首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
本研究通过方法学的改良和观察方式的创新试图阐明这种现象的原因。微卫星非传统的检测方法仅能实现微卫星定性检测,我所在的研究组开发了自动片段分析双荧光标识技术,提高了微卫星检测的感度和重复性。并实现了微卫星片段变化长度的定量。小于6碱基的微卫星变化被定义为修饰型微卫星不稳定,大于8碱基的变化被定义为跳跃型微卫星不稳定.它们的电泳谱截然不同。前者表现为在非肿瘤来源微卫星位点基础上的增加或减少,后者表现为距离非肿瘤微卫星片段远隔部位的新波形的出现。通过研究我们发现,在DNA错配修复缺陷细胞系及基因敲除大鼠自发肿瘤样本,仅有修饰型微卫星不稳定性检出;在人类DNA错配修复缺陷细胞系连续80次传代也没有检出跳跃型变化。跳跃型变化不能通过简单重复序列不稳定基础上的增加或减少的累加而获得。在76例散发大肠癌,我们检测了微卫星不稳定性,KRAS基因突变,并对高频度微卫星不稳定性病例的两个主要DNA错配修复基因MSH2和MLH1进行了全长测序。我们发现,在大肠癌,按频度的传统分类与按波形变化的分类有高度的一致性,高频度微卫星不稳定性病例均检测到跳跃型表现,低频度微卫星不稳定性都表现为修饰型变化。在12例高频度微卫星不稳定病例,有三例检出了跳跃型和修饰型同时存在微卫星不稳定的特殊表型,这3例均检出KRAS的突变,更有趣的是该3例病例也同时检出了DNA错配修复基因MLH1的变异。而在其他9例高频度微卫星不稳定病例,KRAS突变及MLH1、MSH2突变未检出。通过对突变谱的分析我们还发现,修饰型微卫星不稳定与KRAS基因12号密码子的转换型突变高度相关,而微卫星稳定的病例检出的KRAS基因12号密码子突变多为颠换型突变。修饰型微卫星不稳定表型检出的高频度转换?  相似文献   

2.
微卫星不稳定性的生物学意义及其应用前景   总被引:6,自引:0,他引:6  
Ding Y  Tong TJ 《生理科学进展》1999,30(4):292-296
微卫星为遍布于人类基因组中的简单重复序列。在人群中,它们呈现高度多态性,并且稳定遗传。微卫星的高度多态性是微卫星不稳定性的表现,它与错配修复基因的缺陷有关。微卫星不稳定性已广泛应用于肿瘤学的研究,并依此提出了肿瘤发生的“增变基因”途径。  相似文献   

3.
目的探讨微卫星在转基因和基因突变小鼠中的变化,为基因修饰和遗传突变动物的遗传检测和表型分析提供理论依据和技术手段。方法根据文献报道,从GenBank中选取198个等位基因数量多、富含多态性的微卫星位点,以野生型动物为对照,对6种近交系遗传背景的转基因小鼠和5种自然基因突变的近交系小鼠进行微卫星多态性检测,选用1.5%琼脂糖凝胶电泳和STR扫描技术,比较分析微卫星不稳定性。结果共有40个微卫星位点在转基因和基因突变小鼠中表现出多态性。在基因突变小鼠中,微卫星不稳定性有55.6%(10/18)是由纯合变为杂合(Ⅰ型),有3个位点(16.6%,3/18)是纯合突变(Ⅱ型),有5个位点同时存在2种类型的突变。但是在转基因动物中,大多数的微卫星多态性为Ⅰ型突变(87.5%,28/32),只有2个位点(6.2%,2/32)是Ⅱ型突变。另外有2个位点同时存在2种类型的突变。结论基因修饰或基因突变可引起小鼠相关微卫星发生不稳定性,而且某些微卫星位点对基因改变敏感性较高。  相似文献   

