首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
目的:研究基质细胞衍生因子-1(SDF-1)/CXCR4轴在骨髓间充质干细胞迁徙到受损胰腺中的作用。方法:密度梯度离心、贴壁培养骨髓间充质干细胞,建立STZ诱导糖尿病模型并制备正常和受损胰腺组织提取液,利用Transwell小室体外迁移体系观察不同浓度SDF-1和不同组织提取液对骨髓间充质干细胞的趋化作用,及SDF-1/CXCR4特异抑制剂AMD3100对骨髓间充质干细胞迁移的影响。结果:成功培养了骨髓间充质干细胞并建立了糖尿病大鼠模型。SDF-l对骨髓间充质干细胞有剂量依赖性的趋化作用,造模1周的胰腺组织提取液对骨髓间充质干细胞有明显的趋化作用,而这种作用可部分被SDF-1受体CXCR4的抑制剂AMD3100抑制。结论:受损胰腺组织提取液对骨髓间充质干细胞有明显的趋化作用,SDF-1/CXCR4轴可能在组织提取液趋化骨髓间充质干细胞迁移中起主要的作用。  相似文献   

2.
骨髓间充质干细胞是具有自我更新能力和分化潜能的一类成体干细胞,经过局部微环境的诱导,可在体内外进行扩展,到晚期可分化成为多种细胞系。当组织受损伤时,可迅速到达损伤部位,分化为特异的组织细胞,参与组织修复。骨髓间充质干细胞这种惊人的分化及组织修复能力,为治疗退行性疾病和器官损伤性疾病提供广阔前景,故成为科研热点。国内外相关实验研究多以大鼠为动物模型,而骨髓间充质干细胞如何进入大鼠体内并定植,是实验成功的重要前提。因此如何找到最合适、最安全的移植途径将骨髓间充质干细胞有效地移植进入大鼠疾病模型体内的受损区域,是研究者关心的重点。本文就目前骨髓间充质干细胞在大鼠实验中不同移植途径进行综述,并比较各种途径的优缺点,希望能对临床科研工作提供参考,并期待能有更成熟的移植手段来推动骨髓间充质干细胞实验研究的进展。  相似文献   

3.
骨髓间充质干细胞是目前广受关注的一群成体干细胞,具有取材容易,增殖能力强,生物学特性稳定,可以跨胚层分化,低免疫源性,参与受损组织修复等优点,随着组织工程的兴起和发展以及其自身所特有的生物学特性,人们逐渐认识到将骨髓间充质干细胞作为肾脏病移植治疗的种子细胞具有良好的应用前景。本文就骨髓间充质干细胞的生物学特性及其在肾脏病移植治疗中的进展做一综述。  相似文献   

4.
卫静  袁发焕  黄云剑 《生物磁学》2011,(10):1987-1990
骨髓间充质干细胞是目前广受关注的一群成体干细胞,具有取材容易,增殖能力强,生物学特性稳定,可以跨胚层分化,低免疫源性,参与受损组织修复等优点,随着组织工程的兴起和发展以及其自身所特有的生物学特性,人们逐渐认识到将骨髓间充质干细胞作为肾脏病移植治疗的种子细胞具有良好的应用前景。本文就骨髓间充质干细胞的生物学特性及其在肾脏病移植治疗中的进展做一综述。  相似文献   

5.
干细胞移植能促使受损心肌再生和改善心功能,是治疗心血管疾病的理想选择。现在有多种干细胞用于研究,用于治疗心血管疾病的干细胞包括胚胎干细胞,诱导多能干细胞、骨髓间充质干细胞和心脏干细胞。不同类型的干细胞都有各自的优点和局限性。胚胎干细胞由于伦理问题应用受到限制。诱导多能干细胞具有胚胎样细胞的特性,增殖能力很强,但是有形成肿瘤的风险。间充质干细胞由于具有免疫调节特性可作为万能供体细胞。心脏干细胞比其它类型的干细胞能更好地表达心肌分化的标记物,改善心脏功能。本文对干细胞在心血管疾病研究及治疗中的最新进展进行综述。  相似文献   

