首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
本实验研究了小菜蛾Plutella xylostella L.高抗Cry1Ac种群DBM1Ac-R(抗性倍数大于1000)及敏感种群DBM1Ac-S的生长发育、繁殖等生物特征情况,组建了两种群的生命表,并对其适合度进行了研究。结果表明,DBM1Ac-R的产卵量、卵历期、孵化率和化蛹率、蛹重及雌雄比(♀:♂),均显著低于DBM1Ac-S。DBM1Ac-R相对于DBM1Ac-S的相对适合度为0.5762,表明Cry1Ac抗性种群在繁殖能力上存在明显的生存劣势。  相似文献   

2.
为了监测南疆主要Bt棉区棉铃虫田间种群对Bt棉的抗性频率,分别采集库尔勒、阿克苏、泽普三地的棉铃虫单雌系,以Bt毒蛋白作为人工饲料,采用单雌系F1代法进行棉铃虫田间种群抗性个体检测.本文从库尔勒、阿克苏、泽普三地分别筛选了57个、106个、92个棉铃虫单雌系.三地棉铃虫单雌系幼虫在正常饲料和Cry1Ac饲料上的平均发育级别呈线性相关,相对平均发育级别平均值分别为0.5210、0.4935、0.4623,无≥0.8的个体,估测南疆三地棉铃虫种群的Bt抗性基因频率均小于0.001.泽普玉米种植比例较高,可有效稀释棉铃虫种群的Bt抗性基因,因此泽普的棉铃虫种群敏感度最高.本研究可为新疆Bt棉区棉铃虫的抗性治理提供科学依据.  相似文献   

3.
采用浸叶法测定了2003年秋季、2004年春季采自广东惠州、福建福州、浙江杭州和江苏南京的小菜蛾Plutella xylostella田间种群对Cry1Aa、Cry1Ab、Cry1Ac和Cry2Aa以及Bt制剂kurstaki亚种 (Bacillus thuringiensis subsp. kurstaki, Btk)的抗性水平。与敏感品系PHI-S相比,广东惠州田间小菜蛾种群的抗性水平最高,其对Cry1Ab和Cry1Ac的抗性分别达到了168和120倍,均为高抗水平; 对Btk制剂的抗性有47倍,达到了中抗水平;对Cry1Aa和Cry2Aa具有低水平抗性 (分别为5.8和5.6倍)。福建福州、浙江杭州和江苏南京田间小菜蛾种群抗性水平相近,对Cry1Ab和Cry1Ac具有低至中等水平抗性 (8~28倍),对Btk制剂具有低水平抗性 (3.5~7倍),对Cry1Aa和Cry2Aa还没有产生明显抗性。因此,在我国东南沿海地区要注意Btk制剂与Bt其他亚种制剂或其他生物杀虫剂轮换使用,以减小Bt制剂对小菜蛾的选择压力,延缓小菜蛾对Bt抗性的发展。  相似文献   

4.
【背景】转Bt基因抗虫棉已经在我国进行了近20年的大规模商业化种植,产生了显著的经济和环境效益。但是,靶标害虫棉铃虫的抗性是转Bt基因抗虫棉产业健康发展所面临的最大问题,而抗性监测是解决这一问题的必要管理措施。盐城市是江苏省转基因抗虫棉的主产区,但有关该地区棉铃虫对转Bt基因抗虫棉的抗性基因频率未见报道。【方法】于2012年在盐城三龙镇和东台镇棉区采集田间棉铃虫种群,检测了初孵幼虫对花铃期转Bt基因抗虫棉中30幼嫩叶片的敏感性,用区分剂量法检测了2龄幼虫对Bt蛋白的抗性基因频率。【结果】取食转Bt基因抗虫棉叶片后,棉铃虫初孵幼虫在9 d内全部死亡;三龙镇和东台镇棉铃虫2龄幼虫对Bt蛋白的抗性基因频率分别为7.6×10-3和6.9×10-3。【结论与意义】目前,盐城棉区的棉铃虫对转Bt基因抗虫棉仍保持很高的敏感性,棉铃虫种群对Bt蛋白的抗性基因频率没有发生显著变化,但仍需持续监测。  相似文献   

5.
随着转基因棉花种植面积的日益增加,棉铃虫Helicoverpa armigera(Hübner)对Bt的抗性已经成为一个不容忽视的问题。发展转多价基因作物是当前缓解害虫对Bt抗性的最有效措施。本研究以经室内多年筛选的、抗性倍数达2 000多倍的Bt杀虫剂(含多种蛋白)抗性品系为材料,通过生物测定和不同的杂交试验,测定棉铃虫对Bt杀虫剂的抗性遗传方式,以期为Bt生物农药的抗性治理提供一定的依据,同时为制定棉铃虫对转多基因作物的抗性治理策略提供一定的参考。对敏感亲本和抗性亲本杂交产生的F1代的研究结果表明,杂交品系的抗性倍数分别为22.2倍和24.6倍;抗性显性度D值均小于0,分别为-0.20和-0.17,抗性为常染色体不完全隐性遗传。对4种回交后代和2种自交后代F2的研究结果表明,实际死亡率与期望死亡率差异较大,说明抗性是由单基因多个位点或多基因控制。  相似文献   

6.
棉铃虫田间种群Bt毒素Cry1Ac抗性基因频率的估算   总被引:7,自引:0,他引:7  
采用改进的F1筛查法检测了2005年采自华北地区的棉铃虫Helicoverpa armigera (Hübner)田间种群对Bt毒素Cry1Ac的抗性基因频率。2005年从河南安阳和河北沧县转Bt基因抗虫棉上采集二代棉铃虫卵,在室内用人工饲料饲养至2龄幼虫,用1 μg/cm2 的Cry1Ac活化毒素进行初筛,将初筛存活成虫与室内筛选的GYBT抗性品系成虫进行单对杂交,并用区分剂量(2.5 μg/cm2)对F1代进行检测。经检测,2005年河南安阳棉铃虫种群和河北沧县棉 铃虫种群对Cry1Ac抗性基因频率基本一致,分别为1.4×10-3和1.5×10-3。用毒素涂表法测定了2004、2005年采自河南安阳、河北高阳、河北沧县、新疆阿克苏和新疆沙湾棉铃虫田间种群对Cry1Ac活化毒素的敏感性水平,结果表明华北棉区与新疆内陆棉区棉铃虫种群对Cry1Ac的敏感性存在一定的地区性差异(<8倍)。总体上,我国华北棉区棉铃虫种群对Cry1Ac还未产生明显抗性,抗性基因频率处于正常水平。棉铃虫对转Bt基因抗虫棉的抗性风险依然存在,需要尽快启动全国性的早期抗性检测和预警工作。  相似文献   

7.
棉铃虫对Bt生物农药早期抗性及与转Bt基因棉抗虫性的关系   总被引:19,自引:0,他引:19  
用饲料感染法建立了棉铃虫Helicoverpa rmigera(Hubmer)敏感品系(SUS1)对Bt生物农药的敏感毒力基线和区分剂量,1995年测定了五省六县棉铃虫初孵幼虫对Bt生物农药的敏感性,结果表明:山东阳谷、河北邯郸、河南新乡、安徽萧县及江苏丰县棉铃虫已产生早期抗性,抗性个体百分率为5%~10%,与敏感品系相比,LC50值稍有增加,但斜率b值明显变小;而江苏东台棉铃虫仍属敏感。这是国内外首次诊测到棉铃虫对Bt生物农药抗性。用棉叶喂饲法测定比较了转Bt基因棉花品系对不同种群棉铃虫的抗虫性效果,结果表明:用早期抗性的阳谷和新乡棉铃虫初孵幼虫接虫5d后平均死亡率较敏感品系下降16%~29%,说明棉铃虫对Bt农药与转Bt生物基因棉花品系间存在交互抗性。还讨论了Bt农药的抗性治理对策。  相似文献   

