首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
The mechanisms driving the spatial patterns of species richness and composition are essential to the understanding of biodiversity. Numerous studies separately identify the contributions of the environment (niche process) and space (neutral process) to the species richness or composition at different scales, but few studies have investigated the contributions of both types of processes in the two types of data at the landscape scale. In this study, we partitioned the spatial variations in all, exotic and native understory plant species richness and composition constrained by environmental variables and space in 134 plots that were spread across 10 counties in Hainan Island in southern China. The 134 plots included 70 rubber (Hevea brasiliensis) plantation plots, 50 eucalyptus (Eucalyptus urophylla) plantation plots, and 14 secondary forest plots. RDA based variation partitioning was run to assess the contribution of environment and space to species richness and composition. The results showed that the environmental variables alone explained a large proportion of the variations in both the species richness and composition of all, native, and exotic species. The RDA results indicated that overstory composition (forest type here) plays a leading role in determining species richness and composition patterns. The alpha and beta diversities of the secondary forest plots were markedly higher than that of the two plantations. In conclusion, niche differentiation processes are the principal mechanisms that shape the alpha and beta diversities of understory plant species in Hainan Island.  相似文献   

2.
To understand vegetation development during the ecological succession of rehabilitated quarries, floristic composition and structure were evaluated at different restoration phases on three quarries in Hong Kong that were planted with exotic woody species over the course of 2–14 years. A total of 113 species, of which 82 were woody species, were recorded. Exotic species dominated the overstory, and species number, richness, and diversity increased with age. Some light‐demanding early successional species were becoming dominant in the overstory vegetation at the older phases of revegetation. These species could be potential candidates for early enrichment planting with Acacia spp. Common secondary forest species occurred naturally in the understory vegetation, and were more abundant and dominant after 10 years of ecological development. The most successful restorations were on scree slopes using leguminous Acacia spp. as nurse species.  相似文献   

3.
为了解长期植被恢复的成熟人工林林下植物组成与多样性特征及其影响因素,基于广东鹤山生态系统国家野外科学观测研究站的南亚热带人工林生态系统,对环境相似(坡度、坡向、海拔)、30 a生4种类型人工林(桉树混交林、马占相思纯林、乡土混交林、针叶混交林)进行调查研究,分析林下植物组成和物种多样性(Shannon-Wiener指数、Simpson指数、Pielou指数)特征。结果表明,人工林林下植物类型丰富,均可形成乔-灌-草垂直结构;4种林型林下植物组成既有相似性,也有差异性,桉树混交林与针叶混交林、马占相思纯林与乡土混交林的灌木层组成相似;桉树混交林与马占相思纯林、乡土混交林与针叶混交林的草本层组成相似,而桉树混交林与针叶混交林的草本层组成极不相似。林分类型影响林下植物多样性,马占相思纯林林下灌草多样性显著低于其他3种混交林(P<0.05),灌木物种数、个体数最少;针叶混交林林下物种丰富度最高。林分郁闭度与林下植物多样性呈正相关(P<0.001),林下植物分布与土壤养分含量相关,桉树混交林、马占相思纯林林下植物多样性与不同形态氮含量相关,有效磷、全磷影响乡土混交林林下物种的分布,针叶混交林受土壤酸碱度、全钾的影响较为明显。在4种人工林林下植物群落中,乡土混交林多样性,均匀度最高,优势度最低,具有更佳的保育和维持林下生物多样性功能。因此,乡土树种混交林更适用于生态公益林构建或对一些针叶林及外来树种纯林进行林分改造。  相似文献   

4.
Understanding the processes that lead to successful invasions is essential for the management of exotic species. We aimed to assess the comparative relevance of habitat (both at local and at regional scale) and plant features on the species richness of local canopy spiders of both indigenous and exotic species. In an oceanic island, Azores archipelago, we collected spiders in 97 transects belonging to four habitat types according to the degree of habitat disturbance, four types of plants with different colonisation origin (indigenous vs. exotic), and four types of plants according to the complexity of the vegetation structure. Generalised linear mixed models and linear regressions were performed separately for indigenous and exotic species at the local and regional landscape scales. At the local scale, habitat and plant origin explained the variation in the species richness of indigenous spiders, whereas exotic spider richness was poorly correlated to habitat and plant structure. The surrounding landscape matrix substantially affected indigenous spiders, but did not affect exotic spiders, with the exception of the negative effect exerted by native forests on the richness of exotic species. Our results revealed that the local effect of habitat type, plant origin and plant structure explain variations in the species richness observed at a regional scale. These results shed light on the mechanistic processes behind the role of habitat types in invasions, i.e., plant fidelity and plant structure are revealed as key factors, suggesting that native forests may act as physical barriers to the colonisation of exotic spiders.  相似文献   