6.
选用Wistar大鼠分离骨髓间充质干细胞作体外培养及鉴定其表达抗原CD44、CDw90;采用10μmol/L 5-氮胞苷诱导第1代的骨髓间充质干细胞,于诱导后2、4周进行免疫细胞化学反应检测α-横纹肌肌动蛋白、肌钙蛋白T。证实体外培养的第1代骨髓间充质干细胞经5-氮胞苷诱导可分化为心肌样细胞,为指导体外诱导的心肌细胞应用于。临床提供一定的理论依据和技术手段。  相似文献   

7.
间充质干细胞存在于成体组织中,来源于骨髓、脂肪组织等,在体外易分离和培养,是具有塑料粘附性的一群非均质细胞。它们具有分化的潜能,在适当的条件下可分化为心肌和血管。临床前期研究显示,在心脏损伤模型中移植间充质干细胞有利于心肌修复和心血管形成。其作用机制与间充质干细胞再生和旁分泌能力密切相关。在临床应用中,间充质干细胞具有免疫抑制作用,也可用于异体移植。总之,虽然间充质干细胞的研究尚有许多问题亟待解决,但是它在心脏疾病的细胞治疗和组织工程中已显示出广阔的前景。  相似文献   

8.
目的研究骨髓间充质干细胞分化为心肌细胞过程中Notch表达的研究。方法用密度梯度离心法分离培养犬骨髓间充质干细胞,按照酶法及差速贴壁法分离培养心肌细胞。观察干细胞增殖及传代情况。单独培养的干细胞为对照组,实验组将骨髓间充质干细胞与心肌细胞共培养,用RT-PCR、免疫细胞化学、MTT等方法检测干细胞分化为心肌细胞的情况,及干细胞在增殖与分化为心肌细胞过程中Notch信号系统的表达情况。结果骨髓间充质干细胞呈梭形、旋涡样生长,增殖及传代能力强,并可诱导分化为心肌样细胞,免疫荧光示心肌细胞标志物的表达。RT-PCR及免疫细胞化学显示实验组有Notch信号通路受体及配体的表达,而对照组表达微弱。结论骨髓间充质干细胞在增殖及分化过程中存在Notch信号通路,在干细胞分化为心肌细胞过程中Notch信号系统的表达上调。  相似文献   

9.
骨髓间充质干细胞因其广泛的临床应用前景而备受关注.非人灵长类动物在基因、生理和代谢等方面与人类相似,在制作疾病模型和疾病治疗研究等方面具有无可比拟的优势.因此,来源于非人灵长类的骨髓间充质干细胞是细胞移植和组织工程研究中的重要工具.本实验对比研究了不同年龄段食蟹猴骨髓间充质干细胞的生物学特征.结果发现,与中年食蟹猴骨髓间充质干细胞比较,青少年食蟹猴骨髓间充质干细胞具有明显高的增殖和分化潜能.长期体外培养的食蟹猴骨髓间充质干细胞能发生自发转变,转变后的细胞具有明显不同于骨髓间充质干细胞的形态特征.端粒酶活性检测显示,各年龄组不同代数的骨髓间充质干细胞端粒酶活性没有明显差别,但与骨髓间充质干细胞比较,转变后的细胞端粒酶活性显著增高.另一方面,随着体外培养时间延长,染色体不稳定性发生频率相应增加.这些结果提示在使用间充质干细胞进行实验或临床研究前,必须全面考虑各种因素,包括供体的年龄等,并且完善各种检测.  相似文献   

