首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The efficacy of cleanup methods in reducing gasoline contamination at spill sites is typically determined by measuring benzene, toluene, xylene (BTX), and total petroleum hydrocarbon (TPH) concentrations in soil samples. Although these values may provide a direct measurement of soil contamination, they may not be indicative of what is transferred to percolating water. This study addresses this issue by measuring TPH, toluene, m‐ and p‐xylene, and naphthalene levels in gasoline‐contaminated soil columns before and after forced‐air venting and relating these values to the aqueous‐phase concentrations measured when water is percolated through the same columns.

Sandy soils with and without organic matter were packed into glass columns. The soils were brought to residual water and residual gasoline saturations by applying a vacuum to a ceramic pressure plate at the column bottom. Venting was performed by passing clean, moist air through the columns. The columns were subsequently leached under unsaturated conditions.

Soil samples were taken from the bottom of the columns upon completion of the venting or leaching phases of the experiments. Toluene, m‐ and p‐xylene, naphthalene, and TPH values were measured in soil samples extracted with either freon or methanol. Aqueous phase concentrations of these compounds were predicted using measured soil concentrations and either Raoult's law or organic matter‐water and fuel‐water partitioning theory (Boyd and Sun, 1990). The predicted results were compared with measured leachate concentrations from the same columns.

Mole fractions estimated from soil concentrations and TPH values used in Raoult's law gave good predictions of aqueous phase concentrations for compounds that had a high mole fraction in the residual nonaqueous phase liquid (NAPL). For compounds at low concentrations in the residual NAPL, an approach using a distribution coefficient that accounted for both the organic matter and residual NAPL in the soil provided better estimates than those based on Raoult's law.  相似文献   


2.
This article describes an experimental program developed to investigate the potential for using hydrocarbon‐contaminated soils as a fine aggregate replacement in concrete. Five different contaminated soil types with a total petroleum hydrocarbon content of less than 1% were investigated. For each soil type, three concrete mixtures were obtained by replacing sand with contaminated soils (10, 20, and 40% replacement ratio). The resulting concrete was tested for setting times, compression strength, flexural strength, durability, and teachability of benzene to water.

The results indicate that the addition of hydrocarbon‐contaminated soil adversely affects the strength of concrete. The strength reduction at each soil replacement level depends on contamination concentration, contaminant type, and soil type. The durability of the tested concrete is comparable to normal concrete. For all five soils at a 40% replacement ratio, the leachability of benzene was nondetectable after 24 h and after 10 d. After testing the leachability of artificially contaminated soils (0.5 and 3% neat benzene contamination) for 24 h, it was found that the leaching of benzene increases with the percentage of contamination. However, the fraction of benzene that leached was about 95% lower than the values for loose soils.  相似文献   


3.
The 1999 NATO bombing of the oil refinery in Novi Sad (Yugoslavia) has heavily contaminated the Danube River and its sediments, as well as the surrounding soil and groundwater. The destruction of the factories released 73,569 tons of crude oil of which 90% was incinerated, 560 tons reached the Danube River, and the remainder was spilled onto the soil. The contents of oil and oil derivatives in the soil were in the range of 3 to 42,000?mg/kg. The first soil layer contained an average of 67,000?mg/kg of crude oil and oil derivatives. The layers beneath it, above the groundwater table, contained 56?ml/l of free oil derivatives in the drained water. The spreading of this pollution could imperil the groundwater quality in the water supply zone because the refinery is located in the hinterland of the zone. The quality of water and sediment samples was monitored from April 1999 to November 2000 by measuring concentrations of hydrocarbons and polyaromatic hydrocarbons (PAH). The hydrocarbon content in the Danube River water in October 2000 was about 20% of the value measured at the time of the accident. Immediately after the accident the concentration of mineral oil in the surface sediment was in the range of 0.11 to 0.29?g/kg. At the same time PAH concentrations in the river sediment were up to 160?mg/kg, depending on the sampling site location. The values showed a decrease in the course of further monitoring.  相似文献   

4.
This study investigated a solidification treatment process for soils that are contaminated with hydrocarbons at levels of 0.5 and 3.0% by weight of benzene. The contaminated soils were bound in a concrete matrix and the migration of organics from the concrete to air was evaluated. If the hydrocarbon emissions are sufficiently attenuated, the concrete containing such contaminated soil can be used for exterior construction applications.