5.
Conservation strategies of forested landscapes must consider biodiversity of the included site types, i.e. timber-quality forests and associated non-timber-quality stands. The objectives were to characterize forest overstory structure in timber-quality versus associated non-timber-quality stands; and to compare their understory communities. Six forest types were sampled in Nothofagus forests of Tierra del Fuego (Argentina): two timber-quality N. pumilio forests, and four associated non-timber-quality stands (edge, N. antarctica, wetlands and streamside forests). Overstory structure and understory vegetation (species richness, frequencies, cover and biomass) were characterized during spring and summer seasons. Analysis of variance and multivariates were carried out. Overstory structure differed across the site types, with higher tree size, canopy closure and tree volume in timber-quality stands. Fifty-one understory plant species were observed, but understory variables varied with site types, especially wetlands (highest native and exotic richness, cover and biomass, and 25% of exclusive species). Site types were grouped in three: N. antarctica stands, streamside stands and the other N. pumilio forests according to multivariate analysis. Forty three percent of plants were distributed in all site types, and all timber-quality forest understory species were present in some associated non-timber-quality stands. Timber-quality N. pumilio forests have a marginal value for understory conservation compared to associated non-timber-quality stands, because these last include all the plants observed in timber-quality forests and also possess many exclusive species. Therefore, protection of associated non-timber-quality stands during forest management planning could increase understory conservation at landscape level, and these could be better reserves of understory diversity than retentions of timber-quality stands.  相似文献   

6.
Habitat loss and fragmentation are key processes causing biodiversity loss in human‐modified landscapes. Knowledge of these processes has largely been derived from measuring biodiversity at the scale of ‘within‐habitat’ fragments with the surrounding landscape considered as matrix. Yet, the loss of variation in species assemblages ‘among’ habitat fragments (landscape‐scale) may be as important a driver of biodiversity loss as the loss of diversity ‘within’ habitat fragments (local‐scale). We tested the hypothesis that heterogeneity in vegetation cover is important for maintaining alpha and beta diversity in human‐modified landscapes. We surveyed bird assemblages in eighty 300‐m‐long transects nested within twenty 1‐km2 vegetation ‘mosaics’, with mosaics assigned to four categories defined by the cover extent and configuration of native eucalypt forest and exotic pine plantation. We examined bird assemblages at two spatial scales: 1) within and among transects, and 2) within and among mosaics. Alpha diversity was the mean species diversity within‐transects or within‐mosaics and beta diversity quantified the effective number of compositionally distinct transects or mosaics. We found that within‐transect alpha diversity was highest in vegetation mosaics defined by continuous eucalypt forest, lowest in mosaics of continuous pine plantation, and at intermediate levels in mosaics containing eucalypt patches in a pine matrix. We found that eucalypt mosaics had lower beta diversity than other mosaic types when ignoring relative abundances, but had similar or higher beta diversity when weighting with species abundances. Mosaics containing both pine and eucalypt forest differed in their bird compositional variation among transects, despite sharing a similar suite of species. This configuration effect at the mosaic scale reflected differences in vegetation composition among transects. Maintaining heterogeneity in vegetation cover could help to maintain variation among bird assemblages across landscapes, thus partially offsetting local‐scale diversity losses due to fragmentation. Critical to this is the retention of remnant native vegetation.  相似文献   

7.
Temperate humid grasslands are known to be particularly vulnerable to invasion by alien plant species when grazed by domestic livestock. The Flooding Pampa grasslands in eastern Argentina represent a well-documented case of a regional flora that has been extensively modified by anthropogenic disturbances and massive invasions over recent centuries. Here, we synthesise evidence from region-wide vegetation surveys and long-term exclosure experiments in the Flooding Pampa to examine the response of exotic and native plant richness to environmental heterogeneity, and to evaluate grazing effects on species composition and diversity at landscape and local community scales. Total plant richness showed a unimodal distribution along a composite stress/fertility gradient ranging several plant community types. On average, more exotic species occurred in intermediate fertility habitats that also contained the highest richness of resident native plants. Exotic plant richness was thus positively correlated with native species richness across a broad range of flood-prone grasslands. The notion that native plant diversity decreases invasibility was supported only for a limited range of species-rich communities in habitats where soil salinity stress and flooding were unimportant. We found that grazing promoted exotic plant invasions and generally enhanced community richness, whereas it reduced the compositional and functional heterogeneity of vegetation at the landscape scale. Hence, grazing effects on plant heterogeneity were scale-dependent. In addition, our results show that environmental fluctuations and physical disturbances such as large floods in the pampas may constrain, rather than encourage, exotic species in grazed grasslands.  相似文献   

