的三种途径分泌的低分子多肽。近些年来,研究发现IGF-1不仅具有胰岛素类似的功能以及介导生长激素的作用,还是多种类型细胞凋亡的一个重要抑制因子。本文就IGF-1抑制细胞凋亡的信号转导途径和IGF-1对Bcl-2家族、caspases家族以及关键转录因子的调控机制作一综述。  相似文献   

5.
铬可以提高动物机体组织对胰岛素的敏感性,但对其具体作用机制直到最近才有了较深入的认识.铬在吸收后主要由转铁蛋白运输.血液胰岛素水平升高可以促进转铁蛋白受体从细胞内的小泡中移位到细胞膜上.携带铬的转铁蛋白与细胞膜表面的转铁蛋白受体发生结合,通过内吞作用将铬转运到细胞内.在细胞内,内吞小泡中的酸性环境可使铬从转铁蛋白中释放,4个三价铬离子与apochromodulin形成有活性的holochromodulin. Holochromodulin 除了可与胰岛素和/或胰岛素受体直接结合起作用外,还可以通过激活AMPK激酶来降低细胞膜胆固醇含量,改善细胞骨架功能,促进GLUT4移位,然后又通过激活p38MAPK激酶增强GLUT4的内在活性,从而促进葡萄糖吸收.但其具体分子机制仍不完全清楚.本文就铬在提高动物机体组织对胰岛素的敏感性的作用机制问题进行综述.  相似文献   

6.
碱性成纤维细胞生长因子(bFGF)相关结合蛋白   总被引:1,自引:0,他引:1  
有四种不同类型的细胞表面或细胞外基质中的蛋白质分子在结合碱性成纤维细胞生长因子(bFGF)、辅助其发挥生物功能活性方面起着重要的作用。它们是:(1)细胞膜上的具有酪氨酸激酶活性的FGF受体家族(FGFRs);(2)细胞外基质中的硫酸乙酰肝素蛋白多糖家族(HSPGs);(3)细胞内富含半胱氨酸的FGF受体(CFR);(4)分泌型的FGF结合蛋白(FGF-BP)。本文试图从它们在bFGF生物功能发挥中可能起到的作用对它们进行简单综述。  相似文献   

7.
为了探讨胰岛素样生长因子受体1(IGF-R1)分子上的胰岛素样生长因子1(IGF-1)结合位点,建立了研究IGF-1与IGF-R1相互作用的酵母双杂交模型;利用基因体外定点突变的方法,构建了7种IGF-R1突变体;然后通过报告基因活性的定量分析,在酵母双杂交模型中检测了IGF-1与各种IGF-R1突变体之间相互作用的大小,初步确定了IGF-R1分子中IGF-1的结合位点,并且IGF-R1分子上N237、T238在与IGF-1结合中起着重要作用.  相似文献   

8.
大鼠脊髓细胞膜胰岛素受体的结合特性   总被引:3,自引:0,他引:3  
大鼠脊髓细胞膜胰岛素受体的结合特性朱尚权,徐明华,张新堂,叶莺(中国科学院上海生物化学研究所,200031)姜新建,林淑琼(上海市第一人民医院康复科,200085)关键词胰岛素受体,脊髓细胞膜免疫组织化学、放射免疫自显影和放射受体测定技术已证明脑各区...  相似文献   

9.
胰岛素样生长因子结合蛋白—1(IGFBP—1)研究进展   总被引:4,自引:0,他引:4  
胰岛素样生长因子结合蛋白-1(IGFBP-1)参与生长、发育、生殖及血糖等生理过程,它是一个多功能蛋白,主要通过与IGF-1结合发挥作用,在IGFBP-1蛋白质结构中,N端是与IGF-1结合的重要区域,中心区决定了IGFBP的特异性,C端部分参与了与IGF-1结合并与细胞粘附相关。IGFBP-1是否磷酸化对其生物学作用有着重要影响。IGFBP-1基因转录受到多种转录因子共同调控,其中胰岛素是其主要的调控因子。  相似文献   

10.
代梅  郭建辉 《生命科学》2009,(3):412-417
表皮生长因子受体(EGFR,ErbB)家族在肿瘤的发生、发展中具有重要的作用。很多实体肿瘤中存在EGFR家族受体过表达或异常激活。靶向EGFR家族的抗肿瘤药物研发已经成为一个热点领域,并且成功地应用于临床。靶向EGFR家族的抗肿瘤药物可以分为单克隆抗体和小分子酪氨酸激酶抑制剂两大类。单克隆抗体与受体胞外区结合阻止配体.受体的结合或者阻止配体结合引起的受体活化;而小分子酪氨酸激酶抑制剂则结合于胞内激酶区,抑制激酶自磷酸化和下游信号通路激活。  相似文献   

