首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Juvenile soft-shelled turtles (Pelodiscus sinensis) were fed 7 diets containing 8% of lard, soybean oil, olive oil, menhaden fish oil, or mixtures of 1 to 1 ratio of fish oil and lard, soybean oil, olive oil for 10 weeks. Growth and muscle proximate compositions of the turtles were not affected by different dietary treatments (p>0.05). Fatty acid profiles in muscle polar lipids, muscle non-polar lipids, and liver polar lipids reflected the fatty acid composition of dietary lipid source. Turtles fed diets containing fish oil generally contained significantly higher (p<0.05) proportion of highly unsaturated fatty acids (HUFA) in both polar and non-polar lipids of muscle and polar fraction of liver lipids than those fed other oils. Non-polar fraction of liver lipids from all groups of turtles contained less than 1% of HUFA. All turtles contained relatively high proportions of oleic acid in their lipids regardless of the dietary lipid source. Further, lipid peroxidation in both muscle tissue and liver microsomes of turtles fed fish oil as the sole lipid source was greater (p<0.05) than those fed fish oil-free diets. Turtles fed olive oil as the sole lipid source had the lowest lipid peroxidation rate among all dietary groups. The results indicate that dietary n-3 HUFA may not be crucial for optimal growth of soft-shelled turtles although they may be used for metabolic purpose. Further, high level of dietary HUFA not only increases the HUFA content in turtle tissues, but also enhances the susceptibility of these tissues to lipid peroxidation.  相似文献   

2.
Diets supplemented with high levels of either saturated fatty acids or unsaturated fatty acids were fed to adult rats for a period of 9 weeks and changes in the liver mitochondrial membrane phospholipid fatty acid composition and thermal behaviour of succinate: cytochrome c reductase were determined. The dietary treatment induced a change in the omega 6 to omega 3 unsaturated fatty acid ratio in the membrane lipids, with the ratio being highest with the unsaturated fatty acid and lowest with the saturated fatty acid diet. Arrhenius plots of succinate: cytochrome c reductase activity exhibited differences in both critical temperature (Tf) and Arrhenius activation energy (Ea) depending on the type of dietary treatment. The Tf was elevated from 23 degrees C in control to 32 degrees C in the saturated fatty acid-supplemented group. No significant effect on the Tf was observed in the unsaturated fatty acid-supplemented group however higher Ea values were observed due to the unsaturated fatty acid diet. The changes in succinate: cytochrome c reductase are probably due to changes in the lipid-protein interactions in the membrane, induced by the dietary lipid supplementation.  相似文献   

3.
Diets supplemented with high levels of saturated fatty acids derived from sheep kidney (perirenal) fat or unsaturated fatty acids derived from sunflower seed oil were fed to rats and the effect on heart mitochondrial lipid composition and membrane-associated enzyme behaviour was determined. The dietary lipid treatments did not change the overall level of membrane lipid unsaturation but did alter the proportion of various unsaturated fatty acids. This led to a change in the omega 6/omega 3 unsaturated fatty acid ratio, which was highest in the sunflower seed oil fed rats. Arrhenius plots of the mitochondrial membrane associated enzymes succinate-cytochrome c reductase and oligomycin-sensitive adenosinetriphosphatase (ATPase) after dietary lipid treatment revealed different responses in their critical temperature. For succinate-cytochrome c reductase, the critical temperature was 29 degrees C for rats fed the sheep kidney fat diet and 20 degrees C for rats fed the sunflower seed oil diet. In contrast, no shift in the critical temperature for the mitochondrial ATPase was apparent as a result of the differing dietary lipid treatments. The results suggest that the discontinuity in the Arrhenius plot of succinate-cytochrome c reductase is induced by some change in the physical properties of the membrane lipids. In contrast, mitochondrial ATPase appears insensitive, in terms of its thermal behaviour, to changes occurring in the composition of the membrane lipids. However, the specific activity of the mitochondrial ATPase was affected by the dietary lipid treatment being highest for the rats fed the sheep kidney fat diet. No dietary lipid effect was observed for the specific activity of succinate-cytochrome c reductase. This differential response of the two mitochondrial membrane enzymes to dietary-induced changes in membrane lipid composition may affect mitochondrial oxidative phosphorylation.  相似文献   