8.
Habitat modification and biological invasions are key drivers of global environmental change. However, the extent and impact of exotic plant invasions in modified tropical landscapes remain poorly understood. We examined whether logging drives exotic plant invasions and whether their combined influences alter understory plant community composition in lowland rain forests in Borneo. We tested the relationship between understory communities and local‐ and landscape‐scale logging intensity, using leaf area index (LAI) and aboveground biomass (AGB) data from 192 plots across a logging‐intensity gradient from primary to repeatedly logged forests. Overall, we found relatively low levels of exotic plant invasions, despite an intensive logging history. Exotic species were more speciose, had greater cover, and more biomass in sites with more local‐scale canopy loss. Surprisingly, though, exotic species invasion was not related to either landscape‐scale canopy loss or road configuration. Moreover, logging and invasion did not seem to be acting synergistically on native plant composition, except that seedlings of the canopy‐dominant Dipterocarpaceae family were less abundant in areas with higher exotic plant biomass. Current low levels of invasion, and limited association with native understory community change, suggest there is a window of opportunity to manage invasive impacts. We caution about potential lag effects and the possibly severe negative impacts of exotic plant invasions on the long‐term quality of tropical forest, particularly where agricultural plantations function as permanent seed sources for recurrent dispersal along logging roads. We therefore urge prioritization of strategic management plans to counter the growing threat of exotic plant invasions in modified tropical landscapes.  相似文献   

9.
Abstract Although there is no one correct technique for sampling vegetation, the sampling design chosen may greatly influence the conclusions researchers can draw from restoration treatments. Considerations when designing vegetation sampling protocol include determining what sampling attributes to measure, the size and shape of the sampling plot, the number of replicates and their location within the study area, and the frequency of sampling. We installed 20 point‐intercept transects (50‐m long), 8 belt transects (10 × 50 m), 10 adapted Daubenmire transects (four 0.5 × 2‐m plots), and 4 modified‐Whittaker plots (20 × 50 m with smaller nested plots) in treatment and control units to measure understory herbaceous response in a forest restoration experiment that tested different treatments. Point‐intercept transects on average recorded at least twice as much plant cover as did adapted Daubenmire transects and modified‐Whittaker plots taken at the same location for all control and treatment units. Point‐intercept transects and adapted Daubenmire plots on average captured fewer rare and exotic species in the control and treatment units in comparison with the belt transects and modified‐Whittaker plots. Modified‐Whittaker plots captured the highest species richness in all units. Early successional understory response to restoration treatments was likely masked by the response of the herbaceous community to yearly climatic variation (dry vs. wet years). Species richness and abundance were higher in wet years than dry years for all control and treatment units. Our results illustrate that sampling techniques can greatly influence perceptions of understory plant trajectories and therefore the interpretation of whether restoration goals have been achieved. In addition, our results suggest that restoration monitoring needs to be conducted for a sufficient length of time so that restoration treatment responses can be detected.  相似文献   

10.
Riparian forests are highly valued for maintaining water quality through the retention of sediments and nutrients. They also provide some of the most diverse and species-rich habitats in the world. What is largely unknown, however, is how sediment deposition affects plant community composition in these forests. The objective of this study was to examine changes in plant community composition across a gradient of increasing rates of sedimentation in riparian forests in the southeastern Coastal Plain, USA. Seventeen plots were established within riparian forests receiving between 0 and 5.5 cm year−1 of sediment deposits. Species density and biomass estimates were collected annually from 2002 to 2006 for overstory and mid-story plant species within each plot. Percent cover and nested frequency of understory plant species were determined annually during 2004–2006. Measures of community composition in the understory, mid-story, and overstory layers of forests were compared to changes in environmental factors associated with increased sedimentation. In the understory, annual, exotic, and upland species had higher importance values in plots receiving high sediment deposition. The densities of shade-intolerant and N-fixing species in the mid-story also increased with increasing sedimentation rates. Increased overstory mortality was associated with high sedimentation rates, though increases in understory light levels in these gaps were not the main driver of understory species changes. Edaphic factors, such as soil texture, moisture, and temperature, were significantly correlated to species composition in all three forest layers, suggesting that changes in soil physical structure due to sedimentation may drive community-level changes in these forests.  相似文献   