10.
目的:比较骨髓间充质干细胞、脂肪间充质干细胞、滑膜间充质干细胞3种间充质干细胞的成软骨分化潜能,为软骨组织工程中种子细胞的选择提供实验依据。方法:采用贴壁法分别分离提取兔骨髓间充质干细胞、脂肪间充质干细胞、滑膜间充质干细胞3种间充质干细胞,并进行传代培养,绘制3种间充质干细胞的生长曲线并比较其倍增时间。将3种间充质干细胞成软骨诱导14 d后,行甲苯胺蓝染色及II型胶原免疫组化染色以观测3种细胞成软骨分化能力。结果:脂肪间充质干细胞的倍增时间短于骨髓间充质干细胞,滑膜间充质干细胞的倍增时间最短;3种细胞成软骨诱导14 d后均产生糖胺聚糖和II型胶原,且组与组之间II型胶原表达水平的差异有统计学意义,骨髓间充质干细胞组高于脂肪间充质干细胞组(P0.01),滑膜间充质干细胞组高于骨髓间充质干细胞组(P0.01)。结论:在一定的培养条件下,3种间充质干细胞均有一定的成软骨细胞分化潜能,滑膜间充质干细胞最快的增殖速度及最强的成软骨分化潜能。  相似文献   

11.
Marrow-derived mesenchymal stem cells (MSCs) have been heralded as a source of great promise for the regeneration of the infarcted heart. There is no clear data indicating whether or not in vitro differentiation of MSCs into major myocardial cells can increase the beneficial effects of MSCs. The aim of this study is to address this issue. To induce MSCs to transdifferentiate into cardiomyocyte-like and endothelial-like cells, 5-azacytidine and vascular endothelial growth factor (VEGF) were used, respectively. Myocardial infarction in rabbits was generated by ligating the left anterior descending coronary artery. Animals were divided into three experimental groups: I, control group; II, undifferentiated mesenchymal stem cell transplantation group; III, differentiated mesenchymal stem cell transplantation group; which respectively received peri-infarct injections of culture media, autologous undifferentiated MSCs and autologous differentiated MSCs. General pathology, immunohistochemistry, electron microscopy and echocardiography were performed in order to search for myocardial regeneration and improvement of cardiac function. In Groups II and III, implanted cells transdifferentiate into myocardial cells within 28 days post injection in a similar manner, and well-developed ultra structures formed within transplanted cells. Improvements in left ventricular function and reductions in infarcted area were observed in both cell-transplanted groups to the same degree. Vascular density was similar in Groups II and III and significantly higher in these groups compared with the control group. There is no need for prior differentiation induction of marrow-derived MSCs before transplantation and peri-infarct implantation of MSCs can efficiently regenerate the infarcted myocardium and improve cardiac function.  相似文献   

12.
The prognosis of patients with myocardial infarction (MI) and resultant chronic heart failure remains extremely poor despite advances in optimal medical therapy and interventional procedures. Animal experiments and clinical trials using adult stem cell therapy following MI have shown a global improvement of myocardial function. Bone marrow-derived mesenchymal stem cells (MSCs) hold promise for cardiac repair following MI, due to their multilineage, self-renewal and proliferation potential. In addition, MSCs can be easily isolated, expanded in culture, and have immunoprivileged properties to the host tissue. Experimental studies and clinical trials have revealed that MSCs not only differentiate into cardiomyocytes and vascular cells, but also secrete amounts of growth factors and cytokines which may mediate endogenous regeneration via activation of resident cardiac stem cells and other stem cells, as well as induce neovascularization, anti-inflammation, anti-apoptosis, anti-remodelling and cardiac contractility in a paracrine manner. It has also been postulated that the anti-arrhythmic and cardiac nerve sprouting potential of MSCs may contribute to their beneficial effects in cardiac repair. Most molecular and cellular mechanisms involved in the MSC-based therapy after MI are still unclear at present. This article reviews the potential repair mechanisms of MSCs in the setting of MI.  相似文献   