4.
The fatty acid compositions of the lipids and the lipid peroxide concentrations and rates of lipid peroxidation were determined in suspensions of liver endoplasmic reticulum isolated from rats fed on synthetic diets in which the fatty acid composition had been varied but the remaining constituents (protein, carbohydrate, vitamins and minerals) kept constant. Stock diet and synthetic diets containing no fat, 10% corn oil, herring oil, coconut oil or lard were used. The fatty acid composition of the liver endoplasmic reticulum lipid was markedly dependent on the fatty acid composition of the dietary lipid. Feeding a herring-oil diet caused incorporation of 8.7% eicosapentaenoic acid (C20:5) and 17% docosahexaenoic acid (C22:6), but only 5.1% linoleic acid (C18:2) and 6.4% arachidonic acid (C20:4), feeding a corn-oil diet caused incorporation of 25.1% C18:2, 17.8% C20:4 and 2.5% C22:6 fatty acids, and feeding a lard diet caused incorporation of 10.3% C18:2, 13.5% C20:4 and 4.3% C22:6 fatty acids into the liver endoplasmic-reticulum lipids. Phenobarbitone injection (100mg/kg) decreased the incorporation of C20:4 and C22:6 fatty acids into the liver endoplasmic reticulum of rats fed on a lard, corn-oil or herring-oil diet. Microsomal lipid peroxide concentrations and rates of peroxidation in the presence of ascorbate depended on the nature and quantity of the polyunsaturated fatty acids in the diet. The lipid peroxide content was 1.82±0.30nmol of malonaldehyde/mg of protein and the rate of peroxidation was 0.60±0.08nmol of malonaldehyde/min per mg of protein after feeding a fat-free diet, and the values were increased to 20.80nmol of malonaldehyde/mg of protein and 3.73nmol of malonaldehyde/min per mg of protein after feeding a 10% herring-oil diet in which polyunsaturated fatty acids formed 24% of the total fatty acids. Addition of α-tocopherol to the diets (120mg/kg of diet) caused a very large decrease in the lipid peroxide concentration and rate of lipid peroxidation in the endoplasmic reticulum, but addition of the synthetic anti-oxidant 2,6-di-t-butyl-4-methylphenol to the diet (100mg/kg of diet) was ineffective. Treatment of the animals with phenobarbitone (1mg/ml of drinking water) caused a sharp fall in the rate of lipid peroxidation. It is concluded that the polyunsaturated fatty acid composition of the diet regulates the fatty acid composition of the liver endoplasmic reticulum, and this in turn is an important factor controlling the rate and extent of lipid peroxidation in vitro and possibly in vivo.  相似文献   

5.
Dietary lipid supplements high in either saturated fat derived from sheep kidney fat or unsaturated fat derived from sunflower seed oil, and a low mixed fat reference diet were fed to marmoset monkeys for 20 months and the effects on cardiac membrane lipid composition, and myocardial catecholamine-stimulated adenylate cyclase and beta-adrenergic receptor binding activity were investigated. For cardiac membranes enriched for beta-adrenergic binding activity, the dietary lipid treatment resulted in small changes in the proportion of saturated to unsaturated fatty acids and substantial changes in the (n - 6) to (n - 3) series of unsaturated fatty acids in the membrane phospholipids. The sheep kidney fat diet increased the cholesterol-to-phospholipid ratio in cardiac membranes in comparison to the other diets. This diet also significantly elevated basal and isoproterenol-, epinephrine- and norepinephrine-stimulated adenylate cyclase activity. The value of the dissociation constant (Kd) and the receptor number (Bmax) for the binding of [125I]ICYP to the beta-adrenergic receptor was significantly reduced in marmosets fed the sheep kidney fat diet. These results suggest that dietary lipids can influence the activity of the beta-adrenergic/adenylate cyclase system of the heart. Modulation of this transmembrane signalling system may be induced by changes in the properties of the associated membrane lipids, particularly by alteration in the membrane cholesterol-to-phospholipid ratio. This effect may be limited to those animal species in which the nature of the dietary fatty acid intake may be influencing cardiac membrane cholesterol homeostasis, which is in agreement with previous results in rats following dietary cholesterol supplementation (McMurchie et al. (1987) Biochim. Biophys. Acta 898, 137-153). ICYP, (-)-iodocyanopindolol.  相似文献   

