首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
为了进一步了解2价Mg2+和1价Na+存在与否的情况下,多核酶系统对底物RNA的切割效率,构建了pGEM Coat′A,pGEM Coat′A196Rz 质粒和pGEM MDR1靶质粒.通过用SP6/T7转录试剂盒在体外转录RNA, 在无细胞系统进行切割反应,反应产物通过6%变性聚丙烯酰胺凝胶电泳,干胶、X光片曝光自显影,利用Image J 生物图像分析软件分析. 结果表明,多核酶系统的切割效率依赖于二价Mg2+的浓度,切割产物随Mg2+浓度的增加而增加,而且具有反应时间的依赖性. 在Na+浓度低于200 mmol/L且单独存在时,没有切割产物生成.相反,在Na+和Mg2+共存时,表现出Na+抑制Mg2+诱导的切割活性,切割效率明显低于Mg2+单独存在时的结果.这些结果提示,在生理环境下,Mg2+对于多核酶系统对底物的切割反应是必需的,而Na+则不是.  相似文献   

2.
金属离子和脲对白蜡虫碱性磷酸酶的影响   总被引:6,自引:0,他引:6  
赵欣平  舒畅  杨芳  刘克武  喻东 《昆虫学报》2002,45(3):318-322
各种金属离子及脲对白蜡虫Ericerus pela (Chavannes)碱性磷酸酶的活性有不同的影响。从白蜡虫雌成虫中分离纯化得到碱性磷酸酶,加入各种不同浓度的金属离子及脲测定酶的活力。一价金属离子Na+、K+、Li+对酶活力没有影响。碱土金属离子Ca2+、Mg2+、Ba2+对酶有激活作用,激活作用的大小顺序依次为Ca2+、Ba2+、Mg2+。第一过渡金属离子中,Mn2+、Co2+、Ni2+对酶有激活作用,而Zn2+、Cu2+有抑制作用。重金属离子Cd2+、Pb2+对酶有抑制作用。Ca2+激活作用表现为非竞争性激活效应。Cu2+抑制作用表现为非竞争性抑制效应。脲对碱性磷酸酶有变性失活作用,按脲浓度可分为低于3 mol/L和高于3 mol/L两种类型。低浓度的脲对白蜡虫碱性磷酸酶的活性抑制的动力学表现为混合型效应。  相似文献   

3.
研究了不同浓度的外源Ca2+对柑橘离体叶片抗寒性的影响。结果表明:10~20 mmol/L Ca2+处理能够增加柑橘可溶性糖和可溶性蛋白质的含量,提高SOD和POD的活性,同时减少膜质过氧化物丙二醛(MDA)的积累,从而提高柑橘的抗寒性。  相似文献   

4.
在自然盐碱生境下,通过测定不同月份土壤和马蔺体内主要阳离子Na+、K+、Ca2+、Mg2+的含量,研究了主要阳离子的吸收、转运变化及其在马蔺体内的分布.结果表明: 不同月份马蔺体内阳离子含量变动很大.在6月以后,随着马蔺的生长, Na+、K+、Ca2+和Mg2+4种离子在植物体内累积量逐渐增加.其中,根中Ca2+、Na+含量峰值出现在7月,分别为2.30%和0.51%,K+、Mg2+的含量峰值分别出现在9、10月,分别为0.27%和0.28%;叶片中Na+含量在7月达到最大值(0.57%);K+、Ca2+和Mg2+在8月分别达到1.30%、2.69%和0.47%.与Na+相比, 7、8月时马蔺对K+的选择吸收能力较低,但转运能力较强.马蔺对所测离子有很强的富集能力,各种离子在植物体内的含量都明显高于土壤背景值,且不同部位对离子的利用和累积能力不同,马蔺对各阳离子的累积主要集中在地上30 cm到地下40 cm范围内.马蔺地上部分平均单株K+、Na+、Ca2+和Mg2+含量分别是地下部分的9.11、4.07、0.98和2.27倍.  相似文献   