11.
Bartke A 《Aging cell》2008,7(3):285-290
Growth hormone deficiency or resistance resulting from spontaneous or experimentally produced mutations in laboratory mice delay aging and increase lifespan. Alterations in insulin-like growth factor-1 (IGF-1) and insulin signaling emerged as likely mechanisms linking growth hormone and aging, and increased longevity was reported in mice with selective deletion of IGF-1 receptor in all tissues or insulin receptor in fat. Recent studies in mice with reduced IGF-1 levels or deletion of pregnancy-associated plasma protein-A, a protease that cleaves one of the IGF-1 binding proteins, strongly support the role of IGF-1 in the control of longevity. Reports of increased lifespan in mice with deletion of insulin receptor substrate (IRS) 1, reduced expression of IRS2, or selective deletion of IRS2 in the brain specifically implicate the IRS-PI3K-Akt-Foxo signaling pathway (which is shared by IGF-1 and insulin) in the control of aging. These important novel findings also strengthen the evidence for evolutionary conservation of mechanisms regulating lifespan in worms, insects and mammals.  相似文献   

12.
ABSTRACT

In the last decades increasing importance has been attributed to the Insulin/Insulin-like Growth Factor signaling (IIGFs) in cancer development, progression and resistance to therapy. In fact, IIGFs is often deregulated in cancer. In particular, the mitogenic insulin receptor isoform A (IR-A) and the insulin-like growth factor receptor (IGF-1R) are frequently overexpressed in cancer together with their cognate ligands IGF-1 and IGF-2. Recently, we identified discoidin domain receptor 1 (DDR1) as a new IR-A interacting protein. DDR1, a non-integrin collagen tyrosine kinase receptor, is overexpressed in several malignancies and plays a role in cancer progression and metastasis.

Herein, we review recent findings indicating that DDR1 is as a novel modulator of IR and IGF-1R expression and function. DDR1 functionally interacts with IR and IGF-1R and enhances the biological actions of insulin, IGF-1 and IGF-2. Conversely, DDR1 is upregulated by IGF-1, IGF-2 and insulin through the PI3K/AKT/miR-199a-5p circuit. Furthermore, we discuss the role of the non-canonical estrogen receptor GPER1 in the DDR1-IIGFs crosstalk. These data suggest a wider role of DDR1 as a regulator of cell response to hormones, growth factors, and signals coming from the extracellular matrix.  相似文献   

13.
Based on the earlier discovered by the authors adenylyl cyclase signaling mechanisms (ACSM) of action of insulin and relaxin, a study was performed of the existence of a similar action mechanism of another representative of the insulin superfamily-the insulin—like growth factor 1 (IGF-1) in the muscle tissue of vertebrates (rat) and invertebrates (mollusc). For the first time there was detected participation of ACSM in the IGF-1 action, including the six-component signaling cascade: receptor tyrosine kinase → Gi-protein (βγ-dimer) → phosphatidylinositol-3-kinase (PI-3K) → protein kinase Cζ (PKCζ) → Gs-protein → adenylyl cyclase. By structural-functional organization at postreceptor stages, it coincides completely with that of insulin and relaxin, which we revealed in rat skeletal muscle. In smooth muscle of the mollusc Anodonta cygnea this ACSM of action of IGF-1 has only one difference-the protein kinase C included in this mechanism is represented not by the PKCζ isoform, but by another isoform close to PKCε of the vertebrate brain. Earlier we revealed the same differences in muscles of this mollusc in the ACSM of action of insulin and relaxin.  相似文献   

14.
Insulin-like growth factor types 1 and 2 (IGF-1; IGF-2) and insulin-like peptides are all members of the insulin superfamily of peptide hormones but bind to several distinct classes of membrane receptor. Like the insulin receptor, the IGF-1 receptor is a heterotetrameric receptor tyrosine kinase, whereas the IGF-2/ mannose 6-phosphate receptor is a single transmembrane domain protein that is thought to function primarily as clearance receptors. We recently reported that IGF-1 and IGF-2 stimulate the ERK1/2 cascade by triggering sphingosine kinase-dependent "transactivation" of G protein-coupled sphingosine-1-phosphate receptors. To determine which IGF receptors mediate this effect, we tested seven insulin family peptides, IGF-1, IGF-2, insulin, and insulin-like peptides 3, 4, 6, and 7, for the ability to activate ERK1/2 in HEK293 cells. Only IGF-1 and IGF-2 potently activated ERK1/2. Although IGF-2 was predictably less potent than IGF-1 in activating the IGF-1 receptor, they were equipotent stimulators of ERK1/2. Knockdown of IGF-1 receptor expression by RNA interference reduced the IGF-1 response to a greater extent than the IGF-2 response, suggesting that IGF-2 did not signal exclusively via the IGF-1 receptor. In contrast, IGF-2 receptor knockdown markedly reduced IGF-2-stimulated ERK1/2 phosphorylation, with no effect on the IGF-1 response. As observed previously, both the IGF-1 and the IGF-2 responses were sensitive to pertussis toxin and the sphingosine kinase inhibitor, dimethylsphingosine. These data indicate that endogenous IGF-1 and IGF-2 receptors can independently initiate ERK1/2 signaling and point to a potential physiologic role for IGF-2 receptors in the cellular response to IGF-2.  相似文献   