6.
Rats of either sex were fed for 18 and 34 weeks respectively diets containing 40% (by weight) lipids with polyunsaturated fatty acids representing 1.34% or 13.2% of total calories. Platelet reactivity to thrombin, platelet fatty acid composition and incorporation of [14C]acetate into platelet lipids were investigated. Diets rich in saturated fatty acids markedly increased platelet sensitivity to thrombin. The concentration of 20:3 and 22:3 of the (n - 9) series and of 20:3 and 22:5 of the (n - 6) series were increased at the expense of 18:2 and 22:4 of the (n - 6) family in platelet lipids. 20:4 (n - 6) was unchanged. The fatty acid changes were more pronounced in male rats and after 34 weeks. [14C]Acetate incorporation into total platelet lipids and particularly into choline phosphoglycerides and ceramides was lower in animals fed saturated fats. This diet reduced the synthesis of 16:0 and of 22:4(n - 6) in platelet total fatty acids, while that of 22:3(n - 9) was markedly enhanced. This study showed that long-term feeding of high-saturated-low-polyunsaturated fat diets in rats induced marked changes in platelet lipid synthesis and composition, in both sexes. The lipid synthesis modification appears to be more pronounced in males than in females. The changes in the fatty acids 20:3(n - 9), 22:3(n - 9) and 22:4(n - 6) appeared to be closely related to platelet behaviour. The balance between the content and synthesis of these last fatty acids might be of significance for the effect of diet on thrombogenesis.  相似文献   

7.
Consumption of a Western diet rich in saturated fats is associated with obesity and insulin resistance. In some insulin-resistant phenotypes this is associated with accumulation of skeletal muscle fatty acids. We examined the effects of diets high in saturated fatty acids (Sat) or n-6 polyunsaturated fatty acids (PUFA) on skeletal muscle fatty acid metabolite accumulation and whole-body insulin sensitivity. Male Sprague-Dawley rats were fed a chow diet (16% calories from fat, Con) or a diet high (53%) in Sat or PUFA for 8 wk. Insulin sensitivity was assessed by fasting plasma glucose and insulin and glucose tolerance via an oral glucose tolerance test. Muscle ceramide and diacylglycerol (DAG) levels and triacylglycerol (TAG) fatty acids were also measured. Both high-fat diets increased plasma free fatty acid levels by 30%. Compared with Con, Sat-fed rats were insulin resistant, whereas PUFA-treated rats showed improved insulin sensitivity. Sat caused a 125% increase in muscle DAG and a small increase in TAG. Although PUFA also resulted in a small increase in DAG, the excess fatty acids were primarily directed toward TAG storage (105% above Con). Ceramide content was unaffected by either high-fat diet. To examine the effects of fatty acids on cellular lipid storage and glucose uptake in vitro, rat L6 myotubes were incubated for 5 h with saturated and polyunsaturated fatty acids. After treatment of L6 myotubes with palmitate (C16:0), the ceramide and DAG content were increased by two- and fivefold, respectively, concomitant with reduced insulin-stimulated glucose uptake. In contrast, treatment of these cells with linoleate (C18:2) did not alter DAG, ceramide levels, and glucose uptake compared with controls (no added fatty acids). Both 16:0 and 18:2 treatments increased myotube TAG levels (C18:2 vs. C16:0, P < 0.05). These results indicate that increasing dietary Sat induces insulin resistance with concomitant increases in muscle DAG. Diets rich in n-6 PUFA appear to prevent insulin resistance by directing fat into TAG, rather than other lipid metabolites.  相似文献   