11.
Invasive species interacting with fires pose a relatively unknown, but potentially serious, threat to the tropical forests of Hawaii. Fires may create conditions that facilitate species invasions, but the degree to which this occurs in different tropical plant communities has not been quantified. We documented the survival and establishment of plant species for 2 yr following 2003 wildfires in tropical moist and wet forest life zones in Hawaii Volcanoes National Park, Hawaii. Fires were ignited by lava flows and burned across a steep environmental gradient encompassing two previously burned shrub-dominated communities and three Metrosideros polymorpha forest communities. Fires in all community types were stand replacing, where >95 percent of overstory trees were top killed. Over half (>57%) of the trees survived via basal sprouting, but sprout growth differed among forest communities. Sprout growth (>250,000 cm3) was greatest in the forest community where postfire understory cover was lowest presumably due to thick native Dicranopteris linearis fern litter that remained postfire. In contrast, M. polymorpha sprout growth was much slower (<100,000 cm3) in the two forest communities where there was rapid understory recovery of nonnative ferns Nephrolepis multiflora and invasive grasses Paspalum conjugatum. These results suggest that the rapid establishment of an invasive-dominated understory limited recovery of the overstory dominant M. polymorpha. In contrast to the three forest communities, there were few changes in vegetation composition in the shrubland communities. Nonnative species invasions coupled with repeated fires selectively eliminated fire-sensitive species thereby maintaining these communities in dominance of primarily nonnative, fire-resilient, species.  相似文献   

12.
Restoration of native vegetation often focuses on the canopy layer species, with the assumption that regeneration of the understory elements will occur as a consequence. The goal of this study was to assess the influence of canopy restoration on the composition and abundance of understory plant species assemblages along riparian margins in the Hunter Valley, NSW, Australia. We compared the floristic composition (richness, abundance, and diversity) of understory species between nonrevegetated (open) and canopy revegetated plots across five sites. A number of other factors that may also influence understory vegetation, including soil nutrients, proximity to main channel, and light availability, were also measured. We found that sites where the canopy had been restored had lower exotic species richness and abundance, as well as higher native species cover, but not native species richness, compared with open sites. Multivariate analysis of plots based on plant community composition showed that revegetated sites were associated with lower total species diversity, light availability, and exotic cover. This study has found that the restoration of the canopy layer does result in lower exotic species richness and cover, and higher native species cover and diversity in the understory, a desirable restoration outcome. Our results provide evidence that restoration of native canopy species may facilitate restoration of native understory species; however, other interventions to increase native species richness of the understory should also be considered as part of management practice.  相似文献   

13.
Brosofske  K.D.  Chen  J.  Crow  T.R.  Saunders  S.C. 《Plant Ecology》1999,143(2):203-218
Increasing awareness of the importance of scale and landscape structure to landscape processes and concern about loss of biodiversity has resulted in efforts to understand patterns of biodiversity across multiple scales. We examined plant species distributions and their relationships to landscape structure at varying spatial scales across a pine barrens landscape in northern Wisconsin, U.S.A. We recorded plant species cover in 1×1 m plots every 5 m along a 3575 m transect, along with variables describing macro- and micro-landscape structure. A total of 139 understory plant species were recorded. The distributions of many species appeared to be strongly associated with landscape structural features, such as distinct management patches and roads. TWINSPAN and detrended correspondence analysis (DCA) identified three groups of species that overlapped extensively in the ordination, possibly reflecting the relatively homogeneous nature of disturbance in the pine barrens landscape. Distribution of understory plants did not reflect all of the patch types we identified along the transect; plot ordination and classification resulted in three to five plot groups that differed in niche breadth. Wavelet transforms showed varying relationships between landscape features and plant diversity indices (Shannon–Weiner, Simpson's Dominance) at different resolutions. Wavelet variances indicated that patterns of Shannon diversity were dominated by coarse resolutions ranging from 900–1500 m, which may have been related to topography. Patterns of Simpson's Dominance were dominated by 700 m resolution, possibly associated with canopy cover. However, a strong correspondence between overstory patch type and diversity was found for several patch types at ranges of scales that varied by patch type. Effects of linear features such as roads were apparent in the wavelet transforms at resolutions of about 5–1000 m, suggesting roads may have an important impact on plant diversity at landscape scales. At broad scales, landscape context appeared more important to diversity than individual patches, suggesting that changes in structure at fine resolutions could alter overall diversity characteristics of the landscape. Therefore, a hierarchical perspective is necessary to recognize potential large-scale change resulting from small-scale activities.  相似文献   

