首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
We investigated the influence of teeth, periodontal ligaments, and alveoli on the structural integrity of human mandibles loaded in torsion. Surface bone strain was recorded from the mandibular corpus below the first molar on each of four specimens. These specimens were loaded by an external force that caused primarily torsion about the long axis of the corpus, and bone strain was recorded under the following conditions: 1) all supporting structures intact, 2) all supporting structures intact and the M1 loaded by a simulated bite force, 3) M1 removed and 4) alveolar bone of the M1 removed. For comparative purposes, experiments were also designed to investigate the effects of intermittent holes on the torsional rigidity of a baboon femur. This permitted comparison of the mechanical behavior of the mandibles with that of a more homogeneous bony member. These experiments suggest that the presence of teeth within alveoli has a measurable role in the maintenance of torsional rigidity. The condition of the periodontal ligament also appears to influence these stress-bearing capabilities. Moreover, the alveolar bone supporting the teeth also provides structural support for countering torsional loads. For the specific case of corpus twisting, the mandible does not behave as a member with open or closed sections as predicted by theoretical models. The observed magnitudes of bone strain, however, conform more closely to the predictions generated by a closed-section model.  相似文献   

2.
Devices called functional appliances are commonly used in orthodontics for treating maxillary protrusion. These devices mechanically force the mandible forward to apply traction force to the mandibular condyle. This promotes cartilaginous growth in the small mandible. However, no studies have clarified how much traction force is applied to the mandibular condyle. Moreover, it remains unknown as to how anatomical characteristics affect this traction force. Therefore, in this study, we developed a device for measuring the amount of force generated while individual patients wore functional appliances, and we investigated the relationship between forces with structures surrounding the mandibular condyle. We compared traction force values with cone-beam computed tomography image data in eight subjects. The functional appliance resulted in a traction force of 339–1477 gf/mm, with a mean value of 196.5 gf/mm for the elastic modulus of the mandible. A comparison with cone-beam computed tomography image data suggested that the mandibular traction force was affected by the mandibular condyle and shape of the articular eminence. This method can contribute to discovering efficient treatment techniques more suited to individual patients.  相似文献   

3.
During leukocyte rolling on the endothelium, surface protrusion and membrane tether extraction occur consecutively on leukocytes. Both surface protrusion and tether extraction of leukocytes stabilize leukocyte rolling. Tethers can also be extracted from endothelial cells (ECs), but surface protrusion of ECs has never been confirmed to exist. In this study, we examined EC surface protrusion with the micropipette aspiration technique. We found that, like leukocytes, surface protrusion on an EC did exist when a point force was imposed. Both the protrusional stiffness and the crossover force of EC surface protrusion were dependent on the force loading rate and the cytoskeletal integrity, but neither of them was dependent on tumor necrosis factor α stimulation. Temperature (37°C) affected the protrusional stiffness only at small force loading rates. When a neutrophil was employed to directly impose the pulling force on the EC, simultaneous surface protrusion from both cells occurred, and it can be modeled as two springs connected in series, although the spring constants should be adjusted according to the force loading rate. Therefore, EC surface protrusion is an important aspect of leukocyte rolling, and it should not be ignored when leukocyte rolling stability is studied systematically.  相似文献   

4.
The structure of the neurocranium, mandibular arch and hyoid arch of I. omanensis (Norman) and M. mosis Hemprich & Ehrenberg is described. Comparisons between these species and other triakids and between triakids and carcharhinoids are given. Differences in the size, weight and structure of the mandibular arch, including its associated ligaments and jaw suspension, are shown to be related to feeding habits. Dental characters for both species are examined and differences are considered in relation to diet. Structural elaborations of the nasal capsules in I. omanensis are described in relation to protrusion of the upper jaw during biting. Comparable neurocranial features are poorly developed in M. mosis where the upper jaw shows little discernable anterior movement. The optic region is enlarged in both species in relation to nasal and otic areas of the neurocranium.  相似文献   

