首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
古菌作为区别于细菌和真核生物的第3种生命形式广泛分布于各种生境,与碳、氮等元素的生物地球化学循环密切相关,在整个生态系统中具有重要作用.古菌细胞膜脂作为古菌重要的生物标志物,在其群落组成和对环境变化响应的研究中具有重要指示作用.本文介绍了古菌细胞膜脂的结构特征及不同古菌类群间细胞膜脂结构差异,用以表征古菌群落的组成特征.环境中细胞膜脂丰度可反映古菌生物量,并可与基于DNA的分子生物学手段在结果准确性、分析效率和经济成本方面互补和互证.在重点介绍应用古菌细胞膜脂分析古菌群落组成和丰度的难点和重要性的基础上,结合影响古菌群落变化的环境因子如温度和pH,进一步阐述古菌与所处生境的关系,分析古菌群落演化过程及其在地球化学和地质历史事件研究方面的应用前景.  相似文献   

2.
嗜盐古菌分类学研究进展   总被引:3,自引:0,他引:3  
崔恒林 《微生物学通报》2016,43(5):1113-1122
嗜盐古菌是一类需要高盐维持生长的古菌。到目前为止,已发现的嗜盐古菌都属于古菌域的广古菌门,主要包括:嗜盐甲烷古菌类群、嗜盐古菌纲的全部成员以及尚不能培养的纳米嗜盐古菌类群。嗜盐古菌是盐环境的土著类群,驱动着盐环境生态系统的生物地球化学循环。作为极端微生物,嗜盐古菌在理论研究和应用领域具有重要的研究价值。本文从嗜盐古菌分类学地位的变迁、分类学方法、分类学研究现状及我国的嗜盐古菌分类学研究等方面综述了嗜盐古菌分类学的最新研究进展。  相似文献   

3.
苟艳  刘忠川  王刚刚 《生物工程学报》2017,33(11):1802-1813
异戊二烯(Isoprene)的排放具有特殊的生物学功能,对大气环境具有重要影响,另外,异戊二烯也是一种具有广泛用途的化合物。在生物体内,异戊二烯是由异戊二烯合成酶(Isoprene synthase,Isps)催化烯丙基二磷酸(Dimethylallyl diphosphate,DMAPP)脱去焦磷酸(Pyrophosphate)而生成的。因此,作为异戊二烯合成过程中的关键酶,Isps在异戊二烯的自然排放和生物合成过程都发挥着重要的作用,对Isps的研究具有非常重要的意义。到目前为止,已经在多种植物中发现了该酶,研究表明,来源于不同生物的异戊二烯合成酶具有保守的结构特征和相似的生化性质。文中就Isps的最新研究进展进行综述,包括比较分析不同生物来源Isps的生化特征和结构特征,探讨催化机制,并对该酶在生物工程领域的应用进行展望。  相似文献   

4.
吕俊  吕灿群 《生物学杂志》2006,23(2):25-27,64
为探讨不同的二价基甘油对三种乙醇胺甘油磷脂生物合成能力的影响,通过对豚鼠乙醇胺磷酸转移酶动力学研究,发现磷脂酰乙醇胺的合成可被1-烷基-2-脂酰甘油和1-烯醚基-2-脂酰甘油抑制,而缩醛磷脂酰乙醇胺的生成不受1,2-二脂酰甘油影响,并提示不同的二价基甘油对乙醇胺磷酸转移酶的抑制作用呈非竞争性抑制,此有利于对三种乙醇胺磷脂酰甘油生物合成的相互协调作用。  相似文献   

5.
四醚膜类脂物的古温标——TEX_(86)   总被引:3,自引:0,他引:3  
TEX86是一种新的重建古海水和古湖水表层水体温度(SST和LST)的指数。此指数不受表层水体的营养状况和盐度等参数的影响,能广泛应用于缺乏碳酸岩和有孔虫的沉积物的沉积相和早至白垩纪Aptian期地层的古温度重建。文章详细介绍了用于TEX86分析的类异戊二烯GDGTs的结构及其源生物,以及TEX86温标的原理、分析方法、应用和仍存在的问题。  相似文献   