14.
Ecological interactions between aboveground and belowground biodiversity have received many attentions in the recent decades. Although soil biodiversity declined with the decrease of plant diversity, many previous studies found plant species identities were more important than plant diversity in controlling soil biodiversity. This study focused on the responses of soil biodiversity to the altering of plant functional groups, namely overstory and understory vegetations, rather than plant diversity gradient. We conducted an experiment by removing overstory and/or understory vegetation to compare their effects on soil microbial phospholipid fatty acid (PLFA) and nematode diversities in eucalyptus monocultures. Our results indicated that both overstory and understory vegetations could affect soil microbial PLFA and nematode diversities, which manifested as the decrease in Shannon–Wiener diversity index (H′) and Pielou evenness index (J) and the increase in Simpson dominance index (λ) after vegetation removal. Soil microclimate change explained part of variance of soil biodiversity indices. Both overstory and understory vegetations positively correlated with soil microbial PLFA and nematode diversities. In addition, the alteration of soil biodiversity might be due to a mixing effect of bottom-up control and soil microclimate change after vegetation removal in the studied plantations. Given the studied ecosystem is common in humid subtropical and tropical region of the world, our findings might have great potential to extrapolate to large scales and could be conducive to ecosystem management and service.  相似文献   

15.
通过对山西灵空山小蛇沟集水区的林下草本层植物群落进行调查和多元分析——TWINSPAN分类、典范对应分析(CCA)与生境、生物因素变量分离, 探讨林分水平上草本层物种分布与环境因子之间的关系。结果如下: 1) TWINSPAN将26个调查样方划分为6种群落类型: 以辽东栎(Quercus wutaishanica)为主的辽东栎-油松(Pinus tabulaeformis)林型、辽东栎杂木林型、辽东栎林型、华北落叶松(Larix principis-rupprechtii)林型、油松林和阔叶油松林型、油松-辽东栎均匀混交林型, 体现了该地区地带性植被类型为暖温带森林的特点。2)群落类型的划分与CCA的结果相吻合, 主要反映了CCA排序第一、二轴的环境梯度, CCA排序轴第一轴突出反映了林分类型与土壤养分梯度, 第二排序轴与坡度、坡位显著相关。Monte Carlo检验结果表明, 林分类型、土壤养分和坡度是影响小蛇沟集水区内林下草本物种分异的最主要的环境因子。3)生境因子与生物因子解释了物种格局变化的42.9%, 其中生境因子占31.8%, 生物因子占7.9%, 生境因子与生物因子交互作用解释部分占3.2%。良好的环境解释反映了调查取样和环境因子选取的合理性。对于50%以上未能被解释的变异部分, 可能归咎于未被选取的因子如干扰或者随机过程。4)在海拔梯度较小的山区, 坡向等小地形因子能较好地指示局部生境的小气候条件, 对林下植物的分布有较好的解释力。  相似文献   

16.
Large wild ungulates are a major biotic factor shaping plant communities. They influence species abundance and occurrence directly by herbivory and plant dispersal, or indirectly by modifying plant‐plant interactions and through soil disturbance. In forest ecosystems, researchers’ attention has been mainly focused on deer overabundance. Far less is known about the effects on understory plant dynamics and diversity of wild ungulates where their abundance is maintained at lower levels to mitigate impacts on tree regeneration. We used vegetation data collected over 10 years on 82 pairs of exclosure (excluding ungulates) and control plots located in a nation‐wide forest monitoring network (Renecofor). We report the effects of ungulate exclusion on (i) plant species richness and ecological characteristics, (ii) and cover percentage of herbaceous and shrub layers. We also analyzed the response of these variables along gradients of ungulate abundance, based on hunting statistics, for wild boar (Sus scrofa), red deer (Cervus elaphus) and roe deer (Capreolus capreolus). Outside the exclosures, forest ungulates maintained higher species richness in the herbaceous layer (+15%), while the shrub layer was 17% less rich, and the plant communities became more light‐demanding. Inside the exclosures, shrub cover increased, often to the benefit of bramble (Rubus fruticosus agg.). Ungulates tend to favour ruderal, hemerobic, epizoochorous and non‐forest species. Among plots, the magnitude of vegetation changes was proportional to deer abundance. We conclude that ungulates, through the control of the shrub layer, indirectly increase herbaceous plant species richness by increasing light reaching the ground. However, this increase is detrimental to the peculiarity of forest plant communities and contributes to a landscape‐level biotic homogenization. Even at population density levels considered to be harmless for overall plant species richness, ungulates remain a conservation issue for plant community composition.  相似文献   