15.
Previous studies showed that both insulin and insulin-like growth factor-1 (IGF-1) stimulate metabolism and growth of preimplantation embryos. Because the effects of insulin occur with very low doses, it was suggested that its effects were mediated by its own receptors. However, the effects of IGF-1 occurred at higher doses, suggestive of cross reaction with the insulin receptor but still in the range for mediation via its own receptor. The aim of this study was to investigate the mediation of the metabolic and growth effects of insulin and IGF-1 using a specific insulin receptor antagonist. The antagonistic B-10 Fab fragment (B-10f) completely blocked stimulation of protein synthesis by both insulin and IGF-1, indicating that the insulin receptor mediates this action of both hormones. Alternately, only insulin's stimulation of inner cell mass mitogenesis and morphological development was inhibited by the B-10 Fab fragment. This showed that growth stimulation by insulin and IGF-1 was mediated via different receptors, insulin through its own receptor and IGF-1 through some other receptor. However, mediation via the IGF-2 receptor is not excluded since IGF-1 stimulates compaction when there is evidence for only the presence of the IGF-2 receptor. In summary, insulin or IGF-1 at physiological concentrations stimulates preimplantation mouse embryos, suggesting an important role for both these growth factors in early development.  相似文献   

16.
Insulin-like growth factor (IGF)-1 increases proliferation, inhibits apoptosis and promotes differentiation of oligodendrocytes and their precursor cells, indicating an important function for IGF-1 receptor (IGF-1R) signaling in myelin development. The insulin receptor substrates (IRS), IRS-1 and -2 serve as intracellular IGF-1R adaptor proteins and are expressed in neurons, oligodendrocytes and their precursors. To address the role of IRS-2 in myelination, we analyzed myelination in IRS-2 deficient (IRS-2(-/-)) mice and age-matched controls during postnatal development. Interestingly, expression of the most abundant myelin proteins, myelin basic protein and proteolipid protein was reduced in IRS-2(-/-) brains at postnatal day 10 (P10) as compared to controls. myelin basic protein immunostaining in P10-IRS-2(-/-) mice revealed a reduced immunostaining, but an unchanged regional distribution pattern. In cerebral myelin isolates at P10 unaltered relative expression of different myelin proteins was found, indicating quantitatively reduced but not qualitatively altered myelination. Interestingly, up-regulation of IRS-1 expression and increased IGF-1R signaling were observed in IRS-2(-/-) mice at P10-14, indicating a compensatory mechanism to overcome IRS-2 deficiency. Adult IRS-2(-/-) mice showed unaltered myelination and motor function. Furthermore, in neuronal/brain-specific insulin receptor knockout mice myelination was unchanged. Thus, our experiments reveal that IGF-1R/IRS-2 mediated signals are critical for appropriate timing of myelination in vivo.  相似文献   

17.
pp120 (Ceacam 1) undergoes ligand-stimulated phosphorylation by the insulin receptor, but not by the insulin-like growth factor 1 receptor (IGF-1R). This differential phosphorylation is regulated by the C terminus of the beta-subunit of the insulin receptor, the least conserved domain of the two receptors. In the present studies, deletion and site-directed mutagenesis in stably transfected hepatocytes derived from insulin receptor knockout mice (IR(-/-)) revealed that Tyr(1316), which is replaced by the nonphosphorylatable phenylalanine in IGF-1R, regulated the differential phosphorylation of pp120 by the insulin receptor. Similarly, the nonconserved Tyr(1316) residue also regulated the differential effect of pp120 on IGF-1 and insulin mitogenesis, with pp120 downregulating the growth-promoting action of insulin, but not that of IGF-1. Thus, it appears that pp120 phosphorylation by the insulin receptor is required and sufficient to mediate its downregulatory effect on the mitogenic action of insulin. Furthermore, the current studies revealed that the C terminus of the beta-subunit of the insulin receptor contains elements that suppress the mitogenic action of insulin. Because IR(-/-) hepatocytes are derived from liver, an insulin-targeted tissue, our observations have finally resolved the controversy about the role of the least-conserved domain of insulin and IGF-1Rs in mediating the difference in the mitogenic action of their ligands, with IGF-1 being more mitogenic than insulin.  相似文献   

