首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Cadmium is a well known environmental toxicant and carcinogen. To identify proteins involved in cellular adaptive responses to cadmium, we established cadmium-adapted U937 cells that exhibit resistance to cadmium-induced apoptosis, and we performed comparative proteome analysis of these cells with parental cells that were either untreated or treated with cadmium. Newly identified proteins that were changed in expression level in both adapted cells and cadmium-treated parental cells included proteins implicated in cell proliferation and malignant transformation. Most interesting, a calcium-binding protein calbindin-D(28k) was increased only in the adapted cells but not in cadmium-exposed parental cells. The level of calbindin-D(28k) increased by the degree of cadmium adaptation and was stably maintained without selective pressure of cadmium. Cadmium-adapted U937 cells were resistant to the toxic effects of cytosolic calcium rise by cadmium treatment and by depletion of intracellular calcium stores, suggesting that enhanced calcium buffering by up-regulated calbindin-D(28k) may be responsible for acquiring resistance to cadmium-induced apoptosis. We demonstrated that overexpression of calbindin-D(28k) in MN9D neuronal cells resulted in reduced cadmium-induced apoptosis. Our study documents for the first time that cells respond to long term cadmium exposure by increasing calbindin-D(28k) expression, thereby attenuating cadmium-induced apoptosis.  相似文献   

2.
Analysis of rat vitamin D-dependent calbindin-D28k gene expression   总被引:7,自引:0,他引:7  
We report the use of a cloned cDNA for mammalian calbindin-D28k (28-kDa vitamin D-dependent calcium-binding protein) to study the expression of the rat calbindin gene. Tissue distribution studies, using Northern analysis, indicated that calbindin-D28k-mRNA is detected in rat kidney and brain but is not detected in rat intestine, testes, bone, pancreas, liver, lung, or skeletal muscle. Both rat kidney and brain contain three RNA species (1.9, 2.8, and 3.2 kilobase pairs). The regulation of the gene was characterized by both Northern and slot blot analysis. Hormonal regulation, developmental expression of calbindin-D28k-mRNA, and the effect of dietary alteration were examined. In the kidney all three species of mRNA were dependent on the presence of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) for their induction. The time course of induction of renal calbindin-D28k-mRNA indicated that a significant increase in calbindin-D-mRNA was detectable as early as 2 h following a single injection of 1,25-(OH)2D3 (200 ng/100 g of body weight), reaching a maximum at 12 h. Unlike the kidney high levels of calbindin-D28k-mRNA were observed in the brain of vitamin D-deficient rats. The concentration of calbindin-D28k-mRNA in brain was unchanged after 1,25-(OH)2D3 administration. Developmental studies indicated that calbindin-D-mRNA in rat kidney and brain is present prior to birth but is developmentally regulated in a tissue-specific manner. The most pronounced changes in the abundance of renal calbindin-D28k-mRNA occur between birth and 1 week of age. Unlike the kidney a large increase in brain calbindin-D28k-mRNA occurs at a later time, between 1 and 2 weeks of age (the period of major synapse formation). In dietary alteration studies results of Northern blot analysis indicate that low dietary phosphorus results in increased calbindin-D-mRNA in kidney but not in brain. These studies represent the first analysis of the rat calbindin-D28k gene and its regulation in vivo. Our findings suggest that in rat kidney and brain there are significant differences both in the expression of the gene for calbindin-D28k and its regulation by 1,25-(OH)2D3.  相似文献   

3.
4.
We have used specific cDNAs to the rat vitamin D receptor (VDR) and to the mammalian vitamin D-dependent calcium-binding proteins (calbindin-D9k in intestine and calbindin-D28k in kidney) in order to obtain a better understanding of the regulation of the VDR gene and its relationship to calbindin gene expression. Hormonal regulation and development expression of the rat VDR gene were characterized by both Northern and slot blot analyses. Administration of 1,25-dihydroxyvitamin D3 (1,25(OH)2D3; 25 ng/day for 7 days) to vitamin D-deficient rats resulted in an increase in calbindin mRNA in intestine and kidney but no change in VDR mRNA in these tissues. Vitamin D-deficient rats responded to dexamethasone treatment (100 micrograms/100 g of body weight/day for 4 days) with a 2.5-fold increase in intestinal VDR mRNA which was accompanied by a 4-fold decrease in intestinal calbindin-D9k mRNA. Developmental studies indicated a pronounced increase in renal VDR mRNA and calbindin-D28k mRNA between birth and 1 week of age. In the intestine, an induction of VDR and calbindin-D9k gene expression was observed at a later time, during the 3rd postnatal week (the period of increased duodenal active transport of calcium). Taken collectively, our data indicate that in the adult rat, target tissue response to hormone is not modified by a corresponding alteration in new receptor synthesis. However, developmental studies indicate that the induction of 1,25(OH)2D3 receptor mRNA is correlated with the induction of calbindin gene expression. Our results also demonstrate that glucocorticoid administration can result in an alteration in intestinal calbindin and VDR gene expression.  相似文献   