8.
棉铃虫对Bt生物农药早期抗性及与转Bt基因棉抗虫性的关系   总被引:19,自引:3,他引:16  
用饲料感染法建立了棉铃虫Helicoverpa rmigera(Hubmer)敏感品系(SUS1)对Bt生物农药的敏感毒力基线和区分剂量,1995年测定了五省六县棉铃虫初孵幼虫对Bt生物农药的敏感性,结果表明:山东阳谷、河北邯郸、河南新乡、安徽萧县及江苏丰县棉铃虫已产生早期抗性,抗性个体百分率为5%~10%,与敏感品系相比,LC50值稍有增加,但斜率b值明显变小;而江苏东台棉铃虫仍属敏感。这是国内外首次诊测到棉铃虫对Bt生物农药抗性。用棉叶喂饲法测定比较了转Bt基因棉花品系对不同种群棉铃虫的抗虫性效果,结果表明:用早期抗性的阳谷和新乡棉铃虫初孵幼虫接虫5d后平均死亡率较敏感品系下降16%~29%,说明棉铃虫对Bt农药与转Bt生物基因棉花品系间存在交互抗性。还讨论了Bt农药的抗性治理对策。  相似文献   

9.
小菜蛾Plutella xylostella(L.)是为害十字花科蔬菜的一种重要的世界性害虫,由于其分布范围广、繁殖速度快、抗性水平高,已经成为最难防治的害虫之一。基于苏云金芽胞杆菌Bacillus thuringiensis(Bt)开发的杀虫剂在小菜蛾生物防治中发挥重要的作用,但小菜蛾作为在田间最早对Bt产生抗性的害虫,其抗性发展及抗性机理也引起了全世界的广泛关注。本文概述了小菜蛾的发生危害及其抗药性的研究动态、苏云金芽胞杆菌的起源、发展及应用,分析了小菜蛾对Bt杀虫毒素产生抗药性及其抗性机理,并从抗性发展风险、转基因油菜种植和进一步深入开展抗性机理的研究三个方面进行了展望,以期为优化小菜蛾抗药性的治理策略、提高生物农药和Bt作物的控害效能提供借鉴和参考。  相似文献   

10.
棉铃虫对转Bt基因抗虫棉花的抗性机制及治理   总被引:2,自引:0,他引:2  
棉铃虫是危害棉花最严重的害虫之一. 作为生物技术产品, 转Bt杀虫基因棉花产生的Cry毒素对棉铃虫有高效毒杀作用. Bt棉花已在世界范围内商业化种植, 通过有效控制棉铃虫种群数量, 而显著减少了化学农药的用量. 尽管没有发现棉铃虫田间种群对Bt棉花产生高水平抗性, 但室内持续筛选已培育出多个高水平抗性品系, 表明存在棉铃虫对Bt棉花产生抗性的风险. 鉴于棉铃虫对Bt棉花产生抗性可能对Bt棉花利用价值的影响, 国内外近10年来对此进行了系统深入地研究. 本文综述了棉铃虫对Bt棉花抗性的生物化学和分子机制、抗性治理与监测技术的最新研究进展, 并分析了中国、澳大利亚和印度等国家棉铃虫对Bt棉花的抗性治理策略.  相似文献   

11.
A field population (SZ) of Plutella xylostella, collected from the cabbage field in Shenzhen, Guangdong Province of China in 2002, showed 2.3-fold resistance to Cry1Aa, 110-fold to Cry1Ab, 30-fold to Cry1Ac, 2.1-fold to Cry1F, 5.3-fold to Cry2Aa and 6-fold resistance to Bacillus thuringiensis var. kurstaki (Btk) compared with a susceptible strain (ROTH). The SZBT strain was derived from the SZ population through 20 generations of selection with activated Cry1Ac in the laboratory. While the SZBT strain developed 1200-fold resistance to Cry1Ac after selection, resistance to Cry1Aa, Cry1Ab, Cry1F, and Btk increased to 31-, 1900-,>33- and 17-fold compared with the ROTH strain. However, little or no cross-resistance was detected to Cry1B, Cry1C and Cry2Aa in the SZBT strain. Genetic cross analyses between the SZBT and ROTH strains revealed that Cry1Ac-resistance in the SZBT strain was controlled by a single, autosomal, incompletely recessive gene. Binding studies with 125I-labeled Cry1Ac showed that the brush border membrane vesicles (BBMVs) of midguts from the resistant SZBT insects had lost binding to Cry1Ac. Allelic complementation tests demonstrated that the major Bt resistance locus in the SZBT strain was same as that in the Cry1Ac-R strain which has “mode 1” resistance to Bt. An F1 screen of 120 single-pair families between the SZBT strain and three field populations collected in 2008 was carried out. Based on this approach, the estimated frequencies of Cry1Ac-resistance alleles were 0.156 in the Yuxi population from Yunnan province, and 0.375 and 0.472 respectively in the Guangzhou and Huizhou populations from Guangdong province.  相似文献   

12.
Abstract:  To monitor the resistance of field populations of the diamondback moth Plutella xylostella in China to the insecticidal protein Cry1Ac, Cry1Ba and commercial formulation Bacillus thuringiensis var. kurstaki (Btk), six representative populations of the diamondback moth were collected from Shanghai, Shandong, Hubei, Hunan, Zhejiang and Guangdong provinces of China where crucifer crop plants are intensively planted. Bioassay results showed that the populations of the diamondback moth from different locations exhibited different levels of resistance, compared with a susceptible laboratory population. The Guangdong field population was 56.15- and 21.90-fold resistant to Cry1Ac and Btk, respectively. Shanghai, Hunan, Shandong and Zhejiang populations were 37.85-, 17.24-, 10.24- and 9.41-fold resistant to Cry1Ac, respectively, but were not resistant to Btk. The Hubei population did not show resistance to Cry1Ac and Btk. Almost all tested populations were susceptible to Cry1Ba, but the Guangdong population showed some tolerance to Cry1Ba with a LC50 of 0.69  μ g/ml which was 6.17-fold higher than that of the susceptible population. The results suggested that the complex resistance patterns of field populations of P. xylostella need to be considered for expression of Bt toxin genes in genetically-engineered crop plants and commercial formulations.  相似文献   

13.
This study was undertaken to determine the effects of pyramiding two Bacillus thuringiensis (Bt) genes in the same plant on the production of Bt proteins and the control of diamondback moths (DBM, Plutella xylostella) resistant to one or the other protein. Broccoli lines carrying both cry1Ac and cry1C Bt genes were produced by sexual crosses of cry1Ac- and cry1C-transgenic plants. Plants containing both genes were selected by tests for resistance to kanamycin and hygromycin, and confirmed by PCR analysis for the Bt genes. Both cry1Ac and cry1C mRNAs were detected in the hybrid lines, and Cry1Ac and Cry1C proteins were stably produced at levels comparable to the parental plants. Plants producing both Cry1Ac and Cry1C proteins caused rapid and complete mortality of DBM larvae resistant to Cry1A or Cry1C, and suffered little or no leaf damage. These plants, in combination with the resistant DBM populations available, will allow greenhouse or field studies of resistance management strategies involving gene pyramiding.  相似文献   

14.
Evolution of resistance in pests threatens the long-term efficacy of insecticidal proteins from Bacillus thuringiensis (Bt) used in sprays and transgenic crops. Previous work showed that genetically modified Bt toxins Cry1AbMod and Cry1AcMod effectively countered resistance to native Bt toxins Cry1Ab and Cry1Ac in some pests, including pink bollworm (Pectinophora gossypiella). Here we report that Cry1AbMod and Cry1AcMod were also effective against a laboratory-selected strain of pink bollworm resistant to Cry2Ab as well as to Cry1Ab and Cry1Ac. Resistance ratios based on the concentration of toxin killing 50% of larvae for the resistant strain relative to a susceptible strain were 210 for Cry2Ab, 270 for Cry1Ab, and 310 for Cry1Ac, but only 1.6 for Cry1AbMod and 2.1 for Cry1AcMod. To evaluate the interactions among toxins, we tested combinations of Cry1AbMod, Cry1Ac, and Cry2Ab. For both the resistant and susceptible strains, the net results across all concentrations tested showed slight but significant synergism between Cry1AbMod and Cry2Ab, whereas the other combinations of toxins did not show consistent synergism or antagonism. The results suggest that the modified toxins might be useful for controlling populations of pink bollworm resistant to Cry1Ac, Cry2Ab, or both.  相似文献   