17.
Question: How are the effects of mineral soil properties on understory plant species richness propagated through a network of processes involving the forest overstory, soil organic matter, soil nitrogen, and understory plant abundance? Location: North‐central Arizona, USA. Methods: We sampled 75 0.05‐ha plots across a broad soil gradient in a Pinus ponderosa (ponderosa pine) forest ecosystem. We evaluated multivariate models of plant species richness using structural equation modeling. Results: Richness was highest at intermediate levels of understory plant cover, suggesting that both colonization success and competitive exclusion can limit richness in this system. We did not detect a reciprocal positive effect of richness on plant cover. Richness was strongly related to soil nitrogen in the model, with evidence for both a direct negative effect and an indirect non‐linear relationship mediated through understory plant cover. Soil organic matter appeared to have a positive influence on understory richness that was independent of soil nitrogen. Richness was lowest where the forest overstory was densest, which can be explained through indirect effects on soil organic matter, soil nitrogen and understory cover. Finally, model results suggest a variety of direct and indirect processes whereby mineral soil properties can influence richness. Conclusions: Understory plant species richness and plant cover in P. ponderosa forests appear to be significantly influenced by soil organic matter and nitrogen, which are, in turn, related to overstory density and composition and mineral soil properties. Thus, soil properties can impose direct and indirect constraints on local species diversity in ponderosa pine forests.  相似文献   

18.
While exotic plant species often come to dominate disturbed communities, long-term patterns of invasion are poorly known. Here we present data from 40 yr of continuous vegetation sampling, documenting the temporal distribution of exotic plant species in old field succession. The relative cover of exotic species decreased with time since abandonment, with significant declines occurring ≥20 yr post-abandonment. The number of exotic species per plot also declined with time since abandonment while field-scale richness of exotics did not change. This suggests displacement occurring at small spatial scales. Life history types changed from short-lived herbaceous species to long-lived woody species for both native and exotic plant species. However, shrubs and lianas dominated woody cover of exotic plants while trees dominated native woody cover. The species richness of exotic and native species was positively correlated at most times. In abandoned hay fields, however, the proportion of exotic plant cover per plot was inversely related to total species richness. This relationship suggests that it is not the presence, but the abundance of exotic species that may cause a reduction in community diversity. While the development of closed-canopy forest appears to limit most introduced plant species, several shade-adapted exotic species are increasing within the fields. These invasions may cause a reversal of the patterns seen in the first 40 yr of succession and may result in further impacts on community structure.  相似文献   

19.
Plantations cover large areas in many countries, and the enhancement of plantation biodiversity is an increasingly important ecological concern. Many studies have demonstrated that overstory composition is important because it influences understory regeneration. To compare the understory vegetation and analyze its determinant factors, six typical plantations in South China were investigated: Acacia mangium plantation, Schima superba plantation, Eucalyptus citriodora plantation, E. exserta plantation, mixed‐coniferous plantation, and mixed native species plantation. The results show that native species plantations shaded out more grasses and herbs than exotic species plantations, mixed‐species plantations recruited more understory species than monoculture plantations, the leguminous species plantation had higher soil nitrogen than nonleguminous species plantations, and understory vegetation in the mixed‐coniferous plantation was similar to that of mixed, native broadleaf species plantation. Although light is the crucial environmental factor affecting the understory community and diversity among the 14 measured factors, other environmental variables such as soil nutrients and soil moisture are also important.  相似文献   

20.
林火干扰对北方针叶林林下植被的影响   总被引:7,自引:0,他引:7       下载免费PDF全文
林下植被在北方针叶林植被群落中的物种多样性最高, 且具有较高的生物量周转率和地上部分净初级生产力, 对北方针叶林生态系统功能起着重要作用。火干扰是决定北方针叶林林下植被结构与功能的一个重要景观过程。该文综述了火干扰是如何通过与地形、火前林冠组成的交互作用而影响环境资源和林下植被的。最近的研究表明: 林下植被能够影响火后树木更新苗的定植、重建速率及森林演替轨迹; 林下植被还会通过影响元素的生物地球化学过程(凋落物降解和养分循环)影响林下环境资源的数量与异质性。因此, 研究火后初期北方针叶林林下植被的动态变化, 对于物种多样性保护和森林管理具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号