6.
氨氧化古菌及其在氮循环中的重要作用   总被引:15,自引:2,他引:13  
Liu JJ  Wu WX  Ding Y  Shi DZ  Chen YX 《应用生态学报》2010,21(8):2154-2160
氨氧化作用作为硝化过程的第一步,是氮素生物地球化学循环的关键步骤.长期以来,变形菌纲卢和',亚群中的氨氧化细菌一直被认为是氨氧化作用的主要承担者.然而,近年来研究发现氨氧化古菌广泛存在于各种生态系统中,并且在数量上占明显优势,在氮素生物地球化学循环中起着非常重要的作用.本文概述了氨氧化古菌的形态、生理生态特性及其系统发育特征,对比分析了氨氧化古菌和氨氧化细菌的氨单加氧酶及其编码基因的异同,综述了氨氧化古菌在水生和陆地等生态系统氮素循环中的作用,同时就氨氧化古菌在应用生态和环境保护领域今后的研究重点进行了展望.  相似文献   

7.
萜类化合物是一大类小分子天然产物,在生物体内扮演重要的角色。植物和真菌中萜类化合物的生物合成已被广泛研究,但是在真核生物中克隆或改造萜类化合物生物合成途径还有较大难度。许多细菌同样可以产生萜类化合物。在过去十多年间细菌萜类合酶的研究进展为我们对萜类化合物生物合成的理解做出了显著的贡献。这里我们主要关注细菌中合成的倍半萜化合物,概述其化学结构、倍半萜合酶对法尼基焦磷酸环化的机制、后修饰酶特别是氧化还原酶所参与的后修饰、代谢调控以及合成途径中尚未解决的问题等。  相似文献   

8.
粗甘油是生物柴油生产中的主要副产物,一些微生物可将甘油转化为重要化工原料1,3-丙二醇(1,3-PD),而利用这些微生物野生菌株生物合成1,3-PD会存在一些局限性,如底物抑制、产物抑制等。文中从1,3-丙二醇的甘油生物转化途径与这些局限性出发,总结了生物合成中存在的问题,并针对这些问题提出了一些基于基因敲除或基因过表达等基因工程技术的改造方法,综述了利用基因工程菌生物转化甘油生成1,3-丙二醇的最新研究进展。  相似文献   

9.
腐殖质物质在地球的生态环境中大量存在,它不仅可以在有毒化合物的生物降解和生物转化过程中起到氧化还原中间体的作用,加速有毒物质的降解和转化。也可以作为唯一末端电子受体,接受来自一些有机酸或者甲苯等环境中有毒物质提供的电子,偶联能量的产生,支持菌体的生长,形成一种新的细菌厌氧呼吸形式——腐殖质呼吸。因此,对腐殖质在环境有毒物质的生物降解和生物转化过程中的作用进行研究,不仅对于深入理解细菌呼吸的本质具有重要的理论意义,而且对于环境有毒物质的降解和转化以及元素的生物地球化学循环具有重要的生态学意义,同时对地球表面  相似文献   

10.
深部生物圈古菌的研究进展与展望   总被引:2,自引:1,他引:1  
林喜铮  谢伟 《微生物学报》2021,61(6):1441-1462
古菌作为深部生物圈中常见的原核生物,广泛分布于各类海洋沉积生境中,在沉积物生物地球化学循环中发挥着重要作用。由于不同的古菌类群对环境条件存在生理适应性差异,它们分别在近岸沿海和开阔大洋沉积物中构成了厌氧微生物生态系统和好氧微生物生态系统。本文通过对近岸与远洋、沉积物与上覆水体两个不同维度的古菌群落结构进行比较,以及对出现在深部生物圈中的常见古菌(奇古菌门(Thaumarchaeota)、深古菌门(Bathyarchaeota)、底栖古菌目(Thermoprofundales)、Asgard古菌超级门、乌斯古菌门(Woesearchaeota))的分布、代谢和环境适应机制进行论述,总结了深部生物圈中古菌的研究进展,并在此基础上展望了几个未来研究的方向与重点。  相似文献   

11.
Glycerol dibiphytanyl glycerol tetraethers (GDGTs) are unique archaeal membrane-spanning lipids with 0–8 cyclopentane rings on the biphytanyl chains. The cyclization pattern of GDGTs is affected by many environmental factors, such as temperature and pH, but the underlying molecular mechanism remains elusive. Here, we find that the expression regulation of GDGT ring synthase genes grsA and grsB in thermophilic archaeon Sulfolobus acidocaldarius is temperature- and pH-dependent. Moreover, the presence of functional GrsA protein, or more likely its products cyclic GDGTs rather than the accumulation of GrsA protein itself, is required to induce grsB expression, resulting in temporal regulation of grsA and grsB expression. Our findings establish a molecular model of GDGT cyclization regulated by environment factors in a thermophilic ecosystem, which could be also relevant to that in mesophilic marine archaea. Our study will help better understand the biological basis for GDGT-based paleoclimate proxies. Archaea inhabit a wide range of terrestrial and marine environments. In response to environment fluctuations, archaea modulate their unique membrane GDGTs lipid composition with different strategies, in particular GDGTs cyclization significantly alters membrane permeability. However, the regulation details of archaeal GDGTs cyclization in response to different environmental factor changes remain unknown. We demonstrated, for the first time, thermophilic archaea orchestrate the temporal expression of GDGT ring synthases, leading to delicate control of GDGTs cyclization to respond environmental temperature and acidity stress. Our study provides insight into the regulation of archaea membrane plasticity, and the survival strategy of archaea in fluctuating environments.  相似文献   