13.
Mesenchymal stem cells and the treatment of cardiac disease   总被引:32,自引:0,他引:32  
The ischemia-induced death of cardiomyocytes results in scar formation and reduced contractility of the ventricle. Several preclinical and clinical studies have supported the notion that cell therapy may be used for cardiac regeneration. Most attempts for cardiomyoplasty have considered the bone marrow as the source of the "repair stem cell(s)," assuming that the hematopoietic stem cell can do the work. However, bone marrow is also the residence of other progenitor cells, including mesenchymal stem cells (MSCs). Since 1995 it has been known that under in vitro conditions, MSCs differentiate into cells exhibiting features of cardiomyocytes. This pioneer work was followed by many preclinical studies that revealed that ex vivo expanded, bone marrow-derived MSCs may represent another option for cardiac regeneration. In this work, we review evidence and new prospects that support the use of MSCs in cardiomyoplasty.  相似文献   

14.
骨髓间质干细胞向心肌细胞分化的可塑性及应用研究进展   总被引:6,自引:0,他引:6  
减少心肌缺血后损伤,促进心肌细胞和血管再生是治疗心肌缺血损伤、心力衰竭的重要思路,而干细胞移植为该思路带来了新的曙光。骨髓间质干细胞(-mesenchymal stem cells,MSCs),也称为骨髓基质细胞,能分化为骨、软骨和脂肪细胞表型。研究表明,MSCs还能分化为内皮细胞、神经细胞、平滑肌细胞、骨骼肌细胞和心肌细胞表型。MSCs具有多向分化的潜能,且自体移植可以避免免疫排斥反应,同时也易于在体外大量扩增。研究显示,MSCs移植能抑制损伤心肌的重塑和改善心肌功能。因此,骨髓间质干细胞移植给人们展示了一个诱入的前景。本文综述了近年来有关MSCs特性的新认识,尤其是MSCs向心肌细胞方向分化的可塑性、影响因素和信号转导机制,以及MSCs治疗心肌梗死的动物实验和临床研究进展。  相似文献   

15.
Mesenchymal stem cells (MSCs) are the most popular among the adult stem cells in tissue engineering and regenerative medicine. Since their discovery and functional characterization in the late 1960s and early 1970s, MSCs or MSC‐like cells have been obtained from various mesodermal and non‐mesodermal tissues, although majority of the therapeutic applications involved bone marrow‐derived MSCs. Based on its mesenchymal origin, it was predicted earlier that MSCs only can differentiate into mesengenic lineages like bone, cartilage, fat or muscle. However, varied isolation and cell culturing methods identified subsets of MSCs in the bone marrow which not only differentiated into mesenchymal lineages, but also into ectodermal and endodermal derivatives. Although, true pluripotent status is yet to be established, MSCs have been successfully used in bone and cartilage regeneration in osteoporotic fracture and arthritis, respectively, and in the repair of cardiac tissue following myocardial infarction. Immunosuppressive properties of MSCs extend utility of MSCs to reduce complications of graft versus host disease and rheumatoid arthritis. Homing of MSCs to sites of tissue injury, including tumor, is well established. In addition to their ability in tissue regeneration, MSCs can be genetically engineered ex vivo for delivery of therapeutic molecule(s) to the sites of injury or tumorigenesis as cell therapy vehicles. MSCs tend to lose surface receptors for trafficking and have been reported to develop sarcoma in long‐term culture. In this article, we reviewed the current status of MSCs with special emphasis to therapeutic application in bone‐related diseases. J. Cell. Biochem. 111: 249–257, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
Mesenchymal stem cells (MSCs) are an ideal adult stem cell with capacity for self‐renewal and differentiation with an extensive tissue distribution. The present study evaluates the therapeutic effects of bone marrow mesenchymal stem cells (BM‐MSCs) or adipose‐derived mesenchymal stem cells (AD‐MSCs) against the development of methotrexate (MTX)‐induced cardiac fibrosis versus dexamethasone (DEX). Rats were allocated into five groups; group 1, received normal saline orally; group 2, received MTX (14 mg/kg/week for 2 weeks); groups 3 and 4, treated once with 2 × 10 6 cells of MTX + BM‐MSCs and MTX + AD‐MSCs, respectively; and group 5, MTX + DEX (0.5 mg/kg, for 7 days, P.O.). MTX induced cardiac fibrosis as marked changes in oxidative biomarkers and elevation of triglyceride, cholesterol, aspartate aminotransferase, gamma‐glutamyl transferase, creatine kinase, and caspase‐3, as well as deposited collagen. These injurious effects were antagonized after treatment with MSCs. So, MSCs possessed antioxidant, antiapoptotic, as well antifibrotic effects, which will perhaps initiate them as notable prospective for the treatment of cardiac fibrosis.  相似文献   