8.
We studied the effect of dietary vitamin C on growth, liver vitamin C and serum cortisol levels in stressed and unstressed juvenile soft-shelled turtles. Turtles were fed with vitamin C supplementation at dosages of 0, 250, 500, 2500, 5,000 or 10,000 mg/kg diet for 4 weeks. Vitamin C supplementation exerted significant effects on specific growth rate and liver vitamin C concentrations. The specific growth rate peaked in the group fed at 500 mg/kg diet, while liver vitamin C levels increased with increasing dietary vitamin C levels. Serum cortisol concentrations did not differ between groups of turtles fed diets supplemented with vitamin C in the range of 0-10,000 mg/kg. After acid stress, hepatic vitamin C levels were unaffected, while serum cortisol in the control group was significantly elevated (P<0.01). The other five groups of turtles did not show significant changes in serum cortisol compared with pre-stress levels.  相似文献   

9.
Dietary conjugated linoleic acid (CLA) affects fat deposition and lipid metabolism in mammals, including livestock. To determine CLA effects in Atlantic salmon (Salmo salar), a major farmed fish species, fish were fed for 12 weeks on diets containing fish oil or fish oil with 2% and 4% CLA supplementation. Fatty acid composition of the tissues showed deposition of CLA with accumulation being 2 to 3 fold higher in muscle than in liver. CLA had no effect on feed conversion efficiency or growth of the fish but there was a decreased lipid content and increased protein content after 4% CLA feeding. Thus, the protein:lipid ratio in whole fish was increased in fish fed 4% CLA and triacylglycerol in liver was decreased. Liver beta-oxidation was increased whilst both red muscle beta-oxidation capacity and CPT1 activity was decreased by dietary CLA. Liver highly unsaturated fatty acid (HUFA) biosynthetic capacity was increased and the relative proportion of liver HUFA was marginally increased in salmon fed CLA. CLA had no effect on fatty acid Delta6 desaturase mRNA expression, but fatty acid elongase mRNA was increased in liver and intestine. In addition, the relative compositions of unsaturated and monounsaturated fatty acids changed after CLA feeding. CLA had no effect on PPARalpha or PPARgamma expression in liver or intestine, although PPARbeta2A expression was reduced in liver at 4% CLA feeding. CLA did not affect hepatic malic enzyme activity. Thus, overall, the effect of dietary CLA was to increase beta-oxidation in liver, to reduce levels of total body lipid and liver triacylglycerol, and to affect liver fatty acid composition, with increased elongase expression and HUFA biosynthetic capacity.  相似文献   

10.
The aim of the present study was to investigate possible stressful effects on European sea bass Dicentrarchus labrax reared under constant darkness (0L‐24D) and to examine the possible anti‐stressful effect of dietary tryptophan (TRP) supplementation. Juvenile European sea bass (initial body weight 4.23 ± 0.032 g) were reared for 10 weeks under 0L‐24D and 12L‐12D and fed either a commercial diet (0.47% TRP) or the same diet supplemented with L‐TRP (2.47% TRP). Results showed that lighting conditions had no significant effect on fish growth, while a depressive effect by the TRP supplementation was obvious. All fish populations reared under 0L‐24D exhibited reduced body protein, lipid and ash content and increased food consumption. Reduced body lipids, food consumption and nutrient utilization were observed in TRP‐supplemented fed fish, along with lower liver lipids. Dietary TRP enrichment significantly lowered liver saturated and monounsaturated acids and increased poly‐ and highly‐unsaturated fatty acids, especially in combination with 0L‐24D. These changes were also considerably reflected in carcass fatty acid composition.  相似文献   