5.
Neuronal systems for calcium homeostasis are crucial for neuronal development and function and may also contribute to selective neuronal vulnerability in adverse conditions such as exposure to excitatory amino acids or anoxia, and in neurodegenerative diseases. Previous work demonstrated the presence and differential distribution of calcium-binding proteins in the CNS. We now report that a subpopulation of neurons in dissociated cell cultures of embryonic rat hippocampus expresses calbindin-D28k (Mr 28,000 calcium-binding protein) immunoreactivity and that these neurons are relatively resistant to neurotoxicity induced by either glutamate or calcium ionophore. Direct comparisons of dynamic aspects of intracellular calcium levels and calbindin-D28k immunoreactivity in the same neurons revealed that calbindin-D28k-positive neurons were better able to reduce free intracellular calcium levels than calbindin-D28k-negative neurons. These findings indicate that the differential expression of calbindin-D28k in hippocampal neurons occurs early in development and may be one determinant of selective neuronal vulnerability to excitotoxic insults.  相似文献   

6.
Bmp4 is a downstream gene of Msx1 in early mouse tooth development. In this study, we introduced the Msx1-Bmp4 transgenic allele to the Msx1 mutants in which tooth development is arrested at the bud stage in an effort of rescuing Msx1 mutant tooth phenotype in vivo. Ectopic expression of a Bmp4 transgene driven by the mouse Msx1promoter in the dental mesenchyme restored the expression of Lef-1 and Dlx2 but neither Fgf3 nor syndecan-1 in the Msx1 mutant molar tooth germ. The mutant phenotype of molar but not incisor could be partially rescued to progress to the cap stage. The Msx1-Bmp4 transgene was also able to rescue the alveolar processes and the neonatal lethality of the Msx1 mutants. In contrast, overexpression of Bmp4 in the wild type molar mesenchyme down-regulated Shh and Bmp2 expression in the enamel knot, the putative signaling center for tooth patterning, but did not produce a tooth phenotype. These results indicate that Bmp4 can bypass Msx1 function to partially rescue molar tooth development in vivo, and to support alveolar process formation. Expression of Shh and Bmp2 in the enamel knot may not represent critical signals for tooth patterning.  相似文献   

7.
Muscle segment homeobox 2 (MSX2) has been confirmed to be involved in the regulation of early tooth development. However, the role of MSX2 has not been fully elucidated in enamel development. To research the functions of MSX2 in enamel formation, we used a Msx2−/− (KO) mouse model with no full Msx2 gene. In the present study, the dental appearance and enamel microstructure were detected by scanning electron microscopy and micro-computed tomography. The results showed that the absence of Msx2 resulted in enamel defects, leading to severe tooth wear in KO mice. To further investigate the mechanism behind the phenotype, we performed detailed histological analyses of the enamel organ in KO mice. We discovered that ameloblasts without Msx2 could secrete a small amount of enamel matrix protein in the early stage. However, the enamel epithelium occurred squamous epithelial hyperplasia and partial keratinization in the enamel organ during subsequent developmental stages. Ameloblasts depolarized and underwent pyroptosis. Overall, during the development of enamel, MSX2 affects the formation of enamel by regulating the function of epithelial cells in the enamel organ.  相似文献   

8.
Dihydropyrimidinase-related protein 4 (Dpysl4) is a known regulator of hippocampal neuron development. Here, we report that Dpysl4 is involved in growth regulation, polarization and differentiation of dental epithelial cells during tooth germ morphogenesis. A reduction in Dpysl4 gene expression in the tooth germ produced a loss of ameloblasts, resulting in the decrease of synthesis and secretion of enamel. The inhibition of Dpysl4 gene expression led to promotion of cell proliferation of inner enamel epithelial cells and inhibition of the differentiation of these cells into pre-ameloblasts, which was confirmed by analyzing cell polarization, columnar cell structure formation and the expression of ameloblast marker genes. By contrast, overexpression of Dpysl4 in dental epithelial cells induces inhibition of growth and increases the expression of the inner enamel epithelial cell marker gene, Msx2. These findings suggest that Dpysl4 plays essential roles in tooth germ morphogenesis through the regulation of dental epithelial cell proliferation, cell polarization and differentiation.  相似文献   