17.
Multipotent mesenchymal stromal cells(MSC),have the potential to differentiate into cells of the mesenchymal lineage and have non-progenitor functions including immunomodulation.The demonstration that MSCs are perivascular cells found in almost all adult tissues raises fascinating perspectives on their role in tissue maintenance and repair.However,some controversies about the physiological role of the perivascular MSCs residing outside the bone marrow and on their therapeutic potential in regenerative medicine exist.In brain,perivascular MSCs like pericytes and adventitial cells,could constitute another stem cell population distinct to the neural stem cell pool.The demonstration of the neuronal potential of MSCs requires stringent criteria including morphological changes,the demonstration of neural biomarkers expression,electrophysiological recordings,and the absence of cell fusion.The recent finding that brain cancer stem cells can transdifferentiate into pericytes is another facet of the plasticity of these cells.It suggests that the perversion of the stem cell potential of pericytes might play an even unsuspected role in cancer formation and tumor progression.  相似文献   

18.
间充质干细胞MSCs(mesenchymal stem cells)与肿瘤细胞间的相互作用是近年来肿瘤领域的研究热点之一.MSCs是一种多能干细胞,具有分化为成骨细胞、软骨细胞、脂肪细胞、纤维母细胞或肌肉细胞等多种间充质细胞的能力.MSCs在肿瘤细胞中表现出的归巢和转移能力为其成为潜在的抗肿瘤工具奠定了基础,MSCs转移到肿瘤细胞后参与重塑肿瘤微环境,并对其增殖、侵袭和转移等生物学行为产生重要影响.MSCs重塑肿瘤微环境后对肿瘤细胞的增殖究竟是促进还是抑制,相关文献报道有很大的争议.基于相关研究近况,主要综述骨髓间充质干细胞BMSCs(bone marrow derived mesenchymal stem cells)参与重塑肿瘤微环境对肿瘤细胞增殖的影响,并就已知的分子机理做一简要介绍.  相似文献   

19.
For decades, mesenchymal stem (MSCs) cells have been used for cardiovascular diseases as regenerative therapy. This review is an attempt to summarize the types of MSCs involved in myocardial infarction (MI) therapy, as well as its possible mechanisms effects, especially the paracrine one in MI focusing on the studies (human and animal) conducted within the last 10 years. Recently, reports showed that MSC therapy could have infarct‐limiting effects after MI in both experimental and clinical trials. In this context, various types of MSCs can help cardiac regeneration by either revitalizing the cardiac stem cells or revascularizing the arteries and veins of the heart. Furthermore, MSCs could produce paracrine growth factors that increase the survival of nearby cardiomyocytes, as well as increase angiogenesis through recruitment of stem cell from bone marrow or inducing vessel growth from existing capillaries. Recent research suggests that the paracrine effects of MSCs could be mediated by extracellular vesicles including exosomes. Exosomal microRNAs (miRNAs) released by MSCs are promising therapeutic hotspot target for MI. This could be attributed to the role of miRNA in cardiac biology, including cardiac regeneration, stem cell differentiation, apoptosis, neovascularization, cardiac contractility and cardiac remodeling. Furthermore, gene‐modified MSCs could be a recent promising therapy for MI to enhance the paracrine effects of MSCs, including better homing and effective cell targeted tissue regeneration. Although MSC therapy has achieved considerable attention and progress, there are critical challenges that remains to be overcome to achieve the most effective successful cell‐based therapy in MI.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号