5.
张国增  白玲  宋纯鹏 《植物学报》2009,44(3):283-289
低温严重影响植物的生长, 低温刺激可引起植物细胞中Ca2+浓度迅速升高。以拟南芥(Arabidopsis thaliana) CBF1 超表达突变体为材料, 研究了低温处理时CBF1基因的表达情况及胞质Ca2+的浓度变化。结果表明, CBF1本身可受低温诱导。同时将水母发光蛋白基因转入该拟南芥突变体中并检测Ca2+的浓度变化, 发现低温刺激时突变体细胞质中Ca2+的浓度变化幅度明显高于野生型, 但液泡的胞质面两侧Ca2+的浓度变化相似。用EGTA和LaCl3处理拟南芥后, 胞质Ca2+的浓度升高被抑制, 并且CBF1突变体及对照胞质中的Ca2+浓度下降到同一水平。上述结果表明, Ca2+参与了CBF1应答低温信号的转导过程, 并且CBF1超表达突变体可能是通过提高胞质Ca2+浓度来提高植物的抗低温胁迫能力。  相似文献   

6.
利用焦锑酸盐和磷酸铅沉淀技术分别对NaHCO3胁迫条件下星星草(Puccinellia tenuiflora)根中Ca2+和Ca2+-ATPase 进行超微细胞化学定位研究, 旨在进一步探讨Ca2+在NaHCO3胁迫诱导胞内信号转导过程中的作用, 以及Ca2+-ATPase活性定位变化与NaHCO3胁迫下星星草抗盐碱能力的关系。结果表明: 在正常状态下, 根毛区细胞质内Ca2+较少, 主要位于质膜附近和液泡中, Ca2+-ATPase主要定位于质膜和液泡膜, 有一定活性。在0.448%NaHCO3胁迫下, 根毛区细胞质中Ca2+增多, 液泡中Ca2+减少, 且主要集中于液泡膜附近, 质膜和液泡膜Ca2+-ATPase活性明显升高。在1.054%NaHCO3胁迫下,细胞质中分布的Ca2+增多, 而液泡中Ca2+极少, Ca2+-ATPase活性也降低。以上结果表明, Ca2+亚细胞定位和Ca2+-ATPase活性变化在星星草响应NaHCO3胁迫的信号传递过程中具有重要作用。  相似文献   

7.
质膜Ca2+-ATPase(PMCA)是P型ATPase家族的一员,在真核细胞中主要负责信号刺激后胞内高浓度Ca2+的清除扫尾工作,并对维持静息状态下较低Ca2+浓度起着重要的调节作用.PMCA的一级结构已被确定,拓扑学结构显示,它有10个跨膜区和3个胞浆功能区.它的4个编码基因可产生4种亚型(PMCA 1~4),这些亚型在功能与分布上存在差异.PMCA的活性可被钙调蛋白等多种因素调节,这与其结构特征息息相关.近年来,PMCA已被证实与脂筏结构有一定关联,它在信号传导和细胞凋亡中的作用也成为目前科学研究的焦点.本文主要对PMCA的结构、亚型和功能的研究现状进行综述.  相似文献   

8.
盐胁迫对桑树幼苗生长、叶片水分状况和离子分布的影响   总被引:5,自引:0,他引:5  
以黑龙江省两个桑树品种(秋雨桑和泰来桑)为试验材料,研究了不同盐浓度下桑树幼苗生长、叶片水分关系和不同器官中离子的分布.结果表明:盐胁迫明显降低了桑树幼苗的植株高度和每株干物质量,且对新生叶片干质量的影响大于老叶片.随着盐胁迫的加重,两个品种桑树的叶片水势、渗透势、压力势和相对含水量明显下降,根、茎中Na+浓度明显增加,当外界NaCl浓度达到或超过150 mmol·L-1时,各器官中Na+浓度达到饱和.盐胁迫明显降低了两个品种桑树根、茎和叶片中K+ 和 Ca2+浓度,以及茎和叶片中Mg2+浓度,而对根中Mg2+浓度影响不大.Na+在根、茎和老叶中的区域化分布是两个品种桑树生长过程中表现出耐盐性的机理之一,而盐胁迫使叶片中的Ca2+、K+和Mg2+浓度降低,导致植株体内的离子亏缺,从而限制了植株的生长.  相似文献   

9.
将当年生构树幼苗置于含有不同浓度(04、1、2、3、4 g·kg-1)NaCl的土壤中,研究其生物量积累、叶片细胞质膜透性和K+、Ca2+、Na+、Cl-等离子的吸收、分布及运输,并观察盐害症状.结果表明:构树幼苗的叶片质膜透性随着NaCl浓度的增加和胁迫时间的延长而升高,根冠比随NaCl浓度的升高而增加,大于3 g·kg-1的土壤盐胁迫对构树叶片的质膜透性及植株的生物量积累影响显著.构树幼苗各器官中Na+和Cl-含量随土壤NaCl浓度升高而显著增加,K+和Ca2+则随之降低,叶片各离子含量均明显高于根和茎.说明盐胁迫影响根系对K+和Ca2+的吸收,并抑制了它们向地上部分的选择性运输,使叶和茎的K+和Ca2+含量下降.构树通过吸收积累Na+和Cl-抵御土壤盐分带来的渗透胁迫,但过量的Na+和Cl-积累会造成单盐毒害.作为抗盐性较高的非盐生植物,构树地上部分的拒盐作用不显著.  相似文献   

10.
以小兴安岭凉水自然保护区内的阔叶红松林、云冷杉林和落叶松人工林为研究对象, 于2006年3—10月, 分析了其溪流水化学特征的动态变化. 结果表明: 不同月份3种森林群落溪流水的主要阳离子含量均表现为 Ca2+>Na+>K+>Mg2+, 主要阴离子含量均为HCO3->SO42->NO3->Cl-;不同群落类型的主要离子含量影响显著, 3种森林群落溪流水中Na+、Ca2+、Mg2+、Fe2+和Fe3+平均含量为云冷杉林>落叶松人工林>阔叶红松林, 而K+为落叶松人工林>云冷杉林>阔叶红松林; 主要阴离子平均含量均以落叶松人工林溪流水中为最高.  相似文献   

11.
To clarify whether activity of the ryanodine receptor type 2 (RyR2) is reduced in the sarcoplasmic reticulum (SR) of cardiac muscle, as is the case with the ryanodine receptor type 1 (RyR1), Ca2+-dependent [3H]ryanodine binding, a biochemical measure of Ca2+-induced Ca2+ release (CICR), was determined using SR vesicle fractions isolated from rabbit and rat cardiac muscles. In the absence of an adenine nucleotide or caffeine, the rat SR showed a complicated Ca2+ dependence, instead of the well-documented biphasic dependence of the rabbit SR. In the rat SR, [3H]ryanodine binding initially increased as [Ca2+] increased, with a plateau in the range of 10–100 µM Ca2+, and thereafter further increased to an apparent peak around 1 mM Ca2+, followed by a decrease. In the presence of these modulators, this complicated dependence prevailed, irrespective of the source. Addition of 0.3–1 mM Mg2+ unexpectedly increased the binding two- to threefold and enhanced the affinity for [3H]ryanodine at 10–100 µM Ca2+, resulting in the well-known biphasic dependence. In other words, the partial suppression of RyR2 is relieved by Mg2+. Ca2+ could be a substitute for Mg2+. Mg2+ also amplifies the responses of RyR2 to inhibitory and stimulatory modulators. This stimulating effect of Mg2+ on RyR2 is entirely new, and is referred to as the third effect, in addition to the well-known dual inhibitory effects. This effect is critical to describe the role of RyR2 in excitation-contraction coupling of cardiac muscle, in view of the intracellular Mg2+ concentration. [3H]ryanodine binding; CICR; stimulation by physiological Mg2+, excitation-contraction coupling in the heart  相似文献   