9.
BMP4 rescues a non-cell-autonomous function of Msx1 in tooth development   总被引:6,自引:0,他引:6  
The development of many organs depends on sequential epithelial-mesenchymal interactions, and the developing tooth germ provides a powerful model for elucidating the nature of these inductive tissue interactions. In Msx1-deficient mice, tooth development arrests at the bud stage when Msx1 is required for the expression of Bmp4 and Fgf3 in the dental mesenchyme (Bei, M. and Maas, R. (1998) Development 125, 4325-4333). To define the tissue requirements for Msx1 function, we performed tissue recombinations between wild-type and Msx1 mutant dental epithelium and mesenchyme. We show that through the E14.5 cap stage of tooth development, Msx1 is required in the dental mesenchyme for tooth formation. After the cap stage, however, tooth development becomes Msx1 independent, although our experiments identify a further late function of Msx1 in odontoblast and dental pulp survival. These results suggest that prior to the cap stage, the dental epithelium receives an Msx1-dependent signal from the dental mesenchyme that is necessary for tooth formation. To further test this hypothesis, Msx1 mutant tooth germs were first cultured with either BMP4 or with various FGFs for two days in vitro and then grown under the kidney capsule of syngeneic mice to permit completion of organogenesis and terminal differentiation. Previously, using an in vitro culture system, we showed that BMP4 stimulated the growth of Msx1 mutant dental epithelium (Chen, Y., Bei, M. Woo, I., Satokata, I. and Maas, R. (1996). Development 122, 3035-3044). Using the more powerful kidney capsule grafting procedure, we now show that when added to explanted Msx1-deficient tooth germs prior to grafting, BMP4 rescues Msx1 mutant tooth germs all the way to definitive stages of enamel and dentin formation. Collectively, these results establish a transient functional requirement for Msx1 in the dental mesenchyme that is almost fully supplied by BMP4 alone, and not by FGFs. In addition, they formally prove the postulated downstream relationship of BMP4 with respect to Msx1, establish the non-cell-autonomous nature of Msx1 during odontogenesis, and disclose an additional late survival function for Msx1 in odontoblasts and dental pulp.  相似文献   

10.
Brain Cell Biology - This paper reports a double-labelling immunocytochemical study of the three calcium-binding proteins calretinin, parvalbumin, and calbindin-D28k in developing and adultMacaca...  相似文献   

11.
The murine tooth development is governed by sequential and reciprocal epithelial-mesenchymal interactions. Multiple signaling molecules are expressed in the developing tooth germ and interact each other to mediate the inductive tissue interactions. Among them are Sonic hedgehog (SHH), Bone Morphogenetic Protein-2 (BMP2) and Bone Morphogenetic Protein-4 (BMP4). We have investigated the interactions between these signaling molecules during early tooth development. We found that the expression of Shh and Bmp2 is downregulated at E12.5 and E13.5 in the dental epithelium of the Msx1 mutant tooth germ where Bmp4 expression is significantly reduced in the dental mesenchyme. Inhibition of BMP4 activity by noggin resulted in repression of Shh and Bmp2 in wild-type dental epithelium. When implanted into the dental mesenchyme of Msx1 mutants, beads soaked with BMP4 protein were able to restore the expression of both Shh and Bmp2 in the Msx1 mutant epithelium. These results demonstrated that mesenchymal BMP4 represents one component of the signal acting on the epithelium to maintain Shh and Bmp2 expression. In contrast, BMP4-soaked beads repressed Shh and Bmp2 expression in the wild-type dental epithelium. TUNEL assay indicated that this suppression of gene expression by exogenous BMP4 was not the result of an increase in programmed cell death in the tooth germ. Ectopic expression of human Bmp4 to the dental mesenchyme driven by the mouse Msx1 promoter restored Shh expression in the Msx1 mutant dental epithelium but repressed Shh in the wild-type tooth germ in vivo. We further demonstrated that this regulation of Shh expression by BMP4 is conserved in the mouse developing limb bud. In addition, Shh expression was unaffected in the developing limb buds of the transgenic mice in which a constitutively active Bmpr-IB is ectopically expressed in the forelimb posterior mesenchyme and throughout the hindlimb mesenchyme, suggesting that the repression of Shh expression by BMP4 may not be mediated by BMP receptor-IB. These results provide evidence for a new function of BMP4. BMP4 can act upstream to Shh by regulating Shh expression in mouse developing tooth germ and limb bud. Taken together, our data provide insight into a new regulatory mechanism for Shh expression, and suggest that this BMP4-mediated pathway in Shh regulation may have a general implication in vertebrate organogenesis.  相似文献   