11.
Rats were fed diets devoid of (n-3) fatty acids (olive oil supplementation) or high in (n-3) fatty acids (fish oil supplementation) for a period of 10 days. In spleen lymphocytes and liver microsomes derived from animals fed fish oil diets, relatively high levels of (n-3) eicosapentaenoic (20:5), docosapentaenoic (22:5) and docosahexaenoic acids (22:6) were obtained compared to minimal levels when fed the olive oil diet. When the average lipid motional properties were examined by measuring the fluorescence anisotropy of diphenylhexatriene, no significant different was found between intact liver microsomes from animals fed the two diets. However, when lipid motion was examined in vesicles of phosphatidylcholine, isolated from the microsomes from fish oil fed animals (21.4% (n-3) fatty acids), the fluorescence anisotropy was significantly less than the corresponding phosphatidylcholine from olive oil fed animals (5.6% (n-3) fatty acids), indicating a more disordered or fluid bilayer in the presence of higher levels of (n-3) fatty acids. Phosphatidylethanolamine (n-3) fatty acids were also elevated after fish oil supplementation (41.3% of total fatty acids), compared to the level after olive oil supplementation (21.4%). The major effect of the fish oil supplementation was a replacement of (n-6) arachidonic acid by the (n-3) fatty acids and when this was 'modeled', using liposomes of synthetic lipids, 1-palmitoyl-2-arachidonyl(n-6) or docosahexaenoyl(n-3)-phosphatidylcholine, significant differences in lipid motional properties were found, with the docosahexaenoate conferring a more disordered or fluid lipid environment. Thus it appears that although lipid order/fluidity can be significantly decreased by increases in the highly unsaturated (n-3) fatty acid levels, alterations in membrane domain organization and/or phospholipid molecular species composition effectively compensated for the changes, at least as far as average lipid motional properties in the intact membranes was concerned.  相似文献   

12.
Our experiments were designed to test the hypotheses that dietary lipids can affect whole-animal physiological processes in a manner concordant with changes in the fluidity of cell membranes. We measured (1) the lipid composition of five tissues, (2) body temperatures selected in a thermal gradient (T(sel)), (3) the body temperature at which the righting reflex was lost (critical thermal minimal [CTMin]), and (4) resting metabolic rate (RMR) at three body temperatures in desert iguanas (Dipsosaurus dorsalis) fed diets enriched with either saturated or unsaturated fatty acids. The composition of lipids in tissues of the lizards generally reflected the lipids in their diets, but the particular classes and ratios of fatty acids varied among sampled organs, indicating the conservative nature of some tissues (e.g., brain) relative to others (e.g., depot fat). Lizards fed the diet enriched with saturated fatty acids selected warmer nighttime body temperatures than did lizards fed a diet enriched with unsaturated fatty acids. This difference is concordant with the hypothesis that the composition of dietary fats influences membrane fluidity and that ectotherms may compensate for such changes in fluidity by selecting different body temperatures. The CTMin of the two treatment groups was indistinguishable. This may reflect the conservatism of some tissues (e.g., brain) irrespective of diet treatment. The RMR of the saturated treatment group nearly doubled between 30 degrees and 40 degrees C. Here, some discrete membrane domains in the lizards fed the saturated diet may have been in a more-ordered phase at 30 degrees C and then transformed to a less-ordered phase at 40 degrees C. In contrast, the RMR of the unsaturated treatment group exhibited temperature independence in metabolic rate from 30 degrees to 40 degrees C. Perhaps the unsaturated diet resulted in membranes that developed a higher degree of disorder (i.e., a certain phase) at a lower temperature than were membranes of lizards fed the saturated diet. Our study demonstrates links between dietary fats and whole-animal physiology; however, the mechanistic basis of these links, and the general knowledge of lipid metabolism in squamate reptiles, remain poorly understood and warrant further study.  相似文献   