12.
Glycerol dialkyl glycerol tetraethers (GDGTs) found in hot springs reflect the abundance and community structure of Archaea in these extreme environments. The relationships between GDGTs, archaeal communities, and physical or geochemical variables are underexamined to date and when reported often result in conflicting interpretations. Here, we examined profiles of GDGTs from pure cultures of Crenarchaeota and from terrestrial geothermal springs representing a wide distribution of locations, including Yellowstone National Park (United States), the Great Basin of Nevada and California (United States), Kamchatka (Russia), Tengchong thermal field (China), and Thailand. These samples had temperatures of 36.5 to 87 degrees C and pH values of 3.0 to 9.2. GDGT abundances also were determined for three soil samples adjacent to some of the hot springs. Principal component analysis identified four factors that accounted for most of the variance among nine individual GDGTs, temperature, and pH. Significant correlations were observed between pH and the GDGTs crenarchaeol and GDGT-4 (four cyclopentane rings, m/z 1,294); pH correlated positively with crenarchaeol and inversely with GDGT-4. Weaker correlations were observed between temperature and the four factors. Three of the four GDGTs used in the marine TEX(86) paleotemperature index (GDGT-1 to -3, but not crenarchaeol isomer) were associated with a single factor. No correlation was observed for GDGT-0 (acyclic caldarchaeol): it is effectively its own variable. The biosynthetic mechanisms and exact archaeal community structures leading to these relationships remain unknown. However, the data in general show promise for the continued development of GDGT lipid-based physiochemical proxies for archaeal evolution and for paleo-ecology or paleoclimate studies.  相似文献   

13.
Archaea are important players in marine biogeochemical cycles, and their membrane lipids are useful biomarkers in environmental and geobiological studies. However, many archaeal groups remain uncultured and their lipid composition unknown. Here, we aim to expand the knowledge on archaeal lipid biomarkers and determine the potential sources of those lipids in the water column of the euxinic Black Sea. The archaeal community was evaluated by 16S rRNA gene amplicon sequencing and by quantitative PCR. The archaeal intact polar lipids (IPLs) were investigated by ultra‐high‐pressure liquid chromatography coupled to high‐resolution mass spectrometry. Our study revealed both a complex archaeal community and large changes with water depth in the IPL assemblages. In the oxic/upper suboxic waters (<105 m), the archaeal community was dominated by marine group (MG) I Thaumarchaeota, coinciding with a higher relative abundance of hexose phosphohexose crenarchaeol, a known marker for Thaumarchaeota. In the suboxic waters (80–110 m), MGI Nitrosopumilus sp. dominated and produced predominantly monohexose glycerol dibiphytanyl glycerol tetraethers (GDGTs) and hydroxy‐GDGTs. Two clades of MGII Euryarchaeota were present in the oxic and upper suboxic zones in much lower abundances, preventing the detection of their specific IPLs. In the deep sulfidic waters (>110 m), archaea belonging to the DPANN Woesearchaeota, Bathyarchaeota, and ANME‐1b clades dominated. Correlation analyses suggest that the IPLs GDGT‐0, GDGT‐1, and GDGT‐2 with two phosphatidylglycerol (PG) head groups and archaeol with a PG, phosphatidylethanolamine, and phosphatidylserine head groups were produced by ANME‐1b archaea. Bathyarchaeota represented 55% of the archaea in the deeper part of the euxinic zone and likely produces archaeol with phospho‐dihexose and hexose‐glucuronic acid head groups.  相似文献   