12.
We have previously identified amelotin (AMTN) as a novel protein expressed predominantly during the late stages of dental enamel formation, but its role during amelogenesis remains to be determined. In this study we generated transgenic mice that produce AMTN under the amelogenin (Amel) gene promoter to study the effect of AMTN overexpression on enamel formation in vivo. The specific overexpression of AMTN in secretory stage ameloblasts was confirmed by Western blot and immunohistochemistry. The gross histological appearance of ameloblasts or supporting cellular structures as well as the expression of the enamel proteins amelogenin (AMEL) and ameloblastin (AMBN) was not altered by AMTN overexpression, suggesting that protein production, processing and secretion occurred normally in transgenic mice. The expression of Odontogenic, Ameloblast-Associated (ODAM) was slightly increased in secretory stage ameloblasts of transgenic animals. The enamel in AMTN-overexpressing mice was much thinner and displayed a highly irregular surface structure compared to wild type littermates. Teeth of transgenic animals underwent rapid attrition due to the brittleness of the enamel layer. The microstructure of enamel, normally a highly ordered arrangement of hydroxyapatite crystals, was completely disorganized. Tomes' process, the hallmark of secretory stage ameloblasts, did not form in transgenic mice. Collectively our data demonstrate that the overexpression of amelotin has a profound effect on enamel structure by disrupting the formation of Tomes' process and the orderly growth of enamel prisms.  相似文献   

13.
Calbindin-D(28k), acts as a modulator of depolarization induced calcium transients in the pancreatic beta cell. However, specific mechanisms have not been defined. Here we show for the first time that the calcium binding protein calbindin-D(28k) acts by affecting calcium influx through voltage-dependent calcium channels in RIN pancreatic beta cells. Whole-cell patch-clamp recordings revealed that Ca(2+) current amplitudes of calbindin-D(28k) expressing RINr1046-38 beta cells were smaller than the Ca(2+) current amplitudes in control cells in response to depolarizing pulses. The peak current was observed at +20mV and the average amplitude was approximately 50pA in the calbindin expressing cells compared to approximately 250pA in control cells. In calbindin-D(28k) expressing cells, the channels had enhanced sensitivity to Ca(2+) dependent inactivation and currents decayed much more rapidly than in control cells. The Ca(2+) channels affected by calbindin were found to have biophysical properties consistent with dihydropyridine-sensitive L-type calcium channels. In response to depolarizing concentrations of K(+), calbindin expression caused a five-fold decrease in the rate of rise of [Ca(2+)](i) and decay was slower in the calbindin expressing cells. Application of verapamil resulted in a drop in the [Ca(2+)](i) signal to pre-stimulation levels indicating that the Ca(2+) channel responsible for the depolarization evoked Ca(2+) entry, modulated by calbindin, is the L-type. Co-immunoprecipitation and GST pull-down assays indicate that calbindin-D(28k) can interact with the alpha(1) subunit of Ca(v)1.2. We thus conclude that calbindin-D(28k) can regulate calcium influx via L-type calcium channels. Our findings suggest a role for calbindin-D(28k) in the beta cell in modulating Ca(2+) influx via L-type voltage-dependent calcium channels.  相似文献   

14.
The rate of osteoblast apoptosis is a critical determinant of the rate of bone formation. Because the calcium-binding protein calbindin-D(28k) has anti-apoptotic properties in neuronal cells and lymphocytes, we searched for the presence of this protein in osteoblastic cells and investigated whether it can modify their response to proapoptotic signals. Calbindin-D(28K) was expressed at low levels in several osteoblastic cell lines and at high levels in primary cultures of murine osteoblastic cells. Transient transfection of rat calbindin-D(28k) cDNA blocked tumor necrosis factor alpha (TNFalpha)-induced apoptosis in osteoblastic MC3T3-E1 cells, as determined by cell viability and nuclear morphology of cells cotransfected with the green fluorescent protein targeted to the nucleus, whereas transfection of the empty vector had no effect. Calbindin-D(28k) levels in several stably transfected MC3T3-E1 lines were directly related to protection from TNFalpha-induced apoptosis. Purified rat calbindin-D(28k) markedly reduced the activity of caspase-3, a critical molecule for the degradation phase of apoptosis, in a cell-free assay. In addition, cell extracts from MC3T3-E1 cells expressing high levels of calbindin-D(28k) decreased caspase-3 activity, compared with extracts from vector-transfected cells. This effect was apparently unrelated to the calcium binding properties of calbindin, as chelation of calcium by EGTA or addition of other calcium-binding proteins such as calbindin-D(9k), S100, calmodulin, and osteocalcin, did not affect caspase-3 activity. Last, calbindin-D(28k) interacts with the active form of caspase-3 as demonstrated by a GST pull-down assay. These results demonstrate that calbindin-D(28k) is a biosynthetic product of osteoblasts with a role in the regulation of apoptosis. They also reveal that the antiapoptotic properties of calbindin-D(28k) may result not only from calcium buffering but also from the ability of the protein to interact with and to inhibit caspase-3 activity, a property that is independent of its calcium binding capability.  相似文献   

15.
The MSX2 homeoprotein is implicated in all aspects of craniofacial skeletal development. During postnatal growth, MSX2 is expressed in all cells involved in mineralized tissue formation and plays a role in their differentiation and function. Msx2 null (Msx2 −/−) mice display complex craniofacial skeleton abnormalities with bone and tooth defects. A moderate form osteopetrotic phenotype is observed, along with decreased expression of RANKL (TNFSF11), the main osteoclast-differentiating factor. In order to elucidate the role of such an osteopetrosis in the Msx2 −/− mouse dental phenotype, a bone resorption rescue was performed by mating Msx2 −/− mice with a transgenic mouse line overexpressing Rank (Tnfrsf11a). Msx2 −/− RankTg mice had significant improvement in the molar phenotype, while incisor epithelium defects were exacerbated in the enamel area, with formation of massive osteolytic tumors. Although compensation for RANKL loss of function could have potential as a therapy for osteopetrosis, but in Msx2 −/− mice, this approach via RANK overexpression in monocyte-derived lineages, amplified latent epithelial tumor development in the peculiar continuously growing incisor.  相似文献   

16.
17.
Rodent incisors are covered by enamel only on their labial side. This asymmetric distribution of enamel is instrumental to making the cutting edge sharp. Enamel matrix is secreted by ameloblasts derived from dental epithelium. Here we show that overexpression of follistatin in the dental epithelium inhibits ameloblast differentiation in transgenic mouse incisors, whereas in follistatin knockout mice, ameloblasts differentiate ectopically on the lingual enamel-free surface. Consistent with this, in wild-type mice, follistatin was continuously expressed in the lingual dental epithelium but downregulated in the labial epithelium. Experiments on cultured tooth explants indicated that follistatin inhibits the ameloblast-inducing activity of BMP4 from the underlying mesenchymal odontoblasts and that follistatin expression is induced by activin from the surrounding dental follicle. Hence, ameloblast differentiation is regulated by antagonistic actions of BMP4 and activin A from two mesenchymal cell layers flanking the dental epithelium, and asymmetrically expressed follistatin regulates the labial-lingual patterning of enamel formation.  相似文献   