4.
MLH1是位于3p21.3上的一个DNA错配修复基因,其异常与多种肿瘤相关。为探索食管鳞癌中MLH1基因改变及其与微卫星不稳定(MSI)的关联情况,采用微卫星分析和RT—PCR方法检测了14个微卫星标志在食管癌中的状况及MLH1转录水平的表达,发现35%的食管癌出现至少一个微卫星的不稳定,66.7%的肿瘤在MLH1基因内标志D3S1611位点表现为杂合性丢失,但是MLH1没有明显的mRNA表达下调。MSI与食管癌分期、分级、淋巴结转移、患者年龄和性别等参数及MLH1基因杂合性丢失(LOH)之间无统计学意义的相关性。这些结果表明:食管癌中MLH1存在较高频率的等位基因丢失,但其mRNA表达水平并无明显异常;所测微卫星标志的不稳定是食管癌的频发事件,与MLH1基因LOH不存在必然联系。  相似文献   

5.
在有丝分裂过程中BUBR1监视微管与着丝点的结合,是保证染色体均等分离的重要分子机制之一.BUBIB变异家谱研究及其敲除模型的研究表明,BUBR1缺陷与染色体不稳定性及肿瘤的发生直接相关.近来在数种人类肿瘤,对BUBR1蛋白过度表达有所报道.但在直结肠癌,BUBR1的过度表达是否与染色体不稳定性的发生有关目前仍无定论.在人类结直肠癌的遗传不稳定性主要表现为两种类型,染色体不稳定性及微卫星不稳定性,它们提示了两条独立的肿瘤发生路径.一般认为不存在高频度微卫星不稳定性表型的肿瘤通过染色体不稳定途径癌变.P53蛋白通过多种机制对维护遗传稳定性起到重要的作用,TP53基因突变经常与染色体不稳定现象并存.DNA倍体情况也是染色体不稳定研究不可缺少的指标.本研究采用免疫组织化学法检测了一组93例进展期散发结直肠癌BUBR1蛋白的表达情况,直接测序法检测TP53变异.高分辨率荧光标记微卫星不稳定检测技术检测微卫星状态,固相激光扫描细胞仪技术检测DNA倍体情况.我们分析了BUBR1表达与三种反映遗传背景的因子的关系.BUBR1蛋白过度表达在人结直肠癌较为常见.在非高频度微卫星不稳定的结直肠癌,BUBR1蛋白过度表达率明显为高(P<0.01),在TP53基因突变的病例其过度表达率亦较高(P<0.05).BUBR1蛋白的过度表达与DNA异倍体无统计学相关,但DNA异倍体病例的BuBRl过度表达有偏高倾向.BuBRl表达情况与常用的临床病理学指标无统计学相关.BuBRl过度表达同微卫星状态及TP53突变的关系明确的提示,在人类散发结直肠癌,BUBR1蛋白过度表达与染色体不稳定状态有关.BUBR1过度表达作为一种常见的分子异常,对于肿瘤的早诊预防提供新的标志物.并可能成为治疗的新靶点.  相似文献   

6.
线粒体DNA直接控制细胞氧化磷酸化过程,其基因组序列发生突变尤其是微卫星DNA 不稳定性会严重降低线粒体产生能量的功能,诱发细胞程序性死亡和癌细胞形成。目前,有关人类线粒体微卫星DNA不稳定性与肿瘤关系的研究越来越受到关注。仅就微卫星DNA的特点和不稳定性形成的机理以及与肿瘤关系的研究进展作以概述。  相似文献   

7.
目的:通过对脊柱裂(spina bifida)胚胎脑组织中微卫星不稳定性(microsatellite instability,MSI)的分析,探讨遗传不稳定性是否为此疾病的特征之一,进而研究错配修复系统(mismatch repair,MMR)与脊柱裂发病的分子机制。方法:19例脊柱裂和19例非神经管畸形对照脑组织中提取DNA;尿素变性凝胶电泳法检测标本中MSI发生情况。结果:在19例脊柱裂脑组织中9例MSI阳性,阳性率47.4%。其中2例为高度微卫星不稳定(high frequency microsatellite instability,MSI-H),7例为低度微卫星不稳定(lowfrequency microsatellite instability,MSI-L),其余10例为微卫星稳定(microsatellite stable,MSS),对照组中未出现MSI。选择的5个微卫星位点MSI的阳性率分别为Bat34C4(10.5%)、Bat26(26.5%)、D2S123(10.5%)、D3S1611(5.3%),D2S119(5.3%)。结论:脊柱裂中存在MSI现象,提示MSI、错配修复系统可能与脊柱裂的发生有一定关系。  相似文献   