5.
The feeding mechanism of Epibulus insidiator is unique among fishes, exhibiting the highest degree of jaw protrusion ever described (65% of head length). The functional morphology of the jaw mechanism in Epibulus is analyzed as a case study in the evolution of novel functional systems. The feeding mechanism appears to be driven by unspecialized muscle activity patterns and input forces, that combine with drastically changed bone and ligament morphology to produce extreme jaw protrusion. The primary derived osteological features are the form of the quadrate, interopercle, and elongate premaxilla and lower jaw. Epibulus has a unique vomero-interopercular ligament and enlarged interoperculo-mandibular and premaxilla-maxilla ligaments. The structures of the opercle, maxilla, and much of the neurocranium retain a primitive labrid condition. Many cranial muscles in Epibulus also retain a primitive structural condition, including the levator operculi, expaxialis, sternohyoideus, and adductor mandibulae. The generalized perciform suction feeding pattern of simultaneous peak cranial elevation, gape, and jaw protrusion followed by hyoid depression is retained in Epibulus. Electromyography and high-speed cinematography indicate that patterns of muscle activity during feeding and the kinematic movements of opercular rotation and cranial elevation produce a primitive pattern of force and motion input. Extreme jaw protrusion is produced from this primitive input pattern by several derived kinematic patterns of modified bones and ligaments. The interopercle, quadrate, and maxilla rotate through angles of about 100 degrees, pushing the lower jaw into a protruded position. Analysis of primitive and derived characters at multiple levels of structural and functional organization allows conclusions about the level of design at which change has occurred to produce functional novelties.  相似文献   

6.
Mechanical properties of neutrophils have been recognized as key contributors to stabilizing neutrophil rolling on the endothelium during the inflammatory response. In particular, accumulating evidence suggests that surface protrusion and tether extraction from neutrophils facilitate stable rolling by relieving the disruptive forces on adhesive bonds. Using a customized optical trap setup, we applied piconewton-level pulling forces on targeted receptors that were located either on the microvillus tip (CD162) or intermicrovillus surface of neutrophils (CD18 and CD44). Under a constant force-loading rate, there always occurred an initial tent-like surface protrusion that was terminated either by rupture of the adhesion or by a "yield" or "crossover" to tether extraction. The corresponding protrusional stiffness of neutrophils was found to be between 0.06 and 0.11 pN/nm, depending on the force-loading rate and the cytoskeletal integrity, but not on the force location, the medium osmolality, nor the temperature increase from 22 degrees C to 37 degrees C. More importantly, we found that neutrophil surface protrusion was accompanied by force relaxation and hysteresis. In addition, the crossover force did not change much in the range of force-loading rates studied, and the protrusional stiffness of lymphocytes was similar to that of neutrophils. These results show that neutrophil surface protrusion is essentially viscoelastic, with a protrusional stiffness that stems primarily from the actin cortex, and the crossover force is independent of the receptor-cytoskeleton interaction.  相似文献   

7.
The evolution of feeding mechanisms in the ray-finned fishes(Actinopterygii) is a compelling example of transformation ina musculoskeletal complex involving multiple skeletal elementsand numerous muscles that power skull motion. Biomechanicalmodels of jaw force and skull kinetics aid our understandingof these complex systems and enable broad comparison of feedingmechanics across taxa. Mechanical models characterize how musclesmove skeletal elements by pulling bones around points of rotationin lever mechanisms, or by transmitting force through skeletalelements connected in a linkage. Previous work has focused onthe feeding biomechanics of several lineages of fishes, buta broader survey of skull function in the context of quantitativemodels has not been attempted. This study begins such a surveyby examining the diversity of mechanical design of the oraljaws in 35 species of ray-finned fishes with three main objectives:(1) analyze lower jaw lever models in a broad phylogenetic rangeof taxa, (2) identify the origin and evolutionary patterns ofchange in the linkage systems that power maxillary rotationand upper jaw protrusion, and (3) analyze patterns of changein feeding design in the context of actinopterygian phylogeny.The mandibular lever is present in virtually all actinopterygians,and the diversity in lower jaw closing force transmission capacity,with mechanical advantage ranging from 0.04 to 0.68, has importantfunctional consequences. A four-bar linkage for maxillary rotationarose in the Amiiformes and persists in various forms in manyteleost species. Novel mechanisms for upper jaw protrusion basedon this linkage for maxillary rotation have evolved independentlyat least five times in teleosts. The widespread anterior jawslinkage for jaw protrusion in percomorph fishes arose initiallyin Zeiformes and subsequently radiated into a wide range ofpremaxillary protrusion capabilities.  相似文献   