12.
The interactions of L-aminoglucosidic stereoisomers such as rhodostreptomycins A (Rho A) and B (Rho B) with cations (Mg2+, Ca2+, and H+) were studied by a quantum mechanical method that utilized DFT with B3LYP/6-311G**. Docking studies were also carried out in order to explore the surface recognition properties of L-aminoglucoside with respect to Mg2+ and Ca2+ ions under solvated and nonsolvated conditions. Although both of the stereoisomers possess similar physicochemical/antibiotic properties against Helicobacter pylori, the thermochemical values for these complexes showed that its high affinity for Mg2+ cations caused the hydration of Rho B. According to the results of the calculations, for Rho A–Ca2+(H2O)6, ΔH = ?72.21 kcal?mol?1; for Rho B–Ca2+(H2O)6, ΔH = ?72.53 kcal?mol?1; for Rho A–Mg2+(H2O)6, ΔH = ?72.99  kcal?mol?1 and for Rho B–Mg2+(H2O)6, ΔH = ?95.00  kcal?mol?1, confirming that Rho B binds most strongly with hydrated Mg2+, considering the energy associated with this binding process. This result suggests that Rho B forms a more stable complex than its isomer does with magnesium ion. Docking results show that both of these rhodostreptomycin molecules bind to solvated Ca2+ or Mg2+ through hydrogen bonding. Finally, Rho B is more stable than Rho A when protonation occurs.
Figure
Rho B–H showed higher stability since it is considered a proton pump inhibitor, and is therefore a stronger inhibitor of Helicobacter pylori  相似文献   

13.
The effects of mono- and divalent ions onCa2+-gated cardiac muscleCa2+-release channel (ryanodinereceptor) activity were examined in [3H]ryanodine-bindingmeasurements. Ca2+ bound with thehighest apparent affinity to Ca2+activation sites in choline chloride medium, followed by KCl, CsCl,NaCl, and LiCl media. The apparentCa2+ binding affinities ofCa2+ inactivation sites were lowerin choline chloride and CsCl media than in LiCl, NaCl, and KCl media.Sr2+ activated the ryanodinereceptor with a lower efficacy thanCa2+. Competition studiesindicated that Li+,K+,Mg2+, andBa2+ compete withCa2+ forCa2+ activation sites. In 0.125 MKCl medium, the Ca2+ dependence of[3H]ryanodine bindingwas modified by 5 mM Mg2+ and 5 mM,-methyleneadenosine 5'-triphosphate (a nonhydrolyzable ATPanalog). The addition of 5 mM glutathione was without appreciable effect. Substitution of Clby 2-(N-morpholino)ethanesulfonic acid ion caused anincrease in the apparent Ca2+affinity of the Ca2+ inactivationsites, whereas an increase in KCl concentration had the oppositeeffect. These results suggest that cardiac muscle ryanodine receptoractivity may be regulated by 1)competitive binding of mono- and divalent cations toCa2+ activation sites,2) binding of monovalent cations toCa2+ inactivation sites, and3) binding of anions to anionregulatory sites.

  相似文献   

14.
Despite their relevance for neuronal Ca2+-induced Ca2+ release (CICR), activation by Ca2+ of ryanodine receptor (RyR) channels of brain endoplasmic reticulum at the [ATP], [Mg2+], and redox conditions present in neurons has not been reported. Here, we studied the effects of varying cis-(cytoplasmic) free ATP concentration ([ATP]), [Mg2+], and RyR redox state on the Ca2+ dependence of endoplasmic reticulum RyR channels from rat brain cortex. At pCa 4.9 and 0.5 mM adenylylimidodiphosphate (AMP-PNP), increasing free [Mg2+] up to 1 mM inhibited vesicular [3H]ryanodine binding; incubation with thimerosal or dithiothreitol decreased or enhanced Mg2+ inhibition, respectively. Single RyR channels incorporated into lipid bilayers displayed three different Ca2+ dependencies, defined by low, moderate, or high maximal fractional open time (Po), that depend on RyR redox state, as we have previously reported. In all cases, cis-ATP addition (3 mM) decreased threshold [Ca2+] for activation, increased maximal Po, and shifted channel inhibition to higher [Ca2+]. Conversely, at pCa 4.5 and 3 mM ATP, increasing cis-[Mg2+] up to 1 mM inhibited low activity channels more than moderate activity channels but barely modified high activity channels. Addition of 0.5 mM free [ATP] plus 0.8 mM free [Mg2+] induced a right shift in Ca2+ dependence for all channels so that [Ca2+] <30 µM activated only high activity channels. These results strongly suggest that channel redox state determines RyR activation by Ca2+ at physiological [ATP] and [Mg2+]. If RyR behave similarly in living neurons, cellular redox state should affect RyR-mediated CICR. Ca2+-induced Ca2+ release; Ca2+ release channels; endoplasmic reticulum; thimerosal; 2,4-dithiothreitol; ryanodine receptor  相似文献   

15.
Kitada  Yasuyuki 《Chemical senses》1994,19(3):265-277
Fibers of the frog glossopharyngeal nerve (water fibers) thatare sensitive to water also respond to CaCl2, MgCl2 and NaCl.In the present study, interaction among cations (Ca2+, Mg2+and Na+) on taste cell membrane in frogs was studied using transitionmetals (NiCl2, CoCl2 and MnCl2), which themselves are barelyeffective in producing neural response at concentrations below5 mM. Unitary discharges from single water fibers were recordedfrom fungiform papillae with suction electrode. Transition metalions (0.05–5.0 mM) had exclusively enhancing effects onthe responses to 50 mM Ca2+, 100 mM Mg2+ and 500 mM Na+. Theeffects of transition metal ions were always reversible. Therank order of effectiveness of transition metals at 1 mM inthe enhancement of the responses to 50 mM CaCl2, 100 mM MgCl2and 500 mM NaCl was NiCl2 > CoCl2 > MnCl2. The concentrationof transition metal ions effective to enhance salt responsewas almost the same among Ca2+, Mg2+ and Na+ responses. Theresults suggest that a common mechanism is involved in the enhancementof Ca2+, Mg2+ and Na+ taste responses. The enhanced Mg2+ responseand the enhanced Na+ response were greatly inhibited by theaddition of Ca2+ ions, and the enhanced Ca2+ response was inhibitedby the addition of Mg2+ or Na+ ions, suggesting that competitiveantagonism occurs between Ca2+ and Mg2+ ions and between Ca2+and Na+ ions in the presence of Ni2+ ions. Ni2+ ions had a dualeffect on the Ca2+ response induced by low concentration (0.1mM) of CaCl2: enhancement at lower concentrations (0.02–0.1mM) of NiCl2 and inhibition at higher concentrations (0.5–5mM)of NiCl2. The present results suggest that transition metalions do not affect the receptor-antagonist complex, but affectonly the receptor-agonist complex.  相似文献   

16.
Kitada  Yasuyuki 《Chemical senses》1989,14(4):487-502
In the frog glossopharyngeal nerve, single water fibers respondto low CaCl2 (1–2 mM) and relatively high MgCl2 (100 mM).In the present study, it was found that stimulation by a mixtureof low CaCl2 and relatively high MgCl2 led to a small response.This suggests that the Ca+ response is inhibited by the presenceof Mg2+ and the Mg2+ response is inhibited by the presence ofCa2+. Hence, it is suggested that there are different receptorsites for divalent cations in single water fibers of the frogglossopharyngeal nerve, a calcium receptor site (XCa) responsiblefor the Ca2+ response and a magnesium receptor site (XMg) responsiblefor the Mg2+ response. It has been reported that Mg2+ inhibitsthe Ca2+ response by competing with Ca2+ for XCa (Kitada andShimada, 1980). In the present study, the inhibition of theMg2+ response by Ca2+ was examined quantitatively under theassumption that the magnitude of the neural response is proportionalto the amount of MgXMg complex minus a constant (the thresholdconcentration of the MgXMg complex). The results obtained indicatethat Ca2+ competes with Mg2+ for XMg. The apparent dissociationconstants for MgXMg complex and CaXMg complex, which were obtainedfrom the present study, were 8.0 x 10–2 M and 7.2 x 10–4M, respectively. Thus, competition between Ca+ and Mg2+ forthe distinct receptor sites involved in taste reception wasdemonstrated by the results described in this paper. Since thedivalent cations do not always bring about activation of tastereceptors, the responses to salts in the frog glossopharyngealnerve cannot be explained in terms of changes in the surfacepotential outside the taste cells. The present results suggestthat there exist multiple specific receptor sites for cationsinvolved in salt taste responses, and only the binding of eachseparate cation to its appropriate receptor sites leads to activationof the receptor and the initiation of impulses in sensory nerveendings.  相似文献   

17.
The binding isotherms of Ca2+ and Sr2+ to human blood coagulation Factor IX have been obtained at 25 °C and pH 7.4. In the case of both cations, a Scatchard plot of the data reveals that a single class of binding sites exist. For Ca2+, a total of 16.0 ± 1.0 sites, of KD 7.3 ± 0.2 × 10?4m, are present on human Factor IX. Similar analysis of the Sr2+ data indicates that Factor IX contains 11.0 ± 1.0 binding sites, with a KD of 1.9 ± 0.1 × 10?3m. Both Sr2+ and Mn2+ effectively displace Ca2+ from human Factor IX; whereas Mg2+ is considerably less potent in this regard. Conversely, Ca2+ is capable of nearly complete displacement of Sr2+ from its binding sites on human Factor IX. The activation of human Factor IX, by human Factor XIa, shows a complex dependence on the Ca2+ concentration. Sr2+ can substitute for Ca2+ in this activation process. Mn2+ cannot, in itself, substitute for Ca2+ in activation of Factor IX, but does significantly enhance the activation of Factor IX by Factor XIa at suboptimal levels of Ca2+. The rate of activation of human Factor IX by the coagulant protein of Russell's viper venom also shows a dependence on the presence of divalent cations. Here, however, a rigid specificity is not noted, since Ca2+, Sr2+, and Mn2+ all allow activation to proceed equally well.  相似文献   

18.
The presence of Ca2+ in a hypo-osmotic reaction medium reducessuccinate: cytochrome c reductase activity and the release ofouter membrane-specific antimycin A-insensitive NADH: cytochromec reductase. The action of Ca2+ is non-competitive and approximately30 mmol m–3 Ca2+ affords half-maximal (I50) protection.The effect of a range of inorganic and organic multivalent cationson succinate: cytochrome c reductase activity suggests thatthe action of Ca2+ is non-specific and probably involves Ca2+binding to outer membrane component(s) which may be proteins. Valinomycin- or gramicidin-induced passive swelling of isolatedcorn mitochondria in isotonic K.C1 is also non-competitivelyinhibited by up to 50% with Ca2+. Half-maximal inhibition (I50)occurs at 0-35 mol m–3 Ca2+ for valinomycin and 1-0 molm–3 Ca2+ for gramicidin. Other divalent cations, Mg2+,Sr2+ and Ba2+, seem to inhibit similarly while the trivalentcations La3+ and Ho3+ show a maximum inhibition of up to 85%,with an I50 of 0.1 mol m–3 for valinomycin. It is suggestedthat non-specific cation binding may reduce membrane fluiditythereby slowing down the rate of ionophore penetration throughthe inner membrane. Key words: Calcium, Mitochondria, Membranes  相似文献   

19.
Previous studies have shown that inhibition of L-type Ca2+ current (ICa) by cytosolic free Mg2+ concentration ([Mg2+]i) is profoundly affected by activation of cAMP-dependent protein kinase pathways. To investigate the mechanism underlying this counterregulation of ICa, rat cardiac myocytes and tsA201 cells expressing L-type Ca2+ channels were whole cell voltage-clamped with patch pipettes in which [Mg2+] ([Mg2+]p) was buffered by citrate and ATP. In tsA201 cells expressing wild-type Ca2+ channels (1C/2A/2), increasing [Mg2+]p from 0.2 mM to 1.8 mM decreased peak ICa by 76 ± 4.5% (n = 7). Mg2+-dependent modulation of ICa was also observed in cells loaded with ATP--S. With 0.2 mM [Mg2+]p, manipulating phosphorylation conditions by pipette application of protein kinase A (PKA) or phosphatase 2A (PP2A) produced large changes in ICa amplitude; however, with 1.8 mM [Mg2+]p, these same manipulations had no significant effect on ICa. With mutant channels lacking principal PKA phosphorylation sites (1C/S1928A/2A/S478A/S479A/2), increasing [Mg2+]p had only small effects on ICa. However, when channel open probability was increased by 1C-subunit truncation (1C1905/2A/S478A/S479A/2), increasing [Mg2+]p greatly reduced peak ICa. Correspondingly, in myocytes voltage-clamped with pipette PP2A to minimize channel phosphorylation, increasing [Mg2+]p produced a much larger reduction in ICa when channel opening was promoted with BAY K8644. These data suggest that, around its physiological concentration range, cytosolic Mg2+ modulates the extent to which channel phosphorylation regulates ICa. This modulation does not necessarily involve changes in channel phosphorylation per se, but more generally appears to depend on the kinetics of gating induced by channel phosphorylation. voltage-gated Ca2+ channel; cardiac myocytes; human embryonic kidney cells; protein kinase A; protein phosphatase 2A  相似文献   

20.
Ryanodine receptor (RyR) type 1 (RyR1) exhibits a markedly lower gain of Ca2+-induced Ca2+ release (CICR) activity than RyR type 3 (RyR3) in the sarcoplasmic reticulum (SR) of mammalian skeletal muscle (selective stabilization of the RyR1 channel), and this reduction in the gain is largely eliminated using 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS). We have investigated whether the hypothesized interdomain interactions within RyR1 are involved in the selective stabilization of the channel using [3H]ryanodine binding, single-channel recordings, and Ca2+ release from the SR vesicles. Like CHAPS, domain peptide 4 (DP4, a synthetic peptide corresponding to the Leu2442-Pro2477 region of RyR1), which seems to destabilize the interdomain interactions, markedly stimulated RyR1 but not RyR3. Their activating effects were saturable and nonadditive. Dantrolene, a potent inhibitor of RyR1 used to treat malignant hyperthermia, reversed the effects of DP4 or CHAPS in an identical manner. These findings indicate that RyR1 is activated by DP4 and CHAPS through a common mechanism that is probably mediated by the interdomain interactions. DP4 greatly increased [3H]ryanodine binding to RyR1 with only minor alterations in the sensitivity to endogenous CICR modulators (Ca2+, Mg2+, and adenine nucleotide). However, DP4 sensitized RyR1 four- to six-fold to caffeine in the caffeine-induced Ca2+ release. Thus the gain of CICR activity critically determines the magnitude and threshold of Ca2+ release by drugs such as caffeine. These findings suggest that the low CICR gain of RyR1 is important in normal Ca2+ handling in skeletal muscle and that perturbation of this state may result in muscle diseases such as malignant hyperthermia. malignant hyperthermia; 3-[(3-cholamidopropyl)dimethylammonio]propane sulfonic acid; domain peptide 4  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号