The experimental specimens consisted of concrete mixtures in which 40% of the sand was replaced with the contaminated soil. The mixtures’ ratio of cement, aggregate, sand, and water is 1:1.5:1.5:0.5 by weight. The study included specimens with and without class C fly ash replacing 10% of the cement. In addition, two unfixed control specimens were prepared for each contamination level. The concrete‐soil mixtures were placed in sealed jars and air was passed through the head space of the jars and then through carbon adsorption tubes for measurement of contaminant flux from the surface of the specimens. Measurements were made during and after concrete curing. The results were fitted to a Fickian diffusion model to estimate effective diffusivity in the concrete‐soil specimens.

The test results showed that the effective diffusivity of the contaminant within the concrete was reduced by three to five orders of magnitude over the molecular diffusivities in unfixed contaminated soil used as control. It was observed that the presence of fly ash in the concrete affects the hydrocarbon release and causes an additional decrease in effective diffusivity of about one order of magnitude. Contaminant emissions during the curing phase were found to exceed rates predicted by the Fickian model. This is apparently due to the water used in the concrete. Total emissions, however, never exceeded values emitted from the unfixed controls. This study indicates that fixation of low hydrocarbon levels within concrete is a technically viable and safe technology for recycling petroleum‐contaminated soil.  相似文献   


5.
用土柱试验,研究了栽培樱桃番茄(Lycopersicon esculentum var.cerasiforme Alef.)的塿土和黄绵土水分运移和温度变化规律,水分运移模型选用土壤中水分分布的动力学模型,土壤温度、空气温湿度变化选用正弦曲线模型。结果表明:塿土在各个不同深度的平均含水量均高于黄绵土,塿土的入渗速率高于黄绵土,同一深度塿土温度高于黄绵土,土壤温度随着深度的增加具有明显的滞后性;黄绵土中樱桃番茄的水分利用效率大于塿土,空气温湿度、土壤温度和土壤含水量相互影响。水分运移模型在土壤浅层处可以得到很好的拟合效果,在拟合方程的变量范围内,根据时间可以较准确的确定樱桃番茄盛果期土壤浅层含水量,对于进一步提高农业干旱防御能力、有效制定节水灌溉计划、提高水分利用效率提供了理论依据。  相似文献   

6.
The use of pyrolyzed carbon, biochar, as a soil amendment is of potential interest for improving phytoremediation of soil that has been contaminated by petroleum hydrocarbons. To examine this question, the research reported here compared the effects of biochar, plants (mesquite tree seedlings), compost and combinations of these treatments on the rate of biodegradation of oil in a contaminated soil and the population size of oil-degrading bacteria. The presence of mesquite plants significantly enhanced oil degradation in all treatments except when biochar was used as the sole amendment without compost. The greatest extent of oil degradation was achieved in soil planted with mesquite and amended with compost (44% of the light hydrocarbon fraction). Most probable number assays showed that biochar generally reduced the population size of the oil-degrading community. The results of this study suggest that biochar addition to petroleum-contaminated soils does not improve the rate of bioremediation. In contrast, the use of plants and compost additions to soil are confirmed as important bioremediation technologies.  相似文献   

7.
A variety of remediation technologies are available to address hydrocarbon contamination, including free product recovery, soil venting, air sparging, groundwater recovery and treatment, and in situ bioremediation. These technologies address hydrocarbon contamination distributed between free, adsorbed, and dissolved phases in both the vadose and saturated zones. Selection of appropriate technologies is dependent on a number of factors, including contaminants, site‐specific characteristics, clean‐up goals, technology feasibility, cost, and regulatory and time requirements. This article describes a decision framework for selecting appropriate remediation technologies at hydrocarbon‐contaminated sites in a structured and tiered manner. Decision modules include (1) site characterization and product recovery; (2) vadosezone treatment: soil venting, bioremediation, and excavation; (3) saturated zone treatment: sparging, bioremediation, groundwater recovery, and excavation; and (4) groundwater treatment: carbon, air stripping, advanced oxidation, and bioreactors. Selection criteria for treatment technologies that address vadose‐ and saturated‐zone soils, as well as recovered groundwater, are described. The decision framework provides a systematic process to formulate solutions to complex problems and documents the rationale for selecting remediation systems designed to achieve closure at hydrocarbon‐contaminated sites.  相似文献   