8.
目的:通过对脊柱裂(spina bifida)胚胎脑组织中微卫星不稳定性(microsatellite instability,MSI)的分析,探讨遗传不稳定性是否为此疾病的特征之一,进而研究错配修复系统(mismatch repair,MMR)与脊柱裂发病的分子机制。方法:19例脊柱裂和19例非神经管畸形对照脑组织中提取DNA;尿素变性凝胶电泳法检测标本中MSI发生情况。结果:在19例脊柱裂脑组织中9例MSI阳性,阳性率47.4%。其中2例为高度微卫星不稳定(high frequency microsatellite instability,MSI-H),7例为低度微卫星不稳定(lowfrequency microsatellite instability,MSI-L),其余10例为微卫星稳定(microsatellite stable,MSS),对照组中未出现MSI。选择的5个微卫星位点MSI的阳性率分别为Bat34C4(10.5%)、Bat26(26.5%)、D2S123(10.5%)、D3S1611(5.3%),D2S119(5.3%)。结论:脊柱裂中存在MSI现象,提示MSI、错配修复系统可能与脊柱裂的发生有一定关系。  相似文献   

9.
DNA错配修复、染色体不稳定和肿瘤的关系   总被引:1,自引:0,他引:1  
DNA错配修复系统可以识别并纠正DNA复制过程中出现的错误.保证基因组的稳定性和完整性.错配修复系统缺陷可能导致遗传物质发生突变,引发恶性肿瘤.肿瘤患者经常表现出染色体不稳定,具体表现为微卫星不稳定性和杂合性缺失.本文就DNA错配修复、染色体不稳定和肿瘤之间的联系予以综述.  相似文献   

10.
微卫星序列及其应用   总被引:39,自引:6,他引:33  
罗文永  胡骏  李晓方 《遗传》2003,25(5):615-619
微卫星序列广泛存在于各类真核生物基因组中,一般为散在分布的中等程度重复序列。不同物种中,微卫星序列的含量以及占优势的微卫星序列类型各不相同。复制时,微卫星序列易于发生长度突变,这种突变与微卫星序列的复制滑移有关,同时也受多种因素的影响。微卫星序列可能是原微卫星序列通过复制滑移使序列长度扩增形成的。进化过程中,微卫星序列的长度变化维持在一定的范围内。由于微卫星标记多态性高、重复性好,并且操作简单,因此在基因的定位、人类疾病诊断及预测、亲权分析、品种鉴定、进化研究,以及动植物分子标记辅助选择育种研究等领域中都有着重要的应用价值。 Abstract:Microsatellites,simple sequence repeats (SSR),are abundant and distributed throughout the eukaryote genome.The contents of microsatellites are variant in different creatures.There are also different types of microsatellites,which are dominant in different creatures.One of the most noticeable characters of microsatellites is that they are easy to expand during DNA replication.It is thought to attribute to DNA slippage.This kind of mutation is affected by many factors.It is guessed that microsatellites come from pro-microsatellites,while the pro-microsatellites origin from random point mutations.The length of microsatellites can be maintained under relative conservative ranges during species evolution.As they are abundant,codominatnt,distributed over the euchromatic part of the genome,and have the character of highly polimorphic,microsatellites are useful tools for gene mapping,clinical diagnosis and predicting,paternity or pedigree analysis,evolution study,and marker-assisted breeding.  相似文献   

11.
Microsatellite instability (MSI) is regarded as reflecting defective DNA mismatch repair (MMR). MMR defects lead to an increase in point mutations, as well as repeat instability, on the genome. However, despite the highly unstable microsatellites, base substitutions in representative oncogenes or tumor suppressors are extremely infrequent in MSI-positive tumors. Recently, the heterogeneity in MSI-positive colorectal tumors is pointed out, and the 'hereditary' and 'sporadic settings' are proposed. Particularly in the former, base substitution mutations in KRAS are regarded as relatively frequent. We sequenced the KRAS gene in a panel of 76 human colorectal carcinomas in which the MSI status has been determined. KRAS mutations were detected in 22 tumors (28.9%). Intriguingly, all of the KRAS-mutant MSI-H (high) tumors harbored sequence alterations in an essential MMR gene, MLH1, which implies that KRAS mutation more frequently and almost exclusively occurs in MMR gene-mutant MSI-H tumors. Furthermore, in contrast with the prevailing viewpoint, some of these tumors are derived from sporadic colorectal cancer patients. The tight connection between MMR gene mutation and KRAS mutation may suggest previously unrecognized complexities in the relationship between MSI and the mutator phenotype derived from defective MMR.  相似文献   