14.
There is great interest in the membrane lipids of archaea (glycerol dialkyl glycerol tetraethers [GDGTs]) as tracers of archaeal biomass because of their utility as paleoproxies and because of the biogeochemical importance of archaea. While core GDGTs (formed by hydrolysis of polar head groups of intact GDGTs after cell death) are appropriate for paleostudies, they have also been used to trace archaeal populations. Also, despite the small size (0.2 by 0.7 μm) of cultivated marine archaea, 0.7-μm glass-fiber filters (GFFs) are typically used to collect GDGTs from natural waters. We quantified both core and intact GDGTs in free-living (0.2- to 0.7-μm), suspended (0.7- to 60-μm), and aggregate (>60-μm) particle size fractions in Puget Sound (Washington State). On average, the free-living fraction contained 36% of total GDGTs, 90% of which were intact. The intermediate-size fraction contained 62% of GDGTs, and 29% of these were intact. The aggregate fraction contained 2% of the total GDGT pool, and 29% of these were intact. Our results demonstrate that intact GDGTs are largely in the free-living fraction. Because only intact GDGTs are present in living cells, protocols that target this size fraction and analyze the intact GDGT pool are necessary to track living populations in marine waters. Core GDGT enrichment in larger-size fractions indicates that archaeal biomass may quickly become attached or entrained in particles once the archaea are dead or dying. While the concentrations of the two pools were generally not correlated, the similar sizes of the core and intact GDGT pools suggest that core GDGTs are removed from the water column on timescales similar to those of cell replication, on timescales of days to weeks.  相似文献   

15.
Understanding insect endocrine systems: molecular approaches   总被引:2,自引:0,他引:2  
Molecular approaches have led to spectacular improvement of our knowledge of insect endocrinology. The present review focuses on two major classes of insect lipidic hormones, ecdysteroids and juvenile hormones. Although the ecdysteroid biosynthetic pathway is not yet fully elucidated, several new steps have been recently characterized, and molecular studies of biosynthetic enzymes are now beginning. It is expected that, thanks to suitable biological models (e.g., ecdysteroid-defective mutants of Drosophila), the entire biosynthetic pathway will be elucidated in the near future. The understanding of the ecdysteroid mode of action has benefited from studies with Drosophila and major developments relate to the cascades of gene activation and the molecular basis for the stage- and tissue-specificity of hormonal effects. The biosynthetic pathway of juvenile hormones is fully known, but molecular studies of enzymes are still in their infancy, and there is some controversy about the nature of juvenile hormone receptors. Within the forthcoming years, molecular tools will allow to characterize all the enzymes involved in hormone biosynthesis and then to analyze the fine regulation of hormone titers. They will also allow comparative studies aimed at investigating the presence of related molecules (hormone biosynthetic enzymes and receptors) among other Invertebrates (Arthropods and non-Arthropods), and thus to propose evolutionary scenarios for their endocrine systems.  相似文献   

16.
花青素广泛分布于高等植物中,是一种水溶性的植物色素,与农作物的多种品质性状密切相关。虽长期受到关注,但其生物合成途径则是近年来随着拟南芥等植物突变体研究的深入才取得突破的。对于花、果实和种子中的花青素研究始终是热点,近来国内外有很多关于花青素合成与基因调控发明研究的报道。随着研究的深入不仅可以为医疗保健等提供科学依据,而且有助于其在农业生产中应用。本文综述了植物花青素基因的研究现状和发展趋势,包括植物花青素生物合成途径,生物合成途径中相关转录因子的调控,以及已经分离和克隆的调控基因在功能方面的研究进展。  相似文献   

17.
Glycerol dibiphytanyl glycerol tetraether (GDGT) lipids are part of the cellular membranes of Thaumarchaeota, an archaeal phylum composed of aerobic ammonia oxidizers, and are used in the paleotemperature proxy TEX86. GDGTs in live cells possess polar head groups and are called intact polar lipids (IPL‐GDGTs). Their transformation to core lipids (CL) by cleavage of the head group was assumed to proceed rapidly after cell death, but it has been suggested that some of these IPL‐GDGTs can, just like the CL‐GDGTs, be preserved over geological timescales. Here, we examined IPL‐GDGTs in deeply buried (0.2–186 mbsf, ~2.5 Myr) sediments from the Peru Margin. Direct measurements of the most abundant IPL‐GDGT, IPL‐crenarchaeol, specific for Thaumarchaeota, revealed depth profiles, which differed per head group. Shallow sediments (<1 mbsf) contained IPL‐crenarchaeol with both glycosidic and phosphate head groups, as also observed in thaumarchaeal enrichment cultures, marine suspended particulate matter and marine surface sediments. However, hexose, phosphohexose‐crenarchaeol is not detected anymore below 6 mbsf (~7 kyr), suggesting a high lability. In contrast, IPL‐crenarchaeol with glycosidic head groups is preserved over timescales of Myr. This agrees with previous analyses of deeply buried (>1 m) marine sediments, which only reported glycosidic and no phosphate‐containing IPL‐GDGTs. TEX86 values of CL‐GDGTs did not markedly change with depth, and the TEX86 of IPL‐derived GDGTs decreased only when the proportions of monohexose‐ to dihexose‐GDGTs changed, likely due to the enhanced preservation of the monohexose GDGTs. Our results support the hypothesis that in situ GDGT production and differential IPL degradation in sediments is not substantially affecting TEX86 paleotemperature estimations based on CL–GDGTs and indicates that likely only a small amount of IPL‐GDGTs present in deeply buried sediments is part of cell membranes of active archaea. The amount of archaeal biomass in the deep biosphere based on these IPLs may have been substantially overestimated.  相似文献   