18.
The role of the calcium-binding protein, calbindin-D(28k) in potassium/depolarization-stimulated increases in the cytosolic free Ca(2+) concentration ([Ca(2+)](i)) and insulin release was investigated in pancreatic islets from calbindin-D(28k) nullmutant mice (knockouts; KO) or wild type mice and beta cell lines stably transfected and overexpressing calbindin. Using single islets from KO mice and stimulation with 45 mM KCl, the peak of [Ca(2+)](i) was 3.5-fold greater in islets from KO mice compared with wild type islets (p < 0.01) and [Ca(2+)](i) remained higher during the plateau phase. In addition to the increase in [Ca(2+)](i) in response to KCl there was also a significant increase in insulin release in islets isolated from KO mice. Evidence for modulation by calbindin of [Ca(2+)](i) and insulin release was also noted using beta cell lines. Rat calbindin was stably expressed in betaTC-3 and betaHC-13 cells. In response to depolarizing concentrations of K(+), insulin release was decreased by 45-47% in calbindin expressing betaTC cells and was decreased by 70-80% in calbindin expressing betaHC cells compared with insulin release from vector transfected betaTC or betaHC cells (p < 0.01). In addition, the K(+)-stimulated intracellular calcium peak was markedly inhibited in calbindin expressing betaHC cells compared with vector transfected cells (225 nM versus 1,100 nM, respectively). Buffering of the depolarization-induced rise in [Ca(2+)](i) was also observed in calbindin expressing betaTC cells. In summary, our findings, using both isolated islets from calbindin-D(28k) KO mice and beta cell lines, establish a role for calbindin in the modulation of depolarization-stimulated insulin release and suggest that calbindin can control the rate of insulin release via regulation of [Ca(2+)](i).  相似文献   

19.
Wu MJ  Lai LW  Lien YH 《Life sciences》2002,71(5):559-569
Intracellular calcium plays an important role on the pathogenesis of hypoxia-induced cellular injury. Calbindin-D(28k), a cytosolic vitamin D-dependent calcium binding protein, can serve as a buffer to limit a surge in intracellular Ca2+ concentration ([Ca2+]i) induced by various stimulations. To evaluate the possible cytoprotective effect of calbindin-D(28k) against hypoxic injury in proximal tubular cells, a plasmid containing calbindin-D(28k) cDNA under the control of CMV immediate-early gene promoter was transfected into the murine proximal tubular epithelial (MCT) cells. The expression of calbindin-D(28k) in the transfected cells was verified with Northern blot analysis, Western blot analysis, and immunofluorescent staining. The non-transfected and transfected MCT cells were subjected to chemical hypoxia induced by antimycin A (10 microM) and glucose deprivation for 30-120 min. The transfection of calbindin-D(28k) reduced lactate dehydrogenase (LDH) release by 41%, 41%, 24%, and 24%, respectively, at 30, 60, 90 and 120 min after hypoxia when compared to the non-transfected cells (all p < 0.05). Cell viability after hypoxic injury was also significantly higher in transfected cells than non-transfected cells. Transfection with the plasmid without calbindin-D(28k) cDNA did not affect LDH release or cell viability after chemical hypoxic injury. [Ca+2]i was measured ratiometrically with fura-2 after exposure to chemical hypoxia. The rate of initial rise in [Ca2+]i and final [Ca+2]i at 30-120 min were significantly lowered in transfected cells. In conclusion, this study demonstrated that transfection of calbindin-D(28k) gene into MCT cells provide protective effects against chemical hypoxic injury probably through its buffering effects on [Ca+2]i.  相似文献   

20.
Enamelin is critical for proper dental enamel formation, and defects in the human enamelin gene cause autosomal dominant amelogenesis imperfecta. We used gene targeting to generate a knock-in mouse carrying a null allele of enamelin (Enam) that has a lacZ reporter gene replacing the Enam translation initiation site and gene sequences through exon 7. Correct targeting of the transgene was confirmed by Southern blotting and PCR analyses. No enamelin protein could be detected by Western blotting in the Enam-null mice. Histochemical 5-bromo-4-chloro-3-indolyl-beta-d-galactopyranoside (X-gal) staining demonstrated ameloblast-specific expression of enamelin. The enamel of the Enam(+/-) mice was nearly normal in the maxillary incisors, but the mandibular incisors were discolored and tended to wear rapidly where they contacted the maxillary incisors. The Enam(-/-) mice showed no true enamel. Radiography, microcomputed tomography, and light and scanning electron microscopy were used to document changes in the enamel of Enam(-/-) mice but did not discern any perturbations of bone, dentin, or any other tissue besides the enamel layer. Although a thick layer of enamel proteins covered normal-appearing dentin of unerupted teeth, von Kossa staining revealed almost a complete absence of mineral formation in this protein layer. However, a thin, highly irregular, mineralized crust covered the dentin on erupted teeth, apparently arising from the formation and fusion of small mineralization foci (calcospherites) in the deeper part of the accumulated enamel protein layer. These results demonstrate ameloblast-specific expression of enamelin and reveal that enamelin is essential for proper enamel matrix organization and mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号