15.
Two populations of Trichoplusia ni that had developed resistance to Bacillus thuringiensis sprays (Bt sprays) in commercial greenhouse vegetable production were tested for resistance to Bt cotton (BollGard II) plants expressing pyramided Cry1Ac and Cry2Ab. The T. ni colonies resistant to Bacillus thuringiensis serovar kurstaki formulations were not only resistant to the Bt toxin Cry1Ac, as previously reported, but also had a high frequency of Cry2Ab-resistant alleles, exhibiting ca. 20% survival on BollGard II foliage. BollGard II-resistant T. ni strains were established by selection with BollGard II foliage to further remove Cry2Ab-sensitive alleles in the T. ni populations. The BollGard II-resistant strains showed incomplete resistance to BollGard II, with adjusted survival values of 0.50 to 0.78 after 7 days. The resistance to the dual-toxin cotton plants was conferred by two genetically independent resistance mechanisms: one to Cry1Ac and one to Cry2Ab. The 50% lethal concentration of Cry2Ab for the resistant strain was at least 1,467-fold that for the susceptible T. ni strain. The resistance to Cry2Ab in resistant T. ni was an autosomally inherited, incompletely recessive monogenic trait. Results from this study indicate that insect populations under selection by Bt sprays in agriculture can be resistant to multiple Bt toxins and may potentially confer resistance to multitoxin Bt crops.  相似文献   

16.
A synthetic Bacillus thuringiensis (Bt) cry1C gene was introduced into broccoli (Brassica oleracea ssp. italica) by Agrobacterium-mediated transformation. Twenty-one Cry1C transgenic plants were regenerated from 400 hypocotyl and petiole explants. Variable amounts of stable steady- state cry1C mRNA accumulated in different transgenic plants. Cry1C protein (up to 0.4% of total soluble protein) was produced in correlation with the cry1C mRNA levels. Leaf section and whole-plant bioassays were done using diamondback moth (DBM) larvae from lines susceptible to Bt or resistant to Cry1A or Cry1C proteins (Cry1AR or Cry1CR, respectively). Plants with high levels of Cry1C protein caused rapid and complete mortality of all three types of DBM larvae with no defoliation. Plants with lower levels of Cry1C protein showed an increasing differential between control of susceptible of Cry1AR DBM. This study demonstrated that high production of Cry1C protein can protect transgenic broccoli not only from susceptible or Cry1AR DBM larvae but also from DBM selected for moderate levels of resistance of Cry1C. The Cry1C- transgenic broccoli were also resistant to two other lepidopteran pests of crucifers (cabbage looper and imported cabbage worm). These plants will be useful in studies of resistance management strategies involving multiple transgenes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

17.
Genetically engineered cotton and corn plants producing insecticidal Bacillus thuringiensis (Bt) toxins kill some key insect pests. Yet, evolution of resistance by pests threatens long-term insect control by these transgenic Bt crops. We compared the genetic basis of resistance to Bt toxin Cry1Ac in two independently derived, laboratory-selected strains of a major cotton pest, the pink bollworm (Pectinophora gossypiella [Saunders]). The Arizona pooled resistant strain (AZP-R) was started with pink bollworm from 10 field populations and selected with Cry1Ac in diet. The Bt4R resistant strain was started with a long-term susceptible laboratory strain and selected first with Bt cotton bolls and later with Cry1Ac in diet. Previous work showed that AZP-R had three recessive mutations (r1, r2, and r3) in the pink bollworm cadherin gene (PgCad1) linked with resistance to Cry1Ac and Bt cotton producing Cry1Ac. Here we report that inheritance of resistance to a diagnostic concentration of Cry1Ac was recessive in Bt4R. In interstrain complementation tests for allelism, F(1) progeny from crosses between AZP-R and Bt4R were resistant to Cry1Ac, indicating a shared resistance locus in the two strains. Molecular analysis of the Bt4R cadherin gene identified a novel 15-bp deletion (r4) predicted to cause the loss of five amino acids upstream of the Cry1Ac-binding region of the cadherin protein. Four recessive mutations in PgCad1 are now implicated in resistance in five different strains, showing that mutations in cadherin are the primary mechanism of resistance to Cry1Ac in laboratory-selected strains of pink bollworm from Arizona.  相似文献   