8.
Tree shrews have relatively primitive tribosphenic molars that are apparently similar to those of basal eutherians; thus, these animals have been used as a model to describe mastication in early mammals. In this study the gross morphology of the bony skull, joints, dentition, and muscles of mastication are related to potential jaw movements and cuspal relationships. Potential for complex mandibular movements is indicated by a mobile mandibular symphysis, shallow mandibular fossa that is large compared to its resident condyle, and relatively loose temporomandibular joint ligaments. Abrasive tooth wear is noticeable, and is most marked at the first molars and buccal aspects of the upper cheek teeth distal to P2. Muscle morphology is basically similar to that previously described for Tupaia minor and Ptilocercus lowii. However, in T. glis, an intraorbital part of deep temporalis has the potential for inducing lingual translation of its dentary, and the large medial pterygoid has extended its origin anteriorly to the floor of the orbit, which would enhance protrusion. The importance of the tongue and hyoid muscles during mastication is suggested by broadly expanded anterior bellies of digastrics, which may assist mylohyoids in tensing the floor of the mouth during forceful tongue actions, and by preliminary electromyography, which suggests that masticatory muscles alone cannot fully account for jaw movements in this species.  相似文献   

9.
The retaining ligaments of the cheek   总被引:7,自引:0,他引:7  
The zygomatic ligaments (McGregor's patch) anchor the skin of the cheek to the inferior border of the zygoma just posterior to the origin of the zygomaticus minor muscle. The mandibular ligaments tether the overlying skin to the anterior mandible. Both these ligaments are obstacles to surgical maneuvers intended to advance the overlying skin. They also restrain the facial skin against gravitational changes, and they delineate the anterior border of the "jowl" area. The platysma-auricular ligament is a thin fascial sheet that extends from the posterosuperior border of the platysma and that is intimately attached to the periauricular skin; it serves as a surgical guide to the posterosuperior border of the platysma. The anterior platysma-cutaneous ligaments are variable fascial condensations that anchor the SMAS and platysma to the dermis. They can cause anatomic disorientation with dissection of false planes into the dermis. These four ligaments are useful as anatomic landmarks during facial dissections. The tethering effects of the zygomatic and mandibular ligaments must be interrupted if a maximum upward movement of the facial skin is desired.  相似文献   

10.
Gerodontology 2010; doi: 10.1111/j.1741‐2358.2010.00374.x
Clinical feasibility of mandibular implant overdenture retainers submitted to immediate load Introduction: Millions of people around the world do not have access to the benefits of osseointegration. Treatments involving oral rehabilitation with overdentures have been widely used by specialists in the oral medicine field. This is an alternative therapy for retention and stability achievement in total prosthesis with conventional treatment, and two implants are enough to establish a satisfactory overdenture. Objective: The objectives of the study were to evaluate 16 patients of both sexes, with an average age of 47.4 ± 4 years, using electromyographic analysis of masseter and temporal muscles and analyse the increase of incisive and molar maximal bite force with their existing complete dentures and following mandibular implant overdenture therapy to assess the benefits of this treatment. Materials and methods: For these tests, the Myosystem‐BR1 electromyograph and the IDDK Kratos dynamometer were used. Statistical analysis was performed using the repeated measures test (SPSS 17.0). Results: A decrease in electromyographic activity during the rest, lateral and protrusion movements and increase of the maximal incisive and molar bite force after 15 months with a mandibular implant overdenture was observed. Conclusion: All the patients in this study reported a considerable improvement in the masticatory function and prostheses stability following treatment. It is possible to propose that the use of mandibular implants overdenture should become the selected treatment for totally edentulous patients to facilitate oral function and quality of life.  相似文献   

11.
Protrusions are deformations that form at the surface of living cells during biological activities such as cell migration. Using combined optical tweezers and fluorescent microscopy, we quantified the mechanical properties of protrusions in adherent human embryonic kidney cells in response to application of an external force at the cell surface. The mechanical properties of protrusions were analyzed by obtaining the associated force-length plots during protrusion formation, and force relaxation at constant length. Protrusion mechanics were interpretable by a standard linear solid (Kelvin) model, consisting of two stiffness parameters, k 0 and k 1 (with k 0>k 1), and a viscous coefficient. While both stiffness parameters contribute to the time-dependant mechanical behavior of the protrusions, k 0 and k 1 in particular dominated the early and late stages of the protrusion formation and elongation process, respectively. Lowering the membrane cholesterol content by 25% increased the k 0 stiffness by 74%, and shortened the protrusion length by almost half. Enhancement of membrane cholesterol content by nearly two-fold increased the protrusion length by 30%, and decreased the k 0 stiffness by nearly two-and-half-fold as compared with control cells. Cytoskeleton integrity was found to make a major contribution to protrusion mechanics as evidenced by the effects of F-actin disruption on the resulting mechanical parameters. Viscoelastic behavior of protrusions was further characterized by hysteresis and force relaxation after formation. The results of this study elucidate the coordination of plasma membrane composition and cytoskeleton during protrusion formation.  相似文献   