13.
The study was conducted to determine the effect of supplementation vitamin C in dietary non-specific immunity in juvenile soft-shelled turtles. The soft-shelled turtles were fed with vitamin C supplementation at dosages of 0, 250, 500, 2500, 5000 and 10000 mg/kg diets, respectively, for 4 weeks. The results showed that there were no differences in the phagocytosis of blood cells, serum bacteriolytic activity and bactericidal activity among soft-shelled turtles fed with vitamin C supplementation in 0-500 mg/kg diets. However, firm indicators were significantly enhanced in soft-shelled turtles fed with vitamin C supplementation at 2500 mg/kg diets compared with those fed at 0 and 250 mg/kg diets. The soft-shelled turtles fed with 5000 mg/kg diets had only significantly higher bactericidal activity than those fed vitamin C-deficient diets. The vitamin C supplementation in 10000 mg/kg diets had no notable effects on the phagocytosis, bacteriolytic activity and bactericidal activity. These results suggest that vitamin C seems have an upper and lower threshold for improving non-specific immune function, and the optimum dose was 2500 mg/kg.  相似文献   

14.
A feeding trial was conducted to evaluate the effects of dietary vitamin E contents on the growth, ascorbate induced iron-catalyzed lipid peroxidation in post-mortem muscle and liver tissue, and Raman spectral changes in lens of juvenile hybrid tilapia (Oreochromis niloticus x O. aureus). Experimental fish were fed practical diets supplemented with 0, 50, 100, 200, 450 and 700 mg alpha-tocopheryl acetate/kg diet for 14 weeks. There was no significant difference in weight gain, feed conversion ratio and protein efficiency ratio among fish fed test diets (P>0.05). Protein content of fish fed diet containing the lowest vitamin E level was the lowest (P<0.05) among all groups. No difference was found in other body constituents among test fish (P>0.05). The thiobarbituric acid-reactive substances produced by iron-catalyzed lipid peroxidation in muscle and liver tissue of fish fed the diet without alpha-tocopheryl acetate supplementation were significantly (P<0.05) greater than those from fish fed diets containing higher levels of alpha-tocopheryl acetate. Dietary vitamin E supplementation increased the antioxidant capability of tilapia tissues against lipid peroxidation. Further, dietary vitamin E supplementation also influenced the lens cortical membrane structure of tilapia.  相似文献   

15.
We previously reported that dietary amino acid restriction induces the accumulation of triglycerides (TAG) in the liver of growing rats. However, differences in TAG accumulation in individual cell types or other tissues were not examined. In this study, we show that TAG also accumulates in the muscle and adipose tissues of rats fed a low amino acid (low-AA) diet. In addition, dietary lysine restriction (low-Lys) induces lipid accumulation in muscle and adipose tissues. In adjusting the nitrogen content to that of the control diet, we found that glutamic acid supplementation to the low-AA diet blocked lipid accumulation, but supplementation with the low-Lys diet did not, suggesting that a shortage of nitrogen caused lipids to accumulate in the skeletal muscle in the rats fed a low-AA diet. Serum amino acid measurement revealed that, in rats fed a low-Lys diet, serum lysine levels were decreased, while serum threonine levels were significantly increased compared with the control rats. When the threonine content was restricted in the low-Lys diet, TAG accumulation induced by the low-Lys diet was completely abolished in skeletal muscle. Moreover, in L6 myotubes cultured in medium containing high threonine and low lysine, fatty acid uptake was enhanced compared with that in cells cultured in control medium. These findings suggest that the increased serum threonine in rats fed a low-Lys diet resulted in lipid incorporation into skeletal muscle, leading to the formation of fatty muscle tissue. Collectively, we propose conceptual hypothesis that “amino-acid signal” based on lysine and threonine regulates lipid metabolism.  相似文献   