8.
The evaluation of soil lipase activity as a tool to monitor the decontamination of a freshly oil-polluted soil was tested in a laboratory study. An arable soil was experimentally contaminated with diesel oil at 5 mg hydrocarbons g–1 soil dry weight and incubated with and without fertilization (N-P-K) for 116 days at 20°C. Lipase activity and counts of oil-degrading microorganisms were measured at regular time intervals, and the correlations with the levels of hydrocarbon concentrations in soil were investigated. The residual soil hydrocarbon concentration correlated significantly negatively with soil lipase activity and with the number of oil-degrading microorganisms, independent of fertilization. The induction of soil lipase activity is a valuable indicator of oil biodegradation in naturally attenuated (unfertilized) and bioremediated (fertilized) soils.  相似文献   

9.
土壤结皮是一种常见的自然现象,但由于结皮形成机制的不同,会产生不同的亲水性和斥水性,从而影响土壤的水力学特征与水文循环。本研究利用水滴穿透时间法测定了野外不同植被下物理结皮和生物结皮的斥水特征,利用扫描电镜观测了结皮的表面形态,并用微型入渗装置测定了结皮及其对照土壤的入渗特征。结果表明: 1)物理结皮的平均水滴穿透时间(WDPT)为3.3 s,对照为0.9 s,表现为亲水性;生物结皮的平均WDPT介于20.9~140.9 s,是无结皮的2.8~19倍,其中君迁子和刺槐林下的生物结皮平均WDPT分别为134.5和140.9 s。2)与对照相比,物理结皮累积入渗量、平均入渗速率和吸湿力分别降低了0~4.3%、3.5%~5.1%和27.2%~90.1%,生物结皮分别降低了0~25%、1.4%~28.2%和36.0%~84.9%。3)无论是否存在结皮,利用Philip模型拟合处理入渗数据均存在“曲棍球状”曲线;曲线上斥水性停止时间(WRCT)之前,点源微入渗以水平方向上的扩散为主,WRCT点以后以垂直方向上的入渗为主,土壤结皮的形成延长了该转折点的形成时间。综上,物理结皮是无机矿质颗粒堵塞了表层土壤,不影响斥水性的变化;生物结皮表现为斥水性有机物对土壤结构的影响,增强了其斥水性。物理结皮和生物结皮均会降低土壤的累积入渗量和平均入渗速率,但物理结皮主要影响土壤的吸湿力,对稳定入渗速率影响不大;生物结皮不仅降低了土壤吸湿力,还增加了稳定入渗速率。  相似文献   

10.
不同初始含水率下粘质土壤的入渗过程   总被引:16,自引:0,他引:16  
刘目兴  聂艳  于婧 《生态学报》2012,32(3):871-878
土壤入渗是降雨渗入土体形成土壤水的基本水文过程,土壤渗透能力影响着地表径流和土壤侵蚀强度。土壤初始含水量决定了入渗初期的土水势,是影响土壤入渗过程的重要因素。利用环刀法,观测了三峡库区林地和草地的土壤入渗过程,对比分析了不同初始含水率下土壤入渗率和常用入渗模型的适宜性。结果表明,随土壤初始含水率的增大,林地和草地下土壤初始入渗率减小,入渗趋于稳定所需时间缩短,累积入渗量和稳定入渗率增大。土壤含水率为12%的林地初始入渗率为8.95 mm/min,是含水率40%林地初始入渗率的4倍,但1h累积入渗量仅是含水率40%林地的2/3。有机质含量丰富的草地土壤入渗过程对初始含水率的敏感性较弱,干湿草地相比较入渗参数的差异不如林地明显。随时间的延长,土壤入渗率逐渐降低,入渗曲线渐趋平缓,最小二乘法拟合结果显示Horton模型对林地和草地下土壤入渗过程的拟合效果较好,且模型参数具有物理意义,是分析和预测三峡库区林草覆盖下土壤入渗过程的适宜模型。  相似文献   

11.
不同类型生物土壤结皮覆盖下风沙土的入渗特征及模拟   总被引:4,自引:0,他引:4  
刘翔  周宏飞  刘昊  朱海 《生态学报》2016,36(18):5820-5826
干旱荒漠区广泛分布的生物土壤结皮(BSCs)对土壤水分入渗过程有重要影响。以古尔班通古特沙漠南缘的BSCs为研究对象,基于野外采样与室内模拟实验等方法,探究藓类、地衣和藻等3种类型BSCs覆盖下沙土的入渗特征。结果表明:与无结皮覆盖的风沙土对照,3种类型BSCs均显著降低了沙土初渗速率,藓类结皮、地衣结皮、藻结皮覆盖下初渗速率降低幅度依次为36.10%、46.42%、50.39%;藓类结皮、地衣结皮(P0.05)和藻结皮(P0.05)均明显降低了沙土稳渗速率,降低幅度依次为16.50%、33.98%和35.92%;3种类型BSCs均限制了湿润锋在沙土的推进过程,表现为:藓类结皮、地衣结皮、藻结皮的渗漏时间分别为裸沙对照的2.13、3.04和2.98倍;各类型BSCs均减小了沙土累积入渗量,阻碍了沙土水分入渗,与裸沙对照相比,藓类结皮、地衣结皮、藻结皮的1 h累积入渗量分别降低16.10%、28.56%和26.56%。在实验条件下,Kostiakov模型最适用于模拟不同类型BSCs覆盖下土壤水分入渗过程,Horton模型模拟效果次之。  相似文献   

12.
This study was performed to investigate the petroleum hydrocarbon (PH) degradative potential of indigenous microorganisms in ozonated soil to better develop combined pre-ozonation/bioremediation technology. Diesel-contaminated soils were ozonated for 0–900min. PH and microbial concentrations in the soils decreased with increased ozonation time. The greatest reduction of total PH (TPH, 47.6%) and aromatics (11.3%) was observed in 900-min ozonated soil. The number of total viable heterotrophic bacteria decreased by three orders of magnitude in the soil. Ozonated soils were incubated for 9weeks for bioremediation. The number of microorganisms in the soils increased during the incubation period, as monitored by culture- and nonculture-based methods. The soils showed additional PH-removal during incubation, supporting the presence of PH-degraders in the soils. The highest removal (25.4%) of TPH was observed during the incubation of 180-min ozonated soil during the incubation while a negligible removal was shown in 900-min ozonated soil. This negligible removal could be explained by the existence of relatively few or undetected PH-degraders in 900-min ozonated soil. After a 9-week incubation of the ozonated soils, 180-min ozonated soil showed the lowest TPH concentration, suggesting that appropriate ozonation and indigenous microorganisms survived ozonation could enhance remediation of PH-contaminated soil. Microbial community composition in 9-week incubated soils revealed a slight difference between 900-min ozonated and unozonated soils, as analyzed by whole cell hybridization. Taken together, this study provided insight into indigenous microbial potential to degrade PH in ozonated soils.  相似文献   

13.
原油进入土壤后会堵塞土壤孔隙,影响土壤斥水性,改变土壤水分运动状况。本研究利用土柱模拟的方法,研究了不同原油污染程度(0、0.5%、1%、2%、4%)对黄绵土和风沙土水分入渗过程的影响。结果表明: 随着原油含量的增加,两种土壤湿润锋的推进速度和入渗速率均减小,土壤原油污染程度为4%时湿润锋运移到土柱底部的所需时间最长,污染程度为0时湿润锋运移到土柱底部的所需时间最短,黄绵土湿润锋达到土柱底部所需最长时间是最短时间的5倍,风沙土最长时间是最短时间的48倍;当湿润锋运移到土柱底部时,黄绵土的累积入渗量随原油含量的增加而减小,而风沙土的累积入渗量先增大后减小;在高浓度(2%、4%)原油处理下,风沙土的累积入渗量曲线出现“翘尾”现象。Kostiakov入渗模型和Philip入渗模型比Green-Ampt模型能更好地模拟不同原油处理下的黄绵土土壤水分入渗过程,但对风沙土而言,两种模型对低浓度(0、0.5%、1%)原油处理的土壤水分入渗过程拟合较好。原油污染能够显著影响土壤水分入渗过程,且对风沙土的影响更大。  相似文献   

14.
The role of the Conocarpus lancifolius tree in remediaitng oil-contaminated soil, which was bioremediated using conventional methods, was investigated. The selected tree was used to phytoremediate bioremediated oil-contaminated soil for three successive growing seasons. At the end of the phytoremediation experiment, 85.7% of measurable total petroleum hydrocarbon (TPH) was degraded in Conocarpus lancifolius rhizosphere, and the detectable concentrations of some poly aromatic hydrocarbons (PAHs) were less than 0.02 ppm. A number of hydrocarbon degrading microorganisms (HDMs) were isolated at 35°C under aerobic conditions, and were identified using 16S rRNA gene sequencing and fatty acid methyl ester (FAME) analysis. The efficiency of the isolated HDMs in degrading a mixture of hydrocarbon compounds (HC) was assessed. Among the bacterial isolates, Rhodococcus equi was distinguished from the other isolates because of its efficient degradation of some compounds in the HC mixture.

Samples were also collected from Conocarpus lancifolius vegetative parts and were analyzed for heavy metal and mineral accumulation. The results demonstrated that the Conocarpus lancifolius tree was able to uptake high levels of chromium (Cr), vanadium (V), and nickel (Ni) and accumulate them in the tree's roots. Additionally, Conocarpus trees tolerated high concentration and accumulated several metals in all plant tissues. These metals included aluminum (Al), calcium (Ca) and iron (Fe).  相似文献   


15.
Bioremediation is a widely accepted technology for the remediation of hydrocarbon-contaminated soil. Treatability studies are usually carried out to assess the biodegradation potential of the contaminants and to design optimal treatments. Laboratory studies measuring soil respiration are often used. One method consists of monitoring the mineralization of a 14C-labeled hydrocarbon surrogate added to the contaminated soil. This study investigates the ability of this method to properly predict the removal of the hydrocarbon contaminants initially found in soils. Mineralization of 14C-labeled hexadecane was monitored in seven soils contaminated with various hydrocarbon mixtures, both fresh and weathered, in microcosm experiments. Reduction of total petroleum hydrocarbon (TPH) concentrations was measured simultaneously in separate microcosms. Both types of microcosms were subjected to the same amendment regimes. For all soils, poor correlation was observed between the mineralization and TPH reduction data sets. Mineralization data supported contaminants removal data in only one soil. Findings indicate that the radioactive surrogate method does not reliably predict the extent of, and the effect of amendments on, the removal of the hydrocarbons initially present in soil, and may therefore predict suboptimal treatment regimes. Recommendations for soil treatability protocols are provided.  相似文献   

16.
Laboratory and field experiments were carried out for bioremediation of soils contaminated by fuel oil and motor oil. Bioventing was combined with the application of selected bacteria and dissolved nutrients. In the field experiments, soil gas was evacuated by air pumps from the permeable boreholes. The process was followed by both soil and gas analysis. Biodegradation of oil contamination and the microbial activity was measured by the oil and cell concentration in the soil. In 2 months, the oil content decreased considerably, and the cell number increased by one order of magnitude or more. The evacuated gas was tested for CO2, O2 and volatilized hydrocarbon content. The CO2 level proves the presence of biodegradation: a permanent high value about ten times higher than normal, could be measured for 2 months, followed by a slow decrease in the third month. Volatilized hydrocarbon content was the highest in the first 2 d. After a continuous decrease, it dropped under the threshold of measurability for the third month. Selective biodegradation of hydrocarbon mixtures (oily wastes) was investigated as well: gas Chromatographic oil analysis showed the changes in the oil composition. The appropriate microflora was working in an ideal commensalism, and as a result, all of the hydrocarbon components were degraded nearly to the same extent.  相似文献   

17.
This article presents a qualitative evaluation of the extent to which the bioavailability (release) of a chemical is related to the biodegradation of hydrocarbons in a field bioremediation unit. The objectives of this research were to (1) quantify the rate of release of petroleum hydrocarbons from two soils that were bioremediated, (2) explore hydrocarbon release as a process affecting bioremediation; and (3) investigate the impact of bioremediation on chemical release in the two soils. An experimental protocol was used to quantify the rate of release of these hydrocarbons from two soils that had been bioremediated in a field-scale prepared bed land treatment unit. One soil showed little change in hydrocarbon concentration during 55 weeks of prepared bed bioremediation. The field study results indicated that, prior to the bioremediation, this soil had reached an environmentally acceptable endpoint. The second soil showed considerable hydrocarbon loss as a result of the bioremediation. The rate of hydrocarbon release was determined for the first soil and for the second soil at time zero and after 1, 2, and 7 months of prepared bed bioremediation. The results indicated: (1) the fraction (F) of the specific hydrocarbons that were released rapidly from the soil and the rates of release (k2) of the residual hydrocarbons that were released slowly, (2) that the mass of each chemical of concern that was released from the first soil was very low; and (3) that the hydrocarbon released rapidly from the second soil decreased as treatment progressed. The experiments also verified, qualitatively, that some portion of each chemical evaluated was not able to be released, and thus was unavailable for bioremediation in the prepared bed land treatment unit.  相似文献   