12.
Hereditary nonpolyposis colorectal cancer (HNPCC) (Amsterdam criteria) is often caused by mutations in mismatch repair (MMR) genes, and tumors of patients with HNPCC show microsatellite instability (MSI-high phenotype). Germline mutations of MMR genes have rarely been found in families that have HNPCC or suspected HNPCC and that do not show microsatellite instability (MSI-low phenotype). Therefore, an MSI-high phenotype is often used as an inclusion criterion for mutation testing of MMR genes. Correction of base-base mismatches is the major function of MSH6. Since mismatches present with an MSI-low phenotype, we assumed that the phenotype in patients with HNPCC-related tumors might be associated with MSH6 germline mutations. We divided 36 patients with suspected HNPCC into an MSI-low group (n=18) and an MSI-high group (n=18), on the basis of the results of MSI testing. Additionally, three unrelated patients from Amsterdam families with MSI-low tumors were investigated. All patients were screened for MSH2, MLH1, and MSH6 mutations. Four presumably causative MSH6 mutations were detected in the patients (22%) who had suspected HNPCC and MSI-low tumors. Furthermore, we detected one frameshift mutation in one of the three patients with HNPCC and MSI-low tumors. In the MSI-high group, one MSH6 missense mutation was found, but the same patient also had an MLH1 mutation, which may explain the MSI-high phenotype. These results suggest that MSH6 may be involved in a substantial proportion of patients with HNPCC or suspected HNPCC and MSI-low tumors. Our data emphasize that an MSI-low phenotype cannot be considered an exclusion criterion for mutation testing of MMR genes in general.  相似文献   

13.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLH1. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

14.
Colorectal cancer (CC) is one of two diseases, in which the link between cancer proneness and DNA repair deficiency appears to be proved. A strict relationship between mismatch repair (MMR) gene mutations, microsatellite instability (MSI) has been found in familiar colorectal cancer (Lynch syndrome). Tumorigenesis at familiar cancer is initiated by biallelic mutations in the major MMR genes, namely MSH2 or MLH1. One of these mutations is an inherited germline alteration and the other is a somatic one. The initiating mutation in sporadic colorectal tumors was not still identified although biochemical and genetic signs of MMR deficiency are observed in tumor cells. Two currently used colorectal tumor cell lines HCT116 and COLO320HSR were derived from hereditary and sporadic tumors accordingly. HCT116 cell line exhibits MMR-deficiency due to biallelic deletion in MLHL. As a consequence this shows MSI phenotype and a near-diploid karyotype. COLO320HSR cell line is characterized by MSS phenotype with mostly imbalanced aberrations. This indicates MMR proficiency in these cells. However, both MMR-deficient HCT116 and COLO320HSR cells reveal near-diploid karyotype. Earlier we have shown that the number of secondary DNA double strand breaks, induced by methylnitrosourea (MNU), represent functional activity of cellular MMR. In the present study, using this approach we evaluated sensitivity to MNU and MMR activity in two colorectal tumor cell lines (HCT 116, COLO320HSR) and compared them to that in the HeLa cell line, which have MMR-proficient phenotype. We showed that cell line COLO320HSR exhibits low MMR activity, close to the level of MMR-activity in HCT116 cell line. We found a mutation in MSH2-G520A gene in COLO320HSR. This neutral mutation apparently is not related to polymorphism as we failed to identify the same mutation in any of MSH2 gene sequences of lymphocytes from 30 patients with sporadic colorectal cancer.  相似文献   

15.
High grade gliomas (HGG) are one of the leading causes of cancer-related deaths in children, and there is increasing evidence that pediatric HGG may harbor distinct molecular characteristics compared to adult tumors. We have sought to clarify the role of microsatellite instability (MSI) in pediatric versus adult HGG. MSI status was determined in 144 patients (71 pediatric and 73 adults) using a well established panel of five quasimonomorphic mononucleotide repeat markers. Expression of MLH1, MSH2, MSH6 and PMS2 was determined by immunohistochemistry, MLH1 was assessed for mutations by direct sequencing and promoter methylation using MS-PCR. DNA copy number profiles were derived using array CGH, and mutations in eighteen MSI target genes studied by multiplex PCR and genotyping. MSI was found in 14/71 (19.7%) pediatric cases, significantly more than observed in adults (5/73, 6.8%; p = 0.02, Chi-square test). MLH1 expression was downregulated in 10/13 cases, however no mutations or promoter methylation were found. MSH6 was absent in one pediatric MSI-High tumor, consistent with an inherited mismatch repair deficiency associated with germline MSH6 mutation. MSI was classed as Type A, and associated with a remarkably stable genomic profile. Of the eighteen classic MSI target genes, we identified mutations only in MSH6 and DNAPKcs and described a polymorphism in MRE11 without apparent functional consequences in DNA double strand break detection and repair. This study thus provides evidence for a potential novel molecular pathway in a proportion of gliomas associated with the presence of MSI.  相似文献   

16.
Short synthetic single-stranded oligodeoxyribonucleotides (ssODNs) can be used to introduce subtle modifications into the genome of mouse embryonic stem cells (ESCs). We have previously shown that effective application of ssODN-mediated gene targeting in ESC requires (transient) suppression of DNA mismatch repair (MMR). However, whereas transient down-regulation of the mismatch recognition protein MSH2 allowed substitution of 3 or 4 nucleotides, 1 or 2 nucleotide substitutions were still suppressed. We now demonstrate that single- or dinucleotide substitution can effectively be achieved by transient down-regulation of the downstream MMR protein MLH1. By exploiting highly specific real-time PCR, we demonstrate the feasibility of substituting a single basepair in a non-selectable gene. However, disabling the MMR machinery may lead to inadvertent mutations. To obtain insight into the mutation rate associated with transient MMR suppression, we have compared the impact of transient and constitutive MMR deficiency on the repair of frameshift intermediates at mono- and dinucleotide repeats. Repair at these repeats relied on the substrate specificity and functional redundancy of the MSH2/MSH6 and MSH2/MSH3 MMR complexes. MLH1 knockdown increased the level of spontaneous mutagenesis, but modified ESCs remained germ line competent. Thus, transient MLH1 suppression provides a valuable extension of the MSH2 knockdown strategy, allowing rapid generation of mice carrying single basepair alterations in their genome.  相似文献   

17.
Hereditary nonpolyposis colorectal cancer (HNPCC) is due to defects in DNA mismatch repair (MMR) genes MSH2, MLH1, MSH6, and to a lesser extent PMS2. Of 466 suspected HNPCC families, we defined 54 index patients with either tumors of high microsatellite instability (MSI-H) and/or loss of expression for either MLH1, MSH2, and/or MSH6, but without a detectable pathogenic point mutation in these genes. This study cohort was augmented to 64 patients by 10 mutation-negative index patients from Amsterdam families where no tumors were available. Deletion/duplication screening using the multiplex ligation-dependent probe amplification (MLPA) revealed 12 deletions in MSH2 and two deletions in MLH1. These deletions constitute 17% of pathogenic germline alterations but elucidate the susceptibility to HNPCC in only 22% of the mutation-negative study cohort, pointing towards other mutation mechanisms for an inherited inactivation of MLH1 or MSH2. We describe here four novel deletions. One novel and one known type of deletion were found for three and two unrelated families, respectively. MLPA analysis proved a reliable method for the detection of genomic deletions in MLH1 and MSH2; however, sequence variations in the ligation-probe binding site can mimic single exon deletions.  相似文献   

18.
The cellular DNA mismatch repair (MMR) pathway, involving the DNA mismatch repair genes MLH1 and MSH2, detects and repairs DNA replication errors. Defects in MSH2 and MLH1 account for most cases of hereditary non-polyposis colorectal cancer as well as for sporadic colorectal tumors. Additionally, increased expression of MSH2 RNA and/or protein has been reported in various malignancies. Loss of DNA MMR in mammalian cells has been linked to resistance to certain DNA damaging agents including clinically important cytotoxic chemotherapeutics. Due to other functions besides its role in DNA repair, that include regulation of cell proliferation and apoptosis, MSH2 has recently been shown to be of importance for pathogenesis and progression of cancer. This review summarizes our present understanding of the function of MSH2 for DNA repair, cell cycle control, and apoptosis and discusses its importance for pathogenesis, progression and therapy of cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号