16.
These studies describe the influence of membrane fatty acid composition on peroxidation processes in rat-liver S9 fractions. Lipid peroxidation may be expected to affect enzyme activity and cofactors of importance for the performance of the Salmonella Mutagenicity Test, as well as to contribute to the formation of chemically reactive degradation products that are mutagenic. Lipid peroxidation products were measured as derivatives of 2-thiobarbituric acid (TBA). The amount of TBA-reactive compounds (TBA-C), formed during incubation of S9 fractions from rats fed a diet containing sunflower-seed oil, was 8 times higher than that produced in S9 fractions prepared from rats fed diets containing coconut oil or hydrogenated lard as their only sources of fat. S9 fractions from livers of Aroclor 1254 treated rats showed a marked increase in peroxidation yields for all 3 dietary groups investigated as compared to S9 fractions from non-induced animals. The coconut oil and hydrogenated lard dietary groups showed a 13-fold increase in the yield of TBA-reactive material, while a 2-fold increase was found for the sunflower-seed oil group. The variations in the glutathione (GSH) levels and the degradation of unsaturated fatty acids were also studied in response to Aroclor 1254 treatment, fatty acid composition of the diets and incubation at 37 degrees C. Pronounced variations in the GSH levels were observed in response to Aroclor 1254 treatment and incubation conditions. A positive correlation between production of TBA-reactive material and degradation of unsaturated fatty acids was verified for S9 fractions from the coconut oil and hydrogenated lard dietary groups. Furthermore, the effect of Fe2+ on lipid peroxidation was studied in all 3 dietary groups. The rate of lipid peroxidation was increased in all groups but only the coconut oil and hydrogenated lard dietary groups showed increased total yields of TBA-C upon administration of Aroclor 1254 to rats. Lipid peroxidation processes cause chemical alterations in liver homogenates. Therefore, these effects ought to be considered both in the preparation and in the use of the S9 fraction in different test systems.  相似文献   

17.
The role of lipids in membrane structure and function was studied by measuring the major lipid classes in mitochondria isolated from flight muscle of the blowfly, Phormia regina. Approximately 98% of the total lipid is phospholipid. Neutral lipid constitutes the remaining 2% of the total. Phosphatidylethanolamine accounts for 55–60% of the phospholipid. A molecular ratio of 4:1:1 is found for phosphatidylethanolamine, phosphatidylcholine, and cardiolipin (diphosphatidylglycerol). The neutral lipids include cholesterol, about 20%, and quinone, 40–45% of the total. The free fatty acid content of the neutral lipid fraction is variable, apparently being generated by endogenous phospholipase activity. The fatty acids of the neutral and phospholipid classes are predominantly 14–18 carbon acids; long-chain fatty acids of 20 and 22 carbons are essentially absent. The neutral lipid fraction contains 43% saturated and 51% monoenoic fatty acids. More than 65% of the phospholipid fatty acids are unsaturated. The principal fatty acids are palmitic, palmitoleic, oleic, linoleic, and linolenic. No trace of α- or β-tocopherol is detected. As vitamin E is considered an important naturally occuring antioxidant that prevents lipid peroxidation, the apparent absence of α- and β-tocopherol in these mitochondria coupled with intense oxidative activity of the mitochondria leads to the suggestion that blowfly flight muscle mitochondria may be particularly susceptible to peroxidative damage.  相似文献   

18.
Lead-induced tissue fatty acid alterations and lipid peroxidation   总被引:6,自引:0,他引:6  
Previous work showed that dietary lead (Pb) increases the relative concentration of arachidonic acid (20∶4) as a percentage of total fatty acids, and decreases the relative proportion of linoleic acid (18∶2) to arachidonic acid (18∶2/20∶4) in chick liver, serum, and erythrocyte membranes. The present investigation was undertaken to examine the time-course and magnitude of the fatty acid alterations with increasing dietary Pb levels. We also examined the effects of Pb on the fatty acid composition and lipid peroxide content of hepatic subcellular organelles. In Exp. 1, chicks were fed diets containing 0, 62.5, 125, 250, 500, or 1000 ppm added Pb (as Pb acetate trihydrate) from 1 to 21 d of age. After 21 d, no growth effects were observed; however, Pb lowered the 18∶2/20∶4 ratio and increased 20∶4 concentration in total liver and serum lipids, and in total hepatic phospholipids in a dose-dependent manner. Hepatic mitochondrial membrane fatty acids were not altered, nor was there any increase in hepatic lipid peroxidation. In Exp. 2, chicks were fed diets containing 0, 500, 1000, or 2000 ppm added Pb from 1 to 21 or 22 d of age. Pb depressed growth in a dose-dependent manner. In addition, Pb lowered the 18∶2/20∶4 ratio and increased 20∶4 concentration in total liver lipids and in hepatic mitochondrial and microsomal membranes in a dose-dependent manner. Total hepatic lipid peroxidation was increased over control values by 1000 ppm Pb, and hepatic microsomal lipid peroxidation was increased by dietary Pb levels of 1000 and 2000 ppm. In Exp. 3, body weight, hepatic microsomal lipid peroxidation, and fatty acid composition were determined in 4-, 9-, 14-, 18-, and 23-d-old chicks fed 0 or 1500 ppm added Pb. Body weights of Pb-treated chicks were significantly lower than those of control chicks by day 18. Microsomal 20∶4 concentration and peroxidation increased, and the 18∶2/20∶4 ratio decreased with age in both groups, but the changes were of greater magnitude in the Pb-treated chicks. The results suggest that some of the manifestations of Pb toxicity may be a reflection of increased concentration of 20∶4 in specific membranes. Further, since the Pb-induced alterations in fatty acid composition were noted in the absence of any growth depression, we propose that fatty acid composition is more sensitive than growth rate to the presence of lead in the diet.  相似文献   

19.
The aim of the present study was to determine the effects of conjugated linoleic acid (CLA) on lipid and fatty acid metabolism in Atlantic salmon. The overall objective being to test the hypotheses that CLA has beneficial effects in salmon including growth enhancement, improved flesh quality through decreased adiposity and lipid deposition thereby minimising detrimental effects of feeding high fat diets, and increased nutritional quality through increased levels of beneficial fatty acids including n-3 highly unsaturated fatty acids (HUFA) and CLA itself. Salmon smolts were fed diets containing two levels of fish oil (low, approximately 18% and high, approximately 34%) containing three levels of CLA (a 1:1 mixture of 9-cis,trans-11 and trans-10,cis-12. at 0, 1 and 2% of diet) for 3 months and the effects on growth performance, liver and muscle (flesh) lipid contents and class compositions, and fatty acid compositions determined. The diets were also specifically formulated to investigate whether the effects of CLA, if any, were more dependent upon absolute content of CLA in the diet (as percentage of total diet) or the relative level of CLA to other fatty acids. Dietary CLA in salmon smolts had no effect on growth parameters or biometric parameters. However, there was a clear trend of increased total lipid and triacylglycerol contents in both liver and flesh in fish fed CLA, particularly in fish fed the high oil diets. Finally, CLA was incorporated into tissue lipids, with levels in flesh being 2-fold higher than in liver, but importantly, incorporation in liver was at the expense of saturated and monounsaturated fatty acids whereas in flesh it was at the expense of n-3HUFA.  相似文献   

20.
为探讨维生素E(VE)对中华鳖(Pelodiscus sinensis)幼鳖的生长、肝脏VE和血清皮质醇的影响,通过特定生长率、高压液相色谱法和放免法,我们测定了中华鳖幼鳖的生长、肝脏VE和血清皮质醇含量。发现VE添加量为1000和5000mg/kg的两组,能明显降低中华鳖幼鳖的生长。维生素E添加量为500、1000和5000mg/kg的三组,肝脏维生素E含量明显高于对照组,VE添加量在0—1000mg/kg的范围时,肝脏VE的含量随着饲料中VE含量的增加呈指数式增加,并且在VE添加量为5000kg/kg的一组基本达到饱和。维生素E添加量为0和50mg/kg的2组,其血清皮质醇的平均值明显高于维生素E添加量为250、500、1000和5000mg/kg的4组的平均值。上述结果表明:高剂量的VE降低了中华鳖幼鳖的生长和血清皮质醇的含量;在一定剂量范围内,肝脏VE随着饲料中VE含量的增加而升高。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号