18.
The entrapment of residual hydrocarbon globules by water table fluctuations can produce a long‐term contamination threat to groundwater supplies that is difficult to remove. The mobilization of entrapped hydrocarbon globules depends on the balance between capillary and gravitational forces represented by the Bond number. It is important to estimate the potential for hydrocarbon entrapment at a spill site due to its influence on the effectiveness of remediation efforts. The present work focuses on the influence of particle diameter on hydrocarbon entrapment for a typical LNAPL (light nonaqueous‐phase liquid). Laboratory column tests have been conducted using a dual‐beam gamma densitometer to measure saturations of the three phases (water, air, and hydrocarbon). Soltrol 170®, a solvent manufactured by Phillips 66 Co., is used as the hydrocarbon. Residual saturation of the Soltrol is measured after fluctuations in water table level to establish the distribution and consistency of hydrocarbon entrapment below the water table. Glass particles of nearly uniform size were used to represent a sandy soil. In the experiments, average particle sizes ranged from 210 to 6000 μm. Data were also taken using the synthetic soil matrix approved by the U.S. Environmental Protection Agency (EPA) for contamination studies. Results show that the distribution of trapped LNAPL is quite uniform and that the average residual saturation is about 13% up to a particle diameter of 710 μm. Above this diameter, residual saturation decreases with particle size. The corresponding critical Bond number, determined experimentally, agrees well with the predicted value of 1.6.  相似文献   

19.
Phytoremediation is a new ecological and cost-effective technology applied for cleaning heavy metals and total petroleum hydrocarbon contaminated (TPH-contaminated) soils. This study was conducted to evaluate the potential of milk thistle (Silybum marianum) to phytoremediate cadmium (Cd (II)) from contaminated soils. To this end, the investigators applied a completely randomized design with the factorial arrangement and four replications. The results indicated that all the evaluated parameters of S. Marianum, including shoot and root fresh and dry weight, as well as shoot and root Cd, were significantly influenced by Cd (II) concentration and diesel oil (DO). The Cd-contaminated soil showed minor declining effects on the produced plant biomass, whereas the DO-contaminated soil had more inhibitory effects. Moreover, the soil contaminated with both Cd and DO led to adverse effects on the plant biomass. The shoot and root Cd concentration had an increasing trend in the presence of DO as the bioconcentration factor (BCF) by 1.740 (+90.78%), 1.410 (+36.89%), 2.050 (+31.41%), 1.68 (+32.28%), and 1.371 (+22.41%) compared to the soil without DO at Cd (II) concentrations of 20, 40, 60, 80, and 100 mg/kg, respectively. Biological accumulation coefficient also showed the same trend as the BCF. In all the treatments, the translocation factor was >1. Therefore, it was demonstrated that milk thistle had high potential for transferring Cd from root to shoot and reducing its concentration in the soil. Moreover, the study revealed that milk thistle had high potential for absorbing Cd in the soil contaminated with Cd and DO.  相似文献   

20.
A field study on phytoremediation of hydrocarbon contaminated soil was designed to assess the effects of organic manures (poultry droppings and cassava peels) and NPK fertilization on the potentials of cowpea (Vigina unguiculata) and maize (Zea mays) to stimulate hydrocarbon degradation in soil. Cowpea and maize crops were established on the hydrocarbon contaminated soil amended with three rates (0, 4, and 8 ton/ha) of the soil amendments, and arranged in 3 x 3 x 3 factorial in Randomized Complete Block Design. Hydrocarbon was significantly (P < 0.05) reduced in plots treated with the combined forms of the soil amendments. While the treatment combinations of 8 t/ha Poultry Droppings (PD) + 8 t/ha Cassava Peels (CP) + 4 t/ha NPK fertilizer was optimal for hydrocarbon degradation in the cowpea plots, 4 t/ha PD + 8 t/ha CP + 8 t/ha NPK fertilizer was the most preferred in the maize plot. Cowpea showed greater potential for hydrocarbon degradation at the first year. The mean values of hydrocarbon concentrations at the cowpea and maize plots indicated no significant difference at the second year. Grain yield of cowpea increased by 87% at the second year, while maize was unable to grow to maturity in the first year.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号