18.
Archaea can respond to changes in the environment by altering the composition of their membrane lipids, for example, by modification of the abundance and composition of glycerol dialkyl glycerol tetraethers (GDGTs). Here, we investigated the abundance and proportions of polar GDGTs (P‐GDGTs) and core GDGTs (C‐GDGTs) sampled in different seasons from Tengchong hot springs (Yunnan, China), which encompassed a pH range of 2.5–10.1 and a temperature range of 43.7–93.6°C. The phylogenetic composition of the archaeal community (reanalysed from published work) divided the Archaea in spring sediment samples into three major groups that corresponded with spring pH: acidic, circumneutral and alkaline. Cluster analysis showed correlation between spring pH and the composition of P‐ and C‐GDGTs and archaeal 16S rRNA genes, indicating an intimate link between resident Archaea and the distribution of P‐ and C‐GDGTs in Tengchong hot springs. The distribution of GDGTs in Tengchong springs was also significantly affected by temperature; however, the relationship was weaker than with pH. Analysis of published datasets including samples from Tibet, Yellowstone and the US Great Basin hot springs revealed a similar relationship between pH and GDGT content. Specifically, low pH springs had higher concentrations of GDGTs with high numbers of cyclopentyl rings than neutral and alkaline springs, which is consistent with the predominance of high cyclopentyl ring‐characterized Sulfolobales and Thermoplasmatales present in some of the low pH springs. Our study suggests that the resident Archaea in these hot springs are acclimated if not adapted to low pH by their genetic capacity to effect the packing density of their membranes by increasing cyclopentyl rings in GDGTs at the rank of community.  相似文献   

19.
甾体生物碱是药用植物中广泛存在的一类代谢产物,是一类具有降压、止咳、平喘、抗肿瘤等生物活性的天然产物。目前,甾体生物碱的合成代谢途径、分离纯化、鉴别及生物学功能研究已成为国内外天然产物研究的热点之一。对药用植物甾体生物碱的药理作用进行了综述,并根据萜类物质合成途径,推测总结了甾体生物碱的合成相关途径和参与该途径的关键酶及其基因克隆的研究进展,以期为药用植物甾体生物碱的代谢途径与基因表达调控及应用研究提供参考。  相似文献   

20.
This study reports the intact lipids and the phylogenetic compositions of archaea from marine sediments adjacent to or within a region of methane seeps and hydrate mounds in the Mississippi Canyon (MC) Block 118 in the Gulf of Mexico. An aliquot of lyophilized sediment (~5 g) was extracted for total lipids. Fractions of the glycerol dialkyl glycerol tetraethers (GDGTs) were obtained through column fractionation and determined using liquid-chromatography-mass spectrometry. DNA was extracted from a different aliquot of the sample (~7 g) that was kept at ?80°C. GDGTs showed distinct patterns between non-hydrate and hydrate-impacted samples, suggesting dramatically different archaeal communities caused by the presence of gas hydrates or cold seeps. Clone libraries of 16S rRNA genes were constructed to provide a phylogenetic explanation of the archaeal populations possibly causing the variation in lipid profiles. In contrast to the non-thermophilic crenarchaeota-dominant species in the normal marine sediment, the hydrate-impacted samples showed the predominance of ANME-1 subgroups with Thermoplasmatales being secondarily abundant; both of them are known to produce tetraether lipids and may be responsible for the enhanced archaeal lipids in the hydrate samples. MC 118 is designed to be a seafloor observatory in the Gulf of Mexico and our study represents the initial efforts in characterizing archaeal populations and their role in carbon cycle at this location.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号