18.
In susceptible lepidopteran insects, aminopeptidase N and cadherin-like proteins are the putative receptors for Bacillus thuringiensis (Bt) toxins. Using phage display, we identified a key epitope that is involved in toxin-receptor interaction. Three different scFv molecules that bind Cry1Ab toxin were obtained, and these scFv proteins have different amino acid sequences in the complementary determinant region 3 (CDR3). Binding analysis of these scFv molecules to different members of the Cry1A toxin family and to Escherichia coli clones expressing different Cry1A toxin domains showed that the three selected scFv molecules recognized only domain II. Heterologous binding competition of Cry1Ab toxin to midgut membrane vesicles from susceptible Manduca sexta larvae using the selected scFv molecules showed that scFv73 competed with Cry1Ab binding to the receptor. The calculated binding affinities (K(d)) of scFv73 to Cry1Aa, Cry1Ab, and Cry1Ac toxins are in the range of 20-51 nm. Sequence analysis showed this scFv73 molecule has a CDR3 significantly homologous to a region present in the cadherin-like protein from M. sexta (Bt-R(1)), Bombyx mori (Bt-R(175)), and Lymantria dispar. We demonstrated that peptides of 8 amino acids corresponding to the CDR3 from scFv73 or to the corresponding regions of Bt-R(1) or Bt-R(175) are also able to compete with the binding of Cry1Ab and Cry1Aa toxins to the Bt-R(1) or Bt-R(175) receptors. Finally, we showed that synthetic peptides homologous to Bt-R(1) and scFv73 CDR3 and the scFv73 antibody decreased the in vivo toxicity of Cry1Ab to M. sexta larvae. These results show that we have identified the amino acid region of Bt-R(1) and Bt-R(175) involved in Cry1A toxin interaction.  相似文献   

19.
A population of cabbage looper, Trichoplusia ni (Hübner), collected from commercial greenhouses in the lower mainland of British Columbia, Canada, in 2001 showed a resistance level of 24-fold to Dipel, a product of Bacillus thuringiensis (Bt) subspecies kurstaki. This population was selected with Cry1Ac, the major Bt Cry toxin in Dipel, to obtain a homogenous population resistant to Cry1Ac. The resulting strain of T. ni, named GLEN-Cry1Ac, was highly resistant to Cry1Ac with a resistance ratio of approximately 1000-fold. The larvae from the GLEN-Cry1Ac strain could survive on Cry1Ac-expressing transgenic broccoli plants that were highly insecticidal to T. ni and diamondback moth, Plutella xylostella (L.). The inheritance of Cry1Ac resistance in this T. ni strain was autosomal and incompletely recessive. The degree of dominance of the resistance was -0.402 and -0.395, respectively, for the neonates in reciprocal crosses between the GLEN-Cry1Ac and a laboratory strain of T. ni. Using chi2 goodness-of-fit test, we demonstrated that the inhibition of larval growth resulting from testing 12 toxin doses in the progeny of the backcross fit the predicted larval responses based on a monogenic inheritance model. Therefore, we conclude that the inheritance of the resistance to Cry1Ac in the T. ni larvae is monogenic.  相似文献   

20.
Glasshouse and laboratory experiments were conducted to evaluate the relative fitness of Cry1A-susceptible and laboratory-selected resistant strains of Helicoverpa armigera (Hübner). Life history parameters of H. armigera larvae feeding on young cotton plants showed a significant developmental delay of up to 7 d for the resistant strain compared with the susceptible strain on non-Bacillus thuringiensis (Bt) cotton. This fitness cost was not evident on artificial diet. There was no developmental delay in the F1 hybrid progeny from the reciprocal backcross of the resistant and susceptible strains, indicating that the fitness cost is recessive. In two cohorts tested, survival to pupation of resistant larvae on Bt cotton expressing Cry1Ac was 54 and 51% lower than on non-Bt cotton, whereas all susceptible and F1 larvae tested on Cry1Ac cotton were killed. Mortality of susceptible larvae occurred in the first or second instar, whereas the F1 larvae were able to develop to later instars before dying, demonstrating that resistance is incompletely recessive. The intrinsic rate of increase was reduced by >50% in the resistant strain on Cry1Ac cotton compared with the susceptible strain on non-Bt cotton. There was a significant reduction in the survival of postdiapausal adults from the resistant strain and the F1 strains, indicating that there is a nonrecessive overwintering cost associated with Cry1A resistance in H. armigera.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号