18.
Type 2 diabetes mellitus (DM) appears to be a significant risk factor for Alzheimer disease (AD). Insulin and insulin-like growth factor-1 (IGF-1) also have intense effects in the central nervous system (CNS), regulating key processes such as neuronal survival and longevity, as well as learning and memory. Hyperglycaemia induces increased peripheral utilization of insulin, resulting in reduced insulin transport into the brain. Whereas the density of brain insulin receptor decreases during age, IGF-1 receptor increases, suggesting that specific insulin-mediated signals is involved in aging and possibly in cognitive decline. Molecular mechanisms that protect CNS neurons against β-amyloid-derived-diffusible ligands (ADDL), responsible for synaptic deterioration underlying AD memory failure, have been identified. The protection mechanism does not involve simple competition between ADDLs and insulin, but rather it is signalling dependent down-regulation of ADDL-binding sites. Defective insulin signalling make neurons energy deficient and vulnerable to oxidizing or other metabolic insults and impairs synaptic plasticity. In fact, destruction of mitochondria, by oxidation of a dynamic-like transporter protein, may cause synapse loss in AD. Moreover, interaction between Aβ and τ proteins could be cause of neuronal loss. Hyperinsulinaemia as well as complete lack of insulin result in increased τ phosphorylation, leading to an imbalance of insulin-regulated τ kinases and phosphatates. However, amyloid peptides accumulation is currently seen as a key step in the pathogenesis of AD. Inflammation interacts with processing and deposit of β-amyloid. Chronic hyperinsulinemia may exacerbate inflammatory responses and increase markers of oxidative stress. In addition, insulin appears to act as 'neuromodulator', influencing release and reuptake of neurotransmitters, and improving learning and memory. Thus, experimental and clinical evidence show that insulin action influences cerebral functions. In this paper, we reviewed several mechanisms by which insulin may affect pathophysiology in AD.  相似文献   

19.
Defective bone formation is common in patients with diabetes, suggesting that insulin normally exerts anabolic actions in bone. However, because insulin can cross-activate the insulin-like growth factor type 1 receptor (IGF-1R), which also functions in bone, it has been difficult to establish the direct (IGF-1-independent) actions of insulin in osteoblasts. To overcome this problem, we examined insulin signaling and action in primary osteoblasts engineered for conditional disruption of the IGF-1 receptor (DeltaIGF-1R). Calvarial osteoblasts from mice carrying floxed IGF-1R alleles were infected with adenoviral vectors expressing the Cre recombinase (Ad-Cre) or green fluorescent protein (Ad-GFP) as control. Disruption of IGF-1R mRNA (>90%) eliminated IGF-1R without affecting insulin receptor (IR) mRNA and protein expression and eliminated IGF-1R/IR hybrids. In DeltaIGF-1R osteoblasts, insulin signaling was markedly increased as evidenced by increased phosphorylation of insulin receptor substrate 1/2 and enhanced ERK/Akt activation. Microarray analysis of RNA samples from insulin-treated, DeltaIGF-1R osteoblasts revealed striking changes in several genes known to be downstream of ERK including Glut-1 and c-fos. Treatment of osteoblasts with insulin induced Glut-1 mRNA, increased 2-[1,2-(3)H]-deoxy-d-glucose uptake, and enhanced proliferation. Moreover, insulin treatment rescued the defective differentiation and mineralization of DeltaIGF-1R osteoblasts, suggesting that IR signaling can compensate, at least in part, for loss of IGF-1R signaling. We conclude that insulin exerts direct anabolic actions in osteoblasts by activation of its cognate receptor and that the strength of insulin-generated signals is tempered through interactions with the IGF-1R.  相似文献   

20.
Chimeric insulin/insulin-like growth factor-1 receptors and insulin receptor alpha-subunit point mutants were characterized with respect to their binding properties for insulin and insulin-like growth factor-1 (IGF-1) and their ability to translate ligand interaction into tyrosine kinase activation in intact cells. We found that replacement of the amino-terminal 137 amino acids of the insulin receptor (IR) with the corresponding 131 amino acids of the IGF-1 receptor (IGF-1R) resulted in loss of affinity for both ligands. Further replacement of the adjacent cysteine region with IGF-1R sequences fully reconstituted affinity for IGF-1, but only marginally for insulin. Unexpectedly, replacement of the IR cysteine-rich domain alone by IGF-1R sequences created a high affinity receptor for both insulin and IGF-1. The binding characteristics of all receptor chimeras reflected the potential of both ligands to regulate the receptor tyrosine kinase activity in intact cells. Our chimeric receptor data, in conjunction with IR amino-terminal domain point mutants, strongly suggest major contributions of structural determinants in both amino- and carboxyl-terminal IR alpha-subunit regions for the formation of the insulin-binding pocket, whereas, surprisingly, the residues defining IGF-1 binding are present predominantly in the cysteine-rich domain of the IGF-1R.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号