首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Evolution of levers and linkages in the feeding mechanisms of fishes
Authors:Westneat Mark W
Institution:1 Department of Zoology, Field Museum of Natural History, Chicago, Illinois 60605
Abstract:The evolution of feeding mechanisms in the ray-finned fishes(Actinopterygii) is a compelling example of transformation ina musculoskeletal complex involving multiple skeletal elementsand numerous muscles that power skull motion. Biomechanicalmodels of jaw force and skull kinetics aid our understandingof these complex systems and enable broad comparison of feedingmechanics across taxa. Mechanical models characterize how musclesmove skeletal elements by pulling bones around points of rotationin lever mechanisms, or by transmitting force through skeletalelements connected in a linkage. Previous work has focused onthe feeding biomechanics of several lineages of fishes, buta broader survey of skull function in the context of quantitativemodels has not been attempted. This study begins such a surveyby examining the diversity of mechanical design of the oraljaws in 35 species of ray-finned fishes with three main objectives:(1) analyze lower jaw lever models in a broad phylogenetic rangeof taxa, (2) identify the origin and evolutionary patterns ofchange in the linkage systems that power maxillary rotationand upper jaw protrusion, and (3) analyze patterns of changein feeding design in the context of actinopterygian phylogeny.The mandibular lever is present in virtually all actinopterygians,and the diversity in lower jaw closing force transmission capacity,with mechanical advantage ranging from 0.04 to 0.68, has importantfunctional consequences. A four-bar linkage for maxillary rotationarose in the Amiiformes and persists in various forms in manyteleost species. Novel mechanisms for upper jaw protrusion basedon this linkage for maxillary rotation have evolved independentlyat least five times in teleosts. The widespread anterior jawslinkage for jaw protrusion in percomorph fishes arose initiallyin Zeiformes and subsequently radiated into a wide range ofpremaxillary protrusion capabilities.
Keywords:
本文献已被 PubMed Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号