12.
We used optical tweezers to analyze the effect of jasplakinolide and cyclodextrin on the force exerted by lamellipodia from developing growth cones (GCs) of isolated dorsal root ganglia (DRG) neurons. We found that 25 nM of jasplakinolide, which is known to inhibit actin filament turnover, reduced both the maximal exerted force and maximal velocity during lamellipodia leading-edge protrusion. By using atomic force microscopy, we verified that cyclodextrin, which is known to remove cholesterol from membranes, decreased the membrane stiffness of DRG neurons. Lamellipodia treated with 2.5 mM of cyclodextrin exerted a larger force, and their leading edge could advance with a higher velocity. Neither jasplakinolide nor cyclodextrin affected force or velocity during lamellipodia retraction. The amplitude and frequency of elementary jumps underlying force generation were reduced by jasplakinolide but not by cyclodextrin. The action of both drugs at the used concentration was fully reversible. These results support the notion that membrane stiffness provides a selective pressure that shapes force generation, and confirm the pivotal role of actin turnover during protrusion.  相似文献   

13.
The function of the ligaments as local controllers, independent of the central nervous system, in maintaining the integrity of the joint is demonstrated by modelling the human knee in the sagittal plane, and studying its anterior-posterior motion. In addition to the ligaments, the model includes the characteristic geometry of the joint surface and some muscle groups. The connecting reaction forces at the point of contact between the tibia and the femur are considered to be constraint forces due to three different surface motions--gliding, rolling and combined gliding and rolling. It is demonstrated that the ligamentous structure maintains these holonomic and nonholonomic constraints that describe the joint motion, and that stability of the knee joint is provided mainly by ligaments. Muscular structures further stabilize and contribute to joint movement. Computer simulation of rolling movement of the knee is presented to illustrate the importance of the ligaments for joint integrity and stability.  相似文献   

14.
Many habitual human jaw movements are non-symmetrical. Generally, it is observed that when the lower incisors move to one side the contralateral condyle moves forwards onto the articular eminence, whereas the ipsilateral condyle stays in the mandibular fossa, moving slightly to the ipsilateral side. These jaw movements are the result of contractions of active masticatory muscles and guided by the temporomandibular joints, their ligaments and passive elastic properties of the muscles. It is not known whether the movements are primarily dependent on passive guidance, active muscle control or both. Therefore, the objective of this study was to analyse the interplay between these factors during non-symmetrical jaw movements. A six-degrees-of-freedom dynamical biomechanical model of the human masticatory system was used. The movements were not restricted to a priori defined joint axes. Jaw movement simulations were performed by unilateral activity of the muscles. The ligaments or the passive elastic properties of the muscles could be removed during these simulations. Laterodeviations conform to naturally observed ones could be generated by unilateral muscle contractions. The movement of the lower incisors was hardly affected by the absence of passive elastic muscle properties or temporomandibular ligaments. The latter, however, influenced the movement of the condyles. The movements could be understood by analysing the combination of forces and torques with respect to the centre of gravity of the lower jaw. In addition, the loading of the condyles appeared to be an important determinant for the movement. This analysis emphasizes that the movements of the jaw are primarily dependent on the orientation of the contributing muscles with respect to this centre of gravity and not on the temporomandibular ligaments or passive elastic muscle properties.  相似文献   

15.
Incisal bite force direction was recorded and analyzed in ten human subjects using a specially designed force transducer. In all ten subjects the maxillary incisal bite force was vertically and anteriorly directed both during static biting and during biting associated with simultaneous mandibular translation and rotation. Since the resultant muscle force could not have been equal and opposite to the mandibular bite force, the mandibular condyles must have been loaded. These data demonstrate that the mandible acts as a lever during incisal biting and that there is no consistent relationship between incisal bite force direction and object size. In some individuals the bite force direction was more vertical during biting on a large transducer (30 mm high), while in other subjects it was more vertical during biting on a small transducer (10 mm high).  相似文献   

