首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insect community studies related to forest management focus principally on timber-quality stands, and often omit the remainder of the landscape. This study aimed mainly to compare insect communities of primary timber-quality forests (Nothofagus pumilio) with associated non-timber-quality stands (wetland, edge, riparian and N. antarctica forests), and secondarily to characterize these insect assemblages throughout the growing season and at different vertical strata to evaluate the importance of each habitat type for insect conservation. A total of 18,800 individuals belonging to 231 RTUs (recognizable taxonomic units) were identified, of which Diptera, Hymenoptera, Lepidoptera and Coleoptera were the dominant orders. Lepidoptera RTUs were mostly generalists, while the other main orders were most frequently found in timber-quality forests and included many RTUs with specific environmental requirements. Timber-quality stands had higher richness and abundance than associated non-timber-quality forests and possessed more exclusive species (18%), while 39% of RTUs were shared between all sites. The spatial heterogeneity of timber-quality stands generated different niches and favored insect diversity, which would not have been maintained by protecting non-timber-quality stands alone. Consequently, the proper management of subantarctic Nothofagus forests must include the conservation of timber-quality stands, as protection of non-timber-quality areas alone will not be sufficient for insect conservation at the landscape scale.  相似文献   

2.
This study documents the stem size and age-structure in forests dominated by different species of Nothofagus in Torres del Paine National Park (51° S), in the Chilean Patagonian region. We also explored the relationship between the various types of Nothofagus forest and postglacial succession. Pioneer stands on moraine fields 1–2 km of the glacier front are dominated by Nothofagus betuloides and Nothofagus antarctica. Moraines appear to be first colonized by the evergreen N. betuloides, followed within 5–7 years by deciduous N. antarctica. Nothofagus antarctica may replace the former species and develop monospecific stands on glacial valleys. Most trees in the N. antarctica stand studied were older than 40 years and floods may cause a significant mortality of young trees. Recruitment from seed seems to be infrequent. Old-growth stands dominated by deciduous Nothofagus pumilio occupy more stable substrates, and probably represent the last stage of postglacial succession. This long-lived tree species had recorded ages over 200 years. The canopy of N. pumilio forests appears to be a mosaic of even-aged, old-growth patches. We propose that regeneration episodes follow the blowdown of a large portion of the canopy, with long intervals with little or no regeneration. Windstorms may be an important force influencing the regeneration of N. pumilio. Exogenous disturbances, such as floods and windstorms, are an integral part of the forest cycle in the Patagonian region.  相似文献   

3.
The Magellanic woodpecker (Campephilus magellanicus) is a vulnerable and poorly studied bird in the sub-antarctic deciduous and evergreen beech (Nothofagus) forests of South America. On Tierra del Fuego island (Chile), we compared Magellanic woodpecker abundance and its foraging habitat in two forest types: pure N. pumilio and mixed forests composed by N. pumilio and N. betuloides, including managed and non managed stands. At a regional scale, abundance of woodpeckers was greater in landscapes including both forest types than in pure N. pumilio landscapes. When both forest types occurred together, woodpecker abundance did not differ between them. The number of trees with foraging signs was correlated with Magellanic woodpecker abundance and was also associated with N. betuloides and snag densities, but was not affected by forest management. Occurrence of pecking on foraging trees was greater in mixed Nothofagus than pure N. pumilio stands. Woodpeckers foraged disproportionately more on larger diameter and more decayed trees. Moreover, trees used for foraging were positively correlated with canopy cover and snag density and were negatively correlated with distance to nearby peatlands and beaver ponds. Direct observation revealed that the flying distance between trees was negatively correlated with proportion of trees with foraging signs. Woodpeckers chose trees that were visited before, suggesting a pattern of tree recognition within foraging territories.Communicated by F. Bairlein  相似文献   

4.
Identifying habitat or nesting microhabitat variables associated with high levels of nest success is important to understand nest site preferences and bird–habitat relationships. Little is known about cavity availability and nest site requirements of cavity nesters in southern hemisphere temperate forests, although nest site limitation is suggested. Here we ask which characteristics are selected by the Austral parakeet (Enicognathus ferrugineus) for nesting in Araucaria araucana–Nothofagus pumilio forest in Argentine Patagonia. We compared nest plot and tree characteristics with unused plots and trees among areas of different A. araucana–N. pumilio density. We also examine whether nest plot and tree use and selection, and the associated consequences for fitness of Austral parakeets are spatially related to forest composition. Austral parakeets showed selectivity for nests at different spatial scales, consistently choosing isolated live and large trees with particular nest features in a non‐random way from available cavities. Mixed A. araucana–N. pumilio forests are ideal habitat for the Austral parakeets of northern Patagonia, offering numerous potential cavities, mainly in N. pumilio. We argue that Austral parakeet reproduction and fitness is currently very unlikely to be limited by cavity availability, although this situation may be rapidly changing. Natural and human disturbances are modifying south temperate forests with even‐aged mid‐successional stands replacing old growth forests. Cavity nesting species use and need old growth forests, due to the abundance of cavities in large trees and the abundance of larvae in old wood. Neither of the latter resources is sufficiently abundant in mid‐successional forests, increasing the vulnerability and threatening the survival of the Austral.  相似文献   

5.
Endophytic fungi were isolated from leaves of Neolitsea sericea, a major lauraceous tree in the laurel forests of southern Kyushu, collected from the understory layer of broadleaf and conifer stands. Cytosphaera sp. and a species of Ascomycetes in leaf blade segments, plus a xylariaceous species and Phomopsis spp. in petiole segments, were isolated at relatively high frequency. In general, isolation frequencies of endophytes were higher in petiole than blade segments. In blade segments, patterns of endophyte isolation were quite different among stands, while relatively similar in petiole segments. Significant effects of sampling sites or canopy vegetation were rarely detected. the understory layer of laurel forests. Neolitsea sericea is an evergreen broadleaf lauraceous tree, widely distributed in areas of eastern Asia. In southern Kyushu, it is one of the most common trees, growing both as canopy and understory species. In this study, endophytes were isolated from the leaves of N. sericea growing in the understory layer of conifer and broadleaf forest stands to survey the endophytes of N. sericea leaves and to examine the effect of the canopy layer on endophytic mycobiota in understory plants.  相似文献   

6.
Research on forest management impact focuses mainly on timber stands, and leaves out the unproductive forest environments. These stands are spatially mixed with timber forests. The objective was to evaluate richness and density of birds in timber Nothofagus pumilio forests and their unproductive associated environments, and discuss forest management implications. These stands showed significant differences in their forest structure, which generate a great variety of ecological environments. A total of 1881 individuals belonging to 30 bird species were observed during the sampling, in spring and summer seasons. These species were mainly migratory and insectivores, Passeriforms being the most important group. From 12 to 17 birds/ha were found, which varied with the forest environments and seasons. Timber stands of Nothofagus pumilio support a low number of bird species. Most of them are opportunistic and a few prefer these woods over other forested or afforested areas. Low bird density and richness characterize these austral forests, which share their diversity with a high variety of ecosystems along Patagonia. Timber N. pumilio forests has a marginal value for bird species conservation, considering its richness, density and the percentage of this forest in the total forested landscape of Tierra del Fuego (Argentina).  相似文献   

7.
Abstract: The objective of this study was to analyse how stand age and precipitation influence abundance and diversity of epiphytic macrolichens in southern beech Nothofagus forests, estimated by lichen litter sampling. Five sites of Nothofagus dombeyi (Mirbel) Oersted were selected in Nahuel Huapi National Park, Argentina. At each site, lichen fragments from the forest floor were collected at 12.5 m2 plots in pairs of young and mature N. dombeyi forest. Additionally, two sites with multi‐aged subalpine Nothofagus pumilio (Poepp. et Endl.) Krasser forest were investigated in a similar manner. Average litterfall biomass per stand varied from less than 1 kg ha?1 in a young low‐precipitation stand to a maximum of 20 kg ha?1 in a mature high‐precipitation stand. In places with higher precipitation, litterfall biomass in N. dombeyi forest was considerably higher in old stands as compared with young ones. In places with less than 2000 mm of precipitation, differences in biomass were less pronounced. Old humid stands contained about twice as many taxa in the litter as old low‐precipitation stands and young stands in general. Mature stands in low‐precipitation sites only contained 17% of the litter biomass as compared with mature stands in high‐precipitation sites. Epiphytic lichen composition changed from predominating fruticose lichens (Usnea spp. and Protousnea spp.) in low‐precipitation stands to Pseudocyphellaria spp., Nephroma spp. and other foliose lichens, in the high‐precipitation stands. There were no clear differences in the proportion of fruticose and foliose lichens between young and old stands. Fruticose lichens dominated litter biomass in both N. pumilio sites.  相似文献   

8.
Abstract. Tree size and age structure, tree-fall and gap characteristics, and regeneration in gaps were studied in Nothofagus-dominated old-growth forests in Tierra del Fuego, Argentina. Gap-phase regeneration has resulted in all-aged populations for N. pumilio, N. betuloides, and Drimys winteri, and regeneration in gaps appears to be maintaining coexistence between species in mixed stands. N. betuloides fills many gaps via advance regeneration and some individuals persist for > 150 yr in the understory. Multiple periods of release and suppression indicate that N. betuloides may take advantage of several gap events to reach the main canopy. Likewise, Drimys grows well under closed canopy and can rapidly respond to gap formation, sometimes impeding the regeneration of N. betuloides. In contrast, N. pumilio regenerates in gaps mainly from seed or from advance regeneration of small, ephemeral seedlings. Gap turnover times in Fuegian forests were estimated at 300 - 500 yr, although gap formation was highly episodic and possibly associated with regionally extensive windstorms, earthquakes, and stand-level dieback. 92 % of gaps involved multiple tree-falls, and at least 53 % involved secondary expansion. Gap and tree-fall characteristics in Tierra del Fuego were similar to results from northern Patagonia, Chile, and New Zealand; however, we emphasize that regeneration of Nothofagus spp. and Drimys winteri in gaps depends on associated vegetation and varies along both local and regional environmental gradients.  相似文献   

9.
It is difficult to map and quantify biodiversity at landscape level in areas with low data availability, despite demand from decision-makers. We propose a methodology to determine potential biodiversity pattern using habitat suitability maps of the understory plant species with highest cover and occurrence frequency in the three different forests types of Tierra del Fuego (Argentina). We used a database of vascular plants from 535 surveys from which we identified 35 indicative species. We explored more than 50 potential explanatory variables to develop habitat suitability maps of the indicative species, which were combined to develop a map of the potential biodiversity. Correlation among environmental, topographic and forest landscape variables were discussed, as well as the marginality and the specialization of the indicative species. We detected differences in the niches of the species prevailing in the three forest types. The developed map of potential biodiversity uncovered hotspots of biodiversity in the ecotone of Nothofagus pumilio and N. antarctica as well as in the wettest part of the mixed N. pumilioN. betuloides forests. It allowed thus to identify forest areas with different conservation potential and can be readily used as a decision support system for conservation and management strategies at different scales including the identification of land-use conflicts (e.g. of biodiversity with timber production and livestock) and the development of a network of protected areas, which currently does not cover the forests of highest conservation value.  相似文献   

10.
Fire is the prevalent disturbance in the Araucaria–Nothofagus forested landscape in south‐central Chile. Although both surface and stand‐replacing fires are known to characterize these ecosystems, the variability of fire severity in shaping forest structure has not previously been investigated in Araucaria–Nothofagus forests. Age structures of 16 stands, in which the ages of approximately 650 trees were determined, indicate that variability in fire severity and frequency is key to explaining the mosaic of forest patches across the Araucaria–Nothofagus landscape. High levels of tree mortality in moderate‐ to high‐severity fires followed by new establishment of Nothofagus pumilio typically result in stands characterized by one or two cohorts of this species. Large Araucaria trees are highly resistant to fire, and this species typically survives moderate‐ to high‐severity fires either as dispersed individuals or as small groups of multi‐aged trees. Small post‐fire cohorts of Araucaria may establish, depending on seed availability and the effects of subsequent fires. Araucaria's great longevity (often >700 years) and resistance to fire allow some individuals to survive fires that kill and then trigger new Nothofagus cohorts. Even in relatