首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 115 毫秒
1.
研究结果表明:高产夏玉米群体光合速率日变化呈单峰曲线。在水肥充足栽培条件下,光照强度是影响玉米群体光合速率的主导因素,最大自然光强下群体光合未测到光饱和点。群体光合速率随CO2浓度(50—900ppm范围)的增加而提高。土壤呼吸释放的CO2量占群体光合速率的11.68%。高产群体所形成的独特环境对单叶光合速率影响很大,群体生长下的单株,在8×104一9×104Lx光下的单叶光合速率为果穗叶高于下部和上部叶,品种、密度间差异不大;冠层自然状态下的单位叶面积光合速率上部叶却高于中、下部叶,高密度下,紧凑型品种高于平展型品种,低密度下则相反。  相似文献   

2.
为探究攀援竹的光合生理特性及其在热带雨林中的生存适应机制,该研究应用LI-6400便携式光合作用测定系统,分别于2、4、7和11月测定了海南岛甘什岭热带低地雨林的无耳藤竹(攀援能力较强)和响子竹(攀援能力较差)光响应曲线和CO2响应曲线。结果显示:(1)无耳藤竹各月份的最大光合速率、光饱和点、光补偿点、暗呼吸效率和气孔导度总体大于响子竹,表观量子效率和胞间CO2浓度总体小于响子竹。(2)两个竹种的最大光合速率、光饱和点、光补偿点、暗呼吸效率、气孔导度、胞间CO2浓度和蒸腾速率均在7月份较高,表观量子效率和水分利用效率则均在2月份较高。(3)无耳藤竹各月份的羧化效率、饱和最大净光合速率和光呼吸速率均高于响子竹,两竹种4月份的CO2饱和点和CO2补偿点最高,但羧化效率和饱和最大光合速率较低。研究表明,无耳藤竹为阳性植物,其光合能力优于响子竹,对CO2浓度变化的适应能力更强,而响子竹以其耐荫的特性在热带雨林中与其他物种共存;两攀援竹种的光合能力均表现为雨季大于旱季,它们在雨季主要通过提高光饱和点、气孔导度、胞间CO2浓度来提高其净光合速率,在旱季主要通过降低蒸腾速率和提高水分利用效率来维持光合作用;两种攀援竹光合特性季节变化是环境和竹种自身生理特性共同作用的结果,不同的光合生理特性决定了其在热带雨林中不同的生存策略。  相似文献   

3.
辽东栎冠层光合生理特性的空间异质性   总被引:3,自引:0,他引:3  
冠层作为林木与环境因子相互作用最为直接的部分,研究冠层光合作用是分析森林生产力的基础。以北京东灵山辽东栎为对象,利用Li-6400便携式光合仪测定了不同冠层不同方向部位叶片的光合速率和光响应曲线,研究了叶片光合生理特性在冠层空间上的变化。结果表明:在不同冠层和不同方向上,饱和光合速率、光补偿点、光下暗呼吸和表观量子效率均存在差异,随着冠层下降以及从南至北,大多数光合生理特性指标表现出递减趋势。进一步的通径分析结果得出,光强、水气压亏缺、温度是影响不同层次光合速率的主要因子。冠层光合特性的空间异质性研究,对于在冠层水平上揭示植物固碳能力和估算植物生产力具有很重要的意义。  相似文献   

4.
以6个紫花苜蓿(Medicago sativa L.)品种为对象,用Licor-6400型便携式光合作用测定系统测定了紫花苜蓿光合作用对光、CO2的响应曲线,阐述了光合作用对光和CO2浓度的响应特征。结果表明,各品种光合速率随光强或CO2浓度的提高而增大均可用指数方程来模拟,并得出一些光合响应特征参数:表观量子效率、羧化效率、光补偿点、近光饱和点、暗呼吸速率、光呼吸速率、CO2补偿点、CO2饱和点等,品种间差异显著;巨人201+Z、路宝具较高的近光饱和点、表观量子效率及羧化效率,较低的CO2补偿点,是具有较高的光能生产潜力的苜蓿品种;秋眠级数与表观量子效率、羧化效率、光补偿点、近光饱和点、暗呼吸速率、光呼吸速率均成不同程度的负相关,与CO2补偿点、CO2饱和点成微弱正相关,均未达到显著水平。  相似文献   

5.
以2008年南方冰雪灾害中受到严重损害的木荷为对象,在浙江江郎山设置5个400m2样地,通过Li-6400光合仪人工控制光强和CO2浓度测定相关光合参数,采用指数方程对不同受害类型木荷(倒木和断木)的光合生理响应曲线进行拟合,并结合叶绿素荧光参数分析了不同部位萌枝叶片的光合能力。结果表明:(1)光响应曲线中,木荷断木不同部位萌枝叶片在初始阶段(光照强度0~200μmol.mol-1)较陡,随着光强的增大,断木相对于倒木较早达到光饱和点,但其最大净光合速率较倒木低;CO2响应曲线中,倒木和断木在起始阶段(CO2浓度在0~200μmol.mol-1)的斜率较接近,随着CO2浓度增加,各条拟合曲线趋势相似。(2)不同受害类型木荷之间比较,倒木的光饱和最大净光合速率(PLmax)、CO2饱和最大净光合速率(PCmax)、光补偿点(LCP)、光饱和点(LSP)、有效光化学效率(Fv′/Fm′)分别比断木高22.03%、5.22%、13.73%、52.48%、22.53%,且二者间的PLmax、LSP、Fv′/Fm′均差异显著。(3)相同受害类型木荷的不同部位之间比较,倒木不同部位的PLmax、PCmax、PSⅡ最大光化学效率(Fv/Fm)、Fv′/Fm′、PSⅡ潜在活性(Fv/F0)、电子传递速率(ETR)均表现为底部>中部>顶部,而断木不同部位则表现为顶部和中部大于底部,但未达到显著水平。研究发现,遭受冰雪灾害的木荷倒木的光合作用能力高于断木,且倒木底部和断木顶部的光合作用能力高于其它部位。  相似文献   

6.
杭州湾湿地不同演替阶段优势物种光合生理生态特性   总被引:4,自引:0,他引:4  
采用LI-6400光合作用系统测定了杭州湾滨海湿地不同演替阶段6种优势植物-包括早期植物海三棱藨草(Scirpus mariqueter)和糙叶苔草(Carex scabrifolia)、中期植物芦苇(Phragmites communis)和柽柳(Tamarixchinensis)、后期植物白茅(Imperata cylindrica)和旱柳(Salix matsudana)的光合作用光响应曲线(LRC)和CO2响应曲线(A/Ci),并拟合得出多个光合生理指标.结果表明,6种优势植物LRC净光合速率(Pn)大小顺序为海三棱藨草>糙叶苔草>芦苇>柽柳>白茅>旱柳,且早期植物显著大于后期植物(P<0.05);光补偿点(LCP)、光饱和点(LSP)、最大净光合速率(Amax)、和暗呼吸速率(Rd)变化与Pn相同,也表现出演替早期植物>中期植物>后期植物;而表观量子效率(AQY)则表现出相反趋势.由A/Ci曲线可以发现,演替早期优势植物较后期植物具有更低的CO2羧化效率(CCE)和相对较高的CO2补偿点(CCP).可见群落演替与各阶段优势植物的光合生理特征密切相关.  相似文献   

7.
低温弱光对辣椒幼苗光合特性与光合作用启动时间的影响   总被引:21,自引:0,他引:21  
以辣椒(Capsicum annuumL.)幼苗为试材,研究了偏低温弱光(19℃/12℃昼/夜,90μmol?m-2?s-1)和临界低温弱光(15℃/8℃昼/夜,90μmol?m-2?s-1)胁迫10 d后的光合特性与光合作用启动时间的变化.结果表明:无论是在偏低温弱光还是在临界低温弱光下,辣椒幼苗的光补偿点(LCP)、光饱和点(LSP)、光饱和时的光合速率(Amax)和表观量子产额(AOY)下降;CO2补偿点(CCP)升高,而CO2饱和点(CSP)、CO2饱和时的光合速率(Amax)以及羧化效率(CE)下降;温度补偿点(TCP)降低;光合作用启动时间(STP)延长.在偏低温弱光下,辣椒幼苗有着更高的光与CO2利用能力和利用效率,光合作用启动时间较短,但温度补偿点较高.  相似文献   

8.
苗期土壤渍水对棉花恢复生长及光合生理的影响   总被引:5,自引:0,他引:5  
以'中棉所41'为试验材料,采用盆栽方法,研究了苗期土壤渍水对棉花恢复生长及光合生理的影响.结果显示:(1)渍水5 d的棉苗经过10 d恢复生长,其根系活力、株高、叶面积、完全展开叶片数与对照差异不显著,但根系总长度仍比对照低11.1%(P<0.05);渍水10 d的棉苗经过10 d恢复生长,其根系活力、株高、叶面积、完全展开叶片数、根系活力均极显著低于对照.(2)渍水5 d棉苗经过10 d恢复生长,其光合速率、气孔导度、光饱和点、CO2饱和点、表观光最子效率、羧化效率以及叶绿素a、b含量与对照差异不显著;渍水10 d的棉莆经过10 d恢复生长,其光合速率、气孔导度、光饱和点、CO2饱和点、表观光量子效率、羧化效率以及叶绿素a、b含量仍显著低于对照.研究表明,棉莆经过5 d或10 d渍水胁迫后,均可以恢复生长,但随着渍水时间延长,恢复生长速度降低;在恢复生长过程中,生理活性恢复快于形态恢复;强光对于渍水后棉苗恢复生长具有明显的抑制效应.  相似文献   

9.
毛竹光合作用对环境因子的季节响应   总被引:11,自引:0,他引:11       下载免费PDF全文
采用Li-6400测定毛竹光合作用对光照强度、CO2浓度、温度和湿度等环境因子响应的季节变化,结果表明:毛竹最大净光合速率、光补偿点、光饱和点、光合量子效率的年均值分别为7.30、19.15、1075mmol.m-2.s-1,0.032;最大净光合速率夏季>秋季>冬季>春季;春季的光补偿点最高,夏季次之,而秋季和冬季均较小;光饱和点与光合量子效率的季节变化均为秋季>夏季>冬季>春季。毛竹CO2补偿点、CO2饱和点、羧化效率的年均值分别为73.52、1500μmol.mol-1,0.033。CO2补偿点春季>冬季>秋季>夏季;CO2饱和点春季>秋季>夏季>冬季;羧化效率夏季>秋季>冬季>春季。毛竹光合最适温度均在20~30℃,光合最适温度在春、秋季与实验前3天最高气温的平均值十分接近,而夏、冬季与测定前10天的最高气温平均值较为接近,光合最适温度在春、秋两季相当,夏季稍高,冬季最低。光合最适湿度为40%~65%,季节变化趋势:秋季>夏季>冬季>春季。总体而言,毛竹光合作用对环境因子的季节响应与环境因子的季节变化、叶片的生理活性密切相关。  相似文献   

10.
茄子嫁接苗与自根苗光合特性比较   总被引:5,自引:0,他引:5  
对茄子嫁接苗与自根苗的光合生理特性进行了比较研究。结果表明,不同时期嫁接苗功能叶片的净光合速率(Pn)均显著高于自根苗;茄子嫁接苗与自根苗功能叶片的Pn日变化均呈“双峰”曲线,但嫁接苗的“午休”程度较自根苗轻;嫁接苗比自根苗有较低的光补偿点(LCP)和CO2补偿点(CCP),较高的光饱和点(LSP)和CO2饱和点(CSP);有较低的光合冷限温度和较高的光合热限温度,光合最适温度两者之间没有明显的差别;有较高的光饱和、CO2饱和及最适温度时的Pn;嫁接苗Pn高是因为嫁接苗胞间的光合反应的底物浓度大(Ci高),表观量子效率(AQY)、羧化效率(CE)和光合能力(A350)高的缘故。  相似文献   

11.
While foliar photosynthetic relationships with light, nitrogen, and water availability have been well described, environmental factors driving vertical gradients of foliar traits within forest canopies are still not well understood. We, therefore, examined how light availability and vapour pressure deficit (VPD) co-determine vertical gradients (between 12 and 42 m and in the understorey) of foliar photosynthetic capacity (Amax), 13C fractionation (∆), specific leaf area (SLA), chlorophyll (Chl), and nitrogen (N) concentrations in canopies of Fagus sylvatica and Abies alba growing in a mixed forest in Switzerland in spring and summer 2017. Both species showed lower Chl/N and lower SLA with higher light availability and VPD at the top canopy. Despite these biochemical and morphological acclimations, Amax during summer remained relatively constant and the photosynthetic N-use efficiency (PNUE) decreased with higher light availability for both species, suggesting suboptimal N allocation within the canopy. ∆ of both species were lower at the canopy top compared to the bottom, indicating high water-use efficiency (WUE). VPD gradients strongly co-determined the vertical distribution of Chl, N, and PNUE in F. sylvatica, suggesting stomatal limitation of photosynthesis in the top canopy, whereas these traits were only related to light availability in A. alba. Lower PNUE in F. sylvatica with higher WUE clearly indicated a trade-off in water vs. N use, limiting foliar acclimation to high light and VPD at the top canopy. Species-specific trade-offs in foliar acclimation to environmental canopy gradients may thus be considered for scaling photosynthesis from leaf to canopy to landscape levels.  相似文献   

12.
群落结构在森林生态系统中具有重要作用, 其构建机制一直是森林生态学的研究核心。群落结构不仅包括水平方向上的物种分布格局, 还包括垂直方向上的物种分层结构。本文基于鼎湖山南亚热带常绿阔叶林塔吊样地, 利用林冠塔吊和测高杆精准测量样地内每个个体(胸径大于1 cm)的树高, 并划分群落的垂直层次, 研究了每层的群落多样性特征(α多样性)和林层间的群落多样性变化特征(β多样性)。结果表明: (1)样地群落垂直层次由下至上分为5层: 灌木层、亚冠层、林冠下层、林冠中层和林冠上层。(2)随林层向上, 物种丰富度、多度和Shannon-Wiener指数均下降, Pielou均匀度指数在林冠下层最大。(3)利用POD法计算并分解β多样性, 发现随林层向上, β多样性在灌木层与其他各层间呈递增趋势, 在相邻林层间呈单峰型, 不同林层间的物种组成差异主要由丰富度差异造成。 但在林冠下层与林冠中层间丰富度差异较小, 物种替换组分增大, 可能与林冠下层所处特殊位置有关。(4)各林层内微环境从灌木层向上, 趋于高温、强光照和低空气相对湿度, 但林冠下层平均日光强最低。综上, 鼎湖山南亚热带常绿阔叶林林冠下层可能存在强烈的环境筛选作用, 且光照可能是影响群落垂直结构形成的限制因子。  相似文献   

13.
Mathematical models of light attenuation and canopy photosynthesis suggest that crop photosynthesis increases by more uniform vertical irradiance within crops. This would result when a larger proportion of total irradiance is applied within canopies (interlighting) instead of from above (top lighting). These irradiance profiles can be generated by Light Emitting Diodes (LEDs). We investigated the effects of interlighting with LEDs on light interception, on vertical gradients of leaf photosynthetic characteristics and on crop production and development of a greenhouse‐grown Cucumis sativus‘Samona’ crop and analysed the interaction between them. Plants were grown in a greenhouse under low natural irradiance (winter) with supplemental irradiance of 221 µmol photosynthetic photon flux m?2 s?1 (20 h per day). In the interlighting treatment, LEDs (80% Red, 20% Blue) supplied 38% of the supplemental irradiance within the canopy with 62% as top lighting by High‐Pressure Sodium (HPS)‐lamps. The control was 100% top lighting (HPS lamps). We measured horizontal and vertical light extinction as well as leaf photosynthetic characteristics at different leaf layers, and determined total plant production. Leaf mass per area and dry mass allocation to leaves were significantly greater but leaf appearance rate and plant length were smaller in the interlighting treatment. Although leaf photosynthetic characteristics were significantly increased in the lower leaf layers, interlighting did not increase total biomass or fruit production, partly because of a significantly reduced vertical and horizontal light interception caused by extreme leaf curling, likely because of the LED‐light spectrum used, and partly because of the relatively low irradiances from above.  相似文献   

14.
The amount of light intercepted by vertically oriented, shingle leaves of juvenile Monstera tenuis vines growing in forest understory was compared to the amount of light the leaves would intercept if they were horizontal. Light levels were monitored using quantum sensors and hemispherical photography. Shingle leaves absorb less light than they would if the leaves were horizontal at the same positions, and the difference increases with height in the forest. Modeling based on measured photosynthetic light responses and light interception suggests that at 1 m height, 75% more carbon could be gained if leaves were horizontal instead of vertical. Because the vertical leaf orientation reduces light interception, other selective factors are likely of greater importance in favoring the evolution of the shingle-leaved growth form.  相似文献   

15.
Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition, and on the liana success in Neotropical forests. To bridge this gap, we performed a meta-analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas very efficient at light interception and significantly modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was reduced in the understorey (?30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana-specific traits were also responsible for a significant reduction of tree (?19%) and ecosystem (?7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of lianas on forest functioning, and paves the way for the evaluation of the large-scale impacts of lianas on forest biogeochemical cycles.  相似文献   

16.
The abundances of chloroplasts in leaves on the main stems ofChenopodium album at different height levels were investigatedin relation to the photosynthetic capacity and light environmentof the leaves. (1) The number of chloroplasts per mesophyllcell decreased with descending position of leaves, except foryoung developing leaves at the top of plants that had smallerchloroplast numbers per cell than matured leaves beneath them.Contents of chlorophyll and ribulose-1,5-bisphosphate carboxylase/oxygenaseper leaf area that were highest in the topmost young leavesand decreased with decreasing height level indicate that thereis a vertical gradient of chloroplast abundance per leaf areadecreasing from the top of the leaf canopy with depth. (2) Light-saturatingrate of photosynthetic oxygen evolution per leaf area of maturedleaves decreased more steeply with decreasing leaf positionthan the chloroplast number per cell. Gradients of chlorophylland the enzyme protein contents were also steeper than thatof the chloroplast number. Loss of photosynthesis in lower leavesis, therefore, ascribed partly to loss of whole chloroplastsand partly to reduced photosynthetic capacities of the remainingchloroplasts. (3) The chloroplast number per cell in newly expandedsecond leaves was comparable to those in leaves that have developedat later stages of the plant growth but decreased graduallyduring leaf senescence both in the dark and light. The formationof the vertical gradient of chloroplast abundance is, therefore,ascribed to loss of whole chloroplasts during senescence ofleaves. (4) Irradiance a leaf receives decreased sharply fromthe top of the canopy with depth. The physiological or ecophysiologicalsignificance of the vertical distribution of chloroplasts amongleaves was discussed taking light environments of leaves intoconsideration. (Received July 31, 1995; Accepted October 20, 1995)  相似文献   

17.
棉花叶片氮含量的空间分布与光合特性   总被引:2,自引:0,他引:2  
张雪松  申双和  宋洁 《生态学报》2009,29(4):1893-1898
在棉花生长旺季,将冠层按高度分多层测定了田间叶片含氮量和叶片净光合速率对光合有效辐射通量密度的响应(光响应曲线,Pn-PPFD response curve)及相应的生物指标.结果表明,各层叶片氮含量与光合作用关系密切,各层平均值大小依次为上层>中层>下层,对应层叶片的最大净光合速率Pmax、表观暗呼吸速率Rd、光补偿点LCP及光饱和点LSP均从上到下依次递减,与氮含量分布一致,而表观光合量子效率AQY则略有不同;氮含量的指数衰减系数 kn =0.762(R2=0.593),根据观测结果,棉田叶片氮含量(N)空间分布可以用相对累积叶面积指数(Lc/Lt)为自变量的指数方程来模拟,从而为建立光合作用机理模型与进行生产力奠定基础.  相似文献   

18.
The ability to down-regulate leaf maximum net photosynthetic capacity (Amax) and dark respiration rate (Rdark) in response to shading is thought to be an important adaptation of trees to the wide range of light environments that they are exposed to across space and time. A simple, general rule that accurately described this down-regulation would improve carbon cycle models and enhance our understanding of how forest successional diversity is maintained. In this paper, we investigated the light response of Amax and Rdark for saplings of six temperate forest tree species in New Jersey, USA, and formulated a simple model of down-regulation that could be incorporated into carbon cycle models. We found that full-sun values of Amax and Rdark differed significantly among species, but the rate of down-regulation (proportional decrease in Amax or Rdark relative to the full-sun value) in response to shade was not significantly species- or taxon-specific. Shade leaves of sun-grown plants appear to follow the same pattern of down-regulation in response to shade as leaves of shade-grown plants. Given the light level above a leaf and one species-specific number (either the full-sun Amax or full-sun Rdark), we provide a formula that can accurately predict the leaf''s Amax and Rdark. We further show that most of the down regulation of per unit area Rdark and Amax is caused by reductions in leaf mass per unit area (LMA): as light decreases, leaves get thinner, while per unit mass Amax and Rdark remain approximately constant.  相似文献   

19.
The influence of leaf orientation and position within shoots on individual leaf light environments, carbon gain, and susceptibility to photoinhibition was studied in the California chaparral shrub Heteromeles arbutifolia with measurements of gas exchange and chlorophyll fluorescence, and by application of a three-dimensional canopy architecture model. Simulations of light absorption and photosynthesis revealed a complex pattern of leaf light environments and resulting leaf carbon gain within the shoots. Upper, south-facing leaves were potentially the most productive because they intercepted greater daily photon flux density (PFD) than leaves of any other orientation. North-facing leaves intercepted less PFD but of this, more was received on the abaxial surface because of the steep leaf angles. Leaves differed in their response to abaxial versus adaxial illumination depending on their orientation. While most had lower photosynthetic rates when illuminated on their abaxial as compared to adaxial surface, the photosynthetic rates of north-facing leaves were independent of the surface of illumination. Because of the increasing self-shading, there were strong decreases in absorbed PFD and daily carbon gain in the basipetal direction. Leaf nitrogen per unit mass also decreased in the basipetal direction but on a per unit area basis was nearly constant along the shoot. The decrease in leaf N per unit mass was accounted for by an increase in leaf mass per unit area (LMA) rather than by movement of N from older to younger leaves during shoot growth. The increased LMA of older lower leaves may have contributed directly to their lower photosynthetic capacities by increasing the limitations to diffusion of CO2 within the leaf to the sites of carboxylation. There was no evidence for sun/shade acclimation along the shoot. Upper leaves and especially south-facing upper leaves had a potential risk for photoinhibition as demonstrated by the high PFDs received and the diurnal decreases in the fluorescence ratio F v/F m. Predawn F v/F m ratios remained high (>0.8) indicating that when in their normal orientations leaves sustained no photoinhibition. Reorientation of the leaves to horizontal induced a strong sustained decrease in F v/F m and CO2 exchange that slowly recovered over the next 10–15?days. If leaves were also inverted so that the abaxial surface received the increased PFDs, then the reduction in F v/F m and CO2 assimilation was much greater with no evidence for recovery. The heterogeneity of responses was due to a combination of differences between leaves of different orientation, differences between responses on their abaxial versus adaxial surfaces, and differences along the shoot due to leaf age and self-shading effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号