16.
17.
Many patients with low back and/or pelvic girdle pain feel relief after application of a pelvic belt. External compression might unload painful ligaments and joints, but the exact mechanical effect on pelvic structures, especially in (active) upright position, is still unknown. In the present study, a static three-dimensional (3-D) pelvic model was used to simulate compression at the level of anterior superior iliac spine and the greater trochanter. The model optimised forces in 100 muscles, 8 ligaments and 8 joints in upright trunk, pelvis and upper legs using a criterion of minimising maximum muscle stress. Initially, abdominal muscles, sacrotuberal ligaments and vertical sacroiliac joints (SIJ) shear forces mainly balanced a trunk weight of 500N in upright position. Application of 50N medial compression force at the anterior superior iliac spine (equivalent to 25N belt tension force) deactivated some dorsal hip muscles and reduced the maximum muscle stress by 37%. Increasing the compression up to 100N reduced the vertical SIJ shear force by 10% and increased SIJ compression force with 52%. Shifting the medial compression force of 100N in steps of 10N to the greater trochanter did not change the muscle activation pattern but further increased SIJ compression force by 40% compared to coxal compression. Moreover, the passive ligament forces were distributed over the sacrotuberal, the sacrospinal and the posterior ligaments. The findings support the cause-related designing of new pelvic belts to unload painful pelvic ligaments or muscles in upright posture.  相似文献   

18.
The internal head anatomy (and the peculiar integumental structure of the epicranial notch region) of Heterogynis penella larvae are described; special attention is paid to the skeleto‐muscular and nervous systems and to the cephalic glands. Transverse ligaments connect the apodemes of the mandibular adductor muscles of both sides and the anterior maxillo‐labial articulations of both sides. The two ligaments are linked to each other by a thin, apparently acellular membrane. An accessory, trilobed mandibular gland is present. A putative stretch receptor, connecting the oblique dorsal cibarial dilators of both sides, is described for the first time in a lepidopterous larva and its importance in assessing the homology of these muscles is discussed. The presence of cibarial sensilla, previously predicted in other caterpillars on the basis of behavioural experiments and observations of the nerve pattern, is confirmed. The structural diversity of larval head anatomy in ditrysian Lepidoptera is discussed, with particular emphasis on the innervation of the corpora cardiaca and corpora allata and of the sensilla of the head capsule.  相似文献   

19.
Abstract

The paper aims to evaluate the effects caused by a Mandibular Advancement Device (MAD) for Obstructive Sleep Apnoea Syndrome (OSAS) treatment. This study is based on Finite Element Method (FEM) for evaluating the load distribution on temporomandibular joint, especially on the mandibular condyle and disc, and on periodontal ligaments. The stress values on condyle and periodontal ligaments lead authors to consider MAD a safe procedure even for a long period. The obtained results also show the relationship between MAD material and load distribution at the periodontal ligaments. The paper is a step toward future analyses for studying and comparing the effects of MAD features, such as material, shape and dimensions, in order to allow the clinician prescribing the most fitting device.  相似文献   

20.
The formation of protrusions is necessary for numerous biological processes. It involves extension of the plasma membrane, and the force needed for this is provided by the actin cytoskeleton. Tether pulling with optical tweezers can mimic the formation of a protrusion, so we used this method to investigate the effects of modifying not only actin (with latrunculin A) but also microtubules (with nocodazole) and the plasma membrane itself (with methyl-β-cyclodextrin) on the Chinese hamster ovary cell membrane. After these modifications, the membrane reservoir was supposed to redistribute. Caveolae constitute a small part of the reservoir, so the redistribution of caveolar proteins such as caveolin-1 and cavin-1 that represents caveolae per se was assessed. The main findings concerning protrusion force and membrane reservoir availability were as follows: (1) they correlated inversely, (2) their values underwent the greatest change after microtubule disruption, and (3) membrane composition had a major influence on the parameters studied. F-actin disruption and cholesterol depletion decreased, and microtubule disruption increased the amount of the caveolar proteins (caveolae). Caveolae presented just an example of the membrane reservoir, and from our findings, we suppose that the perturbations caused were too large to be related to caveolae redistribution alone. The integrity of the cytoskeleton and plasma membrane composition are important factors in the formation of protrusions and in determining the availability and distribution of the membrane reservoir.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号