首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 421 毫秒
1.
刘昊奇  吕光辉 《生态学报》2018,38(9):3272-3280
由于生境丧失日益严重,很难找到一片未被破坏的生境建立自然保护区,因而在设计保护区时,必须处理生境丧失带来的影响。在一个已经遭受过生境丧失的景观上,选取一片正方形的区域,并调整区域的面积以保证其中未被破坏生境的面积为一个固定常数,探讨将未被破坏的生境建设成大量小保护区还是少量大保护区。结果表明:(1)随机的生境丧失下,生境丧失比例越高,少量大保护区模式的优势越明显。(2)即使生境丧失比例恒定,被破坏生境的空间分布形式也有重要影响——被破坏生境的空间聚集程度越高,大量小保护区模式的优势越明显。(3)增加扩散率或降低扩散死亡率可导致从少量大保护区更有利于物种到大量小保护区更有利的转变,且被破坏生境的聚集程度越高,转变的程度越高。以上结论为自然保护区设计提供了理论依据。  相似文献   

2.
王波  王跃招 《四川动物》2007,26(2):477-480
全球两栖动物正以远超过自然灭绝的高速率灭绝,这与生境丧失和景观破碎化有着直接关系。生境丧失导致两栖动物的生存空间减少,使局部种群消失,而景观破碎化则导致两栖动物种群之间的隔离度增加,不利于动物的繁殖和扩散。但两者往往是同时出现,相互作用。复合种群、景观连接度、景观遗传学及景观模型模拟等理论和方法的发展,为在生境丧失与破碎化景观下两栖动物的种群结构、组成和动态变化研究提供了理论基础和技术方法。同时景观生态学中特别重视研究的尺度,生境破碎化是发生在景观尺度下的生境变化过程,因此对生境破碎化的影响应该从现有的主要集中在斑块尺度和斑块-景观尺度转变到景观尺度上来。  相似文献   

3.
生境破碎化对动物种群存活的影响   总被引:51,自引:12,他引:39  
武正军  李义明 《生态学报》2003,23(11):2424-2435
生境破碎是生物多样性下降的主要原因之一。通常以岛屿生物地理学、异质种群生物学和景观生态学的理论来解释不同空间尺度中生境破碎化的生态学效应。生境破碎化引起面积效应、隔离效应和边缘效应。这些效应通过影响动物种群的绝灭阈值、分布和多度、种间关系以及生态系统过程,最终影响动物种群的存活。野外研究表明,破碎化对动物的影响,因物种、生境类型和地理区域不同而有所变化,因此,预测物种在破碎生境中的存活比较困难。研究热点集中于:确定生境面积损失和生境斑块的空间格局对破碎景观中物种绝灭的相对影响,破碎景观中物种的适宜生境比例和绝灭阈值,异质种群动态以及生态系统的生态过程。随着3S技术的发展,生境破碎化模型趋于复杂,而发展有效的模型和验证模型将成为一项富有挑战性的任务。  相似文献   

4.
生境破碎化对生物多样性的影响   总被引:8,自引:0,他引:8  
杨芳  贺达汉 《生态科学》2006,25(6):564-567
生境破碎化对生物多样性和生态系统功能的影响是当前国内外生态学家研究的热点问题之一。生境破碎化导致原生境的总面积减小,产生隔离的异质种群,从而影响个体行为特性、种群间基因交换、物种间相互作用及生态过程。生境破碎化的过程引起栖息地内部食物、繁殖场所、局部小气候、边缘效应等生物和非生物条件的变化,从而影响植物种群的大小和灭绝速率、扩散和迁入、遗传和变异以及存活力等,影响动物种群的异质种群动态、适宜生境比例、灭绝阈值、种间关系等。随着景观生态学与农业科学的融合,探索利用景观布局控制害虫发生将是人类利用生境破碎化为人类服务的一条新途径。  相似文献   

5.
农业景观结构对麦蚜寄生蜂群落组成的影响   总被引:2,自引:0,他引:2  
麦蚜是中国北方小麦上最重要的害虫之一,既能直接刺吸危害也可传播多种病毒,但麦蚜通常的危害期只有2~3个月。随着现代农业与设施农业的发展,农业景观结构发生了巨大的改变,整个麦蚜寄生蜂群落也随之发生了显著的变化。经典假说认为复杂的农业景观能够维持局部的物种多样性及种间关系,也能够维持更大的天敌资源。作者在4种不同的麦田景观类型下研究了麦蚜及寄生蜂的群落结构,发现简单农业景观与复杂农业景观中寄生蜂寄生率与多样性差异不显著,但初寄生蜂在800m2左右的生境面积中寄生率与多样性最高,重寄生蜂却并没有表现出这种分布,而在更大的生境中重寄生率与多样性更高。研究结果表明:1)生境面积是影响麦蚜及寄生蜂群落的重要因子,2)简单农业景观与复杂农业景观下麦蚜及寄生蜂群落多样性差异不显著,3)一定程度的生境破碎化能够促进初寄生蜂的种群而抑制重寄生蜂的种群,但高度的生境破碎化会同时抑制2种寄生蜂的种群。  相似文献   

6.
管超毅  陈智  黄乘明  周岐海 《生态学报》2022,42(3):1203-1212
黑叶猴(Trachypithecus francoisi)是仅分布于喀斯特石山生境的珍稀濒危灵长类动物。由于非法捕杀和人类活动干扰,其种群数量正在急剧减少。同时,随着森林砍伐和土地开垦的加速,其栖息地严重破碎化。因此,了解栖息地破碎化对黑叶猴种群的影响对于保护这一珍稀濒危物种具有重要意义。基于遥感影像、土地利用数据以及黑叶猴种群调查数据,通过Fragstats软件开展广西黑叶猴栖息地景观破碎化分析,并通过相关性和多元逐步回归分析,探讨了景观格局对广西黑叶猴种群数量的影响。结果表明:(1)广西黑叶猴栖息地呈现破碎化严峻、斑块形状复杂化、斑块团聚程度较弱且分散化的现象;栖息地以林地景观占据重要优势,但人为景观的干扰十分强烈;在不同地区中,生境破碎化程度、人为干扰强度以及景观配置均呈现不同的特征,其中扶绥地区人为干扰最为强烈,德保地区的景观块数破碎化程度较为严重,而龙州地区的人为干扰程度最小,其森林景观最为聚集。(2)蔓延度指数、平均斑块分维指数、林地面积、林地斑块大小、裸岩面积和裸岩面积比重等景观指数与黑叶猴种群数量有显著正向关系,Shannon多样性指数则是显著负向关系;而耕地面积、耕地...  相似文献   

7.
近40年东北地区陆栖脊椎动物种群数量及其生境变化评估   总被引:1,自引:0,他引:1  
生物多样性是生态平衡维持和生态过程与功能实现的基础,东北地区是我国乃至全球生物多样性最为丰富的地区之一。为研究和探讨东北地区陆栖脊椎动物种群数量与生境变化之间的关系,利用物种调查数据和生境遥感观测数据,以地球生命力指数、生态系统面积和破碎度等指示性指标,综合评估了近40年东北地区陆栖脊椎动物种群数量及其生境变化。结果表明:1970—2010年,东北地区陆栖脊椎动物种群数量下降了近70.1%,森林脊椎动物种群数量减少了近80.9%,草原和荒漠生态系统脊椎动物种群数量增加了近180.9%。1980—2010年,湿地物种种群数量减少了近75.7%。1980—2015年期间,农业和城镇建设用地增幅分别达到25.2%和32.3%,不断挤占和蚕食着自然生态空间,致使自然生境面积不断减少,减幅约为8.0%。自然生境景观破碎化程度总体呈现加重趋势,尤其是森林生境,破碎化指数增加约42.7%。但是,2005年之后,自然生境景观破碎化程度加重趋势趋缓,与2005年之后脊椎动物种群数量减少幅度减缓趋势一致。森林砍伐、人口增长、城镇化、交通建设等造成的自然生态系统破碎度增加和栖息地质量下降对大型兽类影响比较显著。  相似文献   

8.
Allee效应与种群的灭绝密切相关,其研究对生态保护和管理至关重要。Allee效应对物种续存是潜在的干扰因素,濒危物种更容易受其影响,可能会增加生存于生境破碎化斑块的濒危物种的死亡风险,因此研究Allee效应对种群的动态和续存的影响是必要的。从包含由生物有机体对环境的修复产生的Allee效应的集合种群模型出发,引入由其他机制形成的Allee效应,建立了常微分动力系统模型和基于网格模型的元胞自动机模型。通过理论分析和计算机模拟表明:(1)强Allee效应不利于具有生境恢复的集合种群的续存;(2)生境恢复有利于种群续存;(3)局部扩散影响了集合种群的空间结构、动态行为和稳定性,生境斑块之间的局部作用将会减缓或消除集合种群的Allee效应,有利于集合种群的续存。  相似文献   

9.
钟明  侍昊  安树青  冷欣  李宁 《生态科学》2016,35(4):205-209
生境是生物出现的环境空间, 开展野生动物的生境适宜性评价和生境破碎化研究, 有助于濒危动物的保育。随着生态学科的发展, 多元统计分析、景观生态学和3S 技术被用于生境适宜性评价中, 使其研究结果广泛应用于生境质量评估、生境承载力分析、物种潜在分布预测和物种濒危机制评价等方面。然而研究对象基础资料的缺乏和研究时间较短常局限生境适宜性评价研究继续深入。生境破碎化研究常集中在破碎化现状及其对生物的影响。时空尺度的扩展和研究方向的分化应是今后生境破碎化研究的发展趋势。  相似文献   

10.
向海自然保护区丹顶鹤生境结构空间特征   总被引:9,自引:1,他引:8  
张艳红  邓伟  张树文 《生态学报》2006,26(11):3725-3731
丹顶鹤为国家一级保护珍稀禽类,是向海自然保护区重点保护对象。在我国乃至世界范围的丹顶鹤保护中占有重要的地位。近年来,由于自然条件和人类活动的干扰,丹顶鹤的天然家园.沼泽湿地发生退化,其生存受到威胁,丹顶鹤的数量波动变化较大。为了有效地保护丹顶鹤有必要详细了解和掌握其生境结构的空间特征和变化特点,以了解丹顶鹤的生境动态。在RS、GIS技术和统计分析方法的支持下,运用景观生态学方法对向海自然保护区丹顶鹤生境空间结构特征从景观特征、生境斑块空间关系和生境破碎化3个方面进行分析。选择景观斑块面积、周长、斑块大小以及斑块密度等描述保护区景观格局基本特征。利用斑块的邻接边界长度和斑块间隙指数分析丹顶鹤生境——沼泽斑块的空间邻接关系和聚集程度,数据表明沼泽斑块与人类活动频繁的耕地邻接较为紧密,而自身的间隙指数自20世纪70年代以来有明显增大趋势。分析了由于自然原因和人为活动影响所造成的丹顶鹤生境斑块的空间破碎化程度。计算结果表明,由于沼泽生境自身条件的限制,研究区内物理性破碎化减少的生境面积为2039.6hm^2,人为破碎化(居民地和道路)减少的生境面积为3845.1hm^2,这样研究区内丹顶鹤适宜生境面积为13680.1hm^2,可见人类活动对丹顶鹤生境影响很大。研究为保护区内丹顶鹤物种的保护和生境管理提供重要的科学依据。  相似文献   

11.
Brood parasitic birds impose variable fitness costs upon their hosts by causing the partial or complete loss of the hosts' own brood. Growing evidence from multiple avian host-parasite taxa indicates that exposure of individual hosts to parasitism is not necessarily random and varies with habitat use, nest-site selection, age or other phenotypic attributes. For instance, nonrandom patterns of brood parasitism had similar evolutionary consequences to those of limited horizontal transmission of parasites and pathogens across space and time and altered the dynamics of both population productivity and co-evolutionary interactions of hosts and parasites. We report that brood parasitism status of hosts of brown-headed cowbirds Molothrus ater is also transmitted across generations in individually colour-banded female prothonotary warblers Protonotaria citrea. Warbler daughters were more likely to share their mothers' parasitism status when showing natal philopatry at the scale of habitat patch. Females never bred in their natal nestboxes but daughters of parasitized mothers had shorter natal dispersal distances than daughters of nonparasitized mothers. Daughters of parasitized mothers were more likely to use nestboxes that had been parasitized by cowbirds in both the previous and current years. Although difficult to document in avian systems, different propensities of vertical transmission of parasitism status within host lineages will have critical implications both for the evolution of parasite tolerance in hosts and, if found to be mediated by lineages of parasites themselves, for the difference in virulence between such extremes as the nestmate-tolerant and nestmate-eliminator strategies of different avian brood parasite species.  相似文献   

12.
Habitat fragmentation and extinction thresholds on fractal landscapes   总被引:3,自引:0,他引:3  
Habitat fragmentation is a potentially critical factor in determining population persistence. In this paper, we explore the effect of fragmentation when the fragmentation follows a fractal pattern. The habitat is divided into patches, each of which is suitable or unsuitable. Suitable patches are either occupied or unoccupied, and change state depending on rates of colonization and local extinction. We compare the behaviour of two models: a spatially implicit patch-occupancy (PO) model and a spatially explicit cellular automaton (CA) model. The PO model has two fixed points: extinction, and a stable equilibrium with a fixed proportion of occupied patches. Global extinction results when habitat destruction reduces the proportion of suitable patches below a critical threshold. The PO model successfully recreates the extinction patterns found in other models. We translated the PO model into a stochastic cellular automaton. Fractal arrangements of suitable and unsuitable patches were used to simulate habitat fragmentation. We found that: (i) a population on a fractal landscape can tolerate more habitat destruction than predicted by the patch-occupancy model, and (ii) the extinction threshold decreases as the fractal dimension of the landscape decreases. These effects cannot be seen in spatially implicit models. Landscape struc-ture plays a vital role in mediating the effects of habitat fragmentation on persistence.  相似文献   

13.
Spatially structured environments may impact evolution by restricting population sizes, limiting opportunities for genetic mixis, or weakening selection against deleterious genotypes. When habitat structure impedes dispersal, low-productivity (less virulent) infectious parasites may benefit from their prudent exploitation of local hosts. Here we explored the combined ability for habitat structure and host density to dictate the relative reproductive success of differentially productive parasites. To do so, we allowed two RNA bacteriophage Phi6 genotypes to compete in structured and unstructured (semi-solid versus liquid) habitats while manipulating the density of Pseudomonas hosts. In the unstructured habitats, the more-productive phage strain experienced a relatively constant fitness advantage regardless of starting host density. By contrast, in structured habitats, restricted phage dispersal may have magnified the importance of local productivity, thus allowing the relative fitness of the less-productive virus to improve as host density increased. Further data suggested that latent period (duration of cellular infection) and especially burst size (viral progeny produced per cell) were the phage "life-history" traits most responsible for our results. We discuss the relevance of our findings for selection occurring in natural phage populations and for the general evolutionary epidemiology of infectious parasites.  相似文献   

14.
Environmental heterogeneity has been shown to have a profound effect on population dynamics and biological invasions, yet the effect of its spatial structure on the dynamics of disease invasion in a spatial host–parasite system has received little attention. Here we explore the effect of environment heterogeneity using the pair approximation and the stochastic spatially explicit simulation in which the lost patches are clustered in a fragmented landscape. The intensity of fragmentation is defined by the amount and spatial autocorrelation of the lost habitat. More fragmented landscape (high amount of habitat loss, low clustering of lost patches) was shown to be detrimental to the parasitic disease invasion and transmission, which implies that the potential of using artificial disturbances as a disease-control agency in biological conservation and management. Two components of the spatial heterogeneity (the amount and spatial autocorrelation of the lost habitat) formed a trade-off in determining the host–parasite dynamics. An extremely high degree of habitat loss was, counter-intuitively, harmful to the host. These results enrich our understanding of eco-epidemiological, host–parasite systems, and suggest the possibility of using the spatial arrangement of habitat patches as a conservation tool for guarding focal species against parasitic infection and transmission.  相似文献   

15.
Parasite distributions depend on the local environment in which host infection occurs, and the surrounding landscape over which hosts move and transport their parasites. Although host and landscape effects on parasite prevalence and spatial distribution are difficult to observe directly, estimation of such relationships is necessary for understanding the spread of infections and parasite–habitat associations. Although parasite distributions are necessarily nested within host distributions, direct environmental influences on local infection or parasite effects on host dispersal could lead to distinct landscape or habitat relationships relative to their hosts. Our aim was to determine parasite spatial structure across a contiguous prairie by statistical modeling of parasite–landscape relationships combined with analysis of population genetic structure. We sampled northern leopard frogs (Lithobates pipiens) and wood frogs (L. sylvaticus) for host-specific lung nematodes (Rhabdias ranae and R. bakeri; respectively) across the Sheyenne National Grassland in southeastern North Dakota and developed primers for 13 microsatellite loci for Rhabdias. The two Rhabdias species exhibited different correlations with landscape characteristics that conformed with that of their hosts, indicating transmission is driven by host ecology, probably density, and not directly by the environment. There was evidence for localized, patchy spatial genetic structure, but no broader-scale geographic patterns, indicating no barriers to host and parasite dispersal. Nematodes cohabitating in an individual frog were most genetically similar. Worms within the same wetland were also genetically similar, indicating localized transmission and resulting wetland-scale patchiness are not completely obscured by broad-scale host–parasite dispersal. Beyond individual wetlands, we found no evidence of genetic isolation-by-distance or patchiness at the landscape-scale.  相似文献   

16.
Simulations of dispersal across computer-generated neutral landscapes have generated testable predictions about the relationship between dispersal success and landscape structure. Models predict a threshold response in dispersal success with increasing habitat fragmentation. A threshold is defined as an abrupt, disproportionate decline in dispersal success at a certain proportion of habitat in the landscape. To identify potential empirical threshold responses in invasion success to landscape structure, we quantified the relationship between progression of the gypsy moth (Lymantria dispar) invasion wavefront across Michigan (1985–1996) and the structure of the Michigan landscape using two indices of invasion success and six landscape metrics. We also examined the effect of scale of analysis and choice of land cover characterization on our results by repeating our analysis at three scales using two different land cover maps. Contrary to simulation model predictions, thresholds in invasion success did not correspond closely with thresholds in landscape structure metrics. Increased variation in invasion success indices at smaller scales of analysis also suggested that invasion success should be studied at larger spatial extents (≥75 km2) than would be appropriate for characterizing individual dispersal events. The predictions of individual dispersal models across neutral landscapes may have limited applications for the monitoring and management of vagile species with excellent dispersal capabilities such as the gypsy moth.  相似文献   

17.
For an epidemic to occur in a closed population, the transmission rate must be above a threshold level. In plant populations, the threshold depends not only on host density, but on the distribution of hosts in space. This paper presents an alternative analysis of a previously presented stochastic model for an epidemic in continuous space (Bolker, 1999, Bull. Math. Biol. 61, 849–874). A variety of moment closures are investigated to determine the dependence of the epidemic threshold on host spatial distribution and pathogen dispersal. Local correlations that arise during the early phase of the outbreak determine whether a true global epidemic will occur.  相似文献   

18.
Simple analytical models assuming homogeneous space have been used to examine the effects of habitat loss and fragmentation on metapopulation size. The models predict an extinction threshold, a critical amount of suitable habitat below which the metapopulation goes deterministically extinct. The consequences of non-random loss of habitat for species with localized dispersal have been studied mainly numerically. In this paper, we present two analytical approaches to the study of habitat loss and its metapopulation dynamic consequences incorporating spatial correlation in both metapopulation dynamics as well as in the pattern of habitat destruction. One approach is based on a measure called metapopulation capacity, given by the dominant eigenvalue of a "landscape" matrix, which encapsulates the effects of landscape structure on population extinctions and colonizations. The other approach is based on pair approximation. These models allow us to examine analytically the effects of spatial structure in habitat loss on the equilibrium metapopulation size and the threshold condition for persistence. In contrast to the pair approximation based approaches, the metapopulation capacity based approach allows us to consider species with long as well as short dispersal range and landscapes with spatial correlation at different scales. The two methods make dissimilar assumptions, but the broad conclusions concerning the consequences of spatial correlation in the landscape structure are the same. Our results show that increasing correlation in the spatial arrangement of the remaining habitat increases patch occupancy, that this increase is more evident for species with short-range than long-range dispersal, and that to be most beneficial for metapopulation size, the range of spatial correlation in landscape structure should be at least a few times greater than the dispersal range of the species.  相似文献   

19.
Aim To determine whether the effect of habitat fragmentation and habitat heterogeneity on species richness at different spatial scales depends on the dispersal ability of the species assemblages and if this results in nested species assemblages. Location Agricultural landscapes distributed over seven temperate Europe countries covering a range from France to Estonia. Methods We sampled 16 local communities in each of 24 agricultural landscapes (16 km2) that differ in the amount and heterogeneity of semi‐natural habitat patches. Carabid beetles were used as model organisms as dispersal ability can easily be assessed on morphological traits. The proximity and heterogeneity of semi‐natural patches within the landscape were related to average local (alpha), between local (beta) and landscape (gamma) species richness and compared among four guilds that differ in dispersal ability. Results For species assemblages with low dispersal ability, local diversity increased as the proximity of semi‐natural habitat increased, while mobile species showed an opposite trend. Beta diversity decreased equally for all dispersal classes in relation to proximity, suggesting a homogenizing effect of increased patch isolation. In contrast, habitat diversity of the semi‐natural patches affected beta diversity positively only for less mobile species, probably due to the low dispersal ability of specialist species. Species with low mobility that persisted in highly fragmented landscapes were consistently present in less fragmented ones, resulting in nested assemblages for this mobility class only. Main conclusions The incorporation of dispersal ability reveals that only local species assemblages with low dispersal ability show a decrease of richness as a result of fragmentation. This local species loss is compensated at least in part by an increase in species with high dispersal ability, which obscures the effect of fragmentation when investigated across dispersal groups. Conversely, fragmentation homogenizes the landscape fauna for all dispersal groups, which indicates the invasion of non‐crop habitats by similar good dispersers across the whole landscape. Given that recolonization of low dispersers is unlikely, depletion of these species in modern agricultural landscapes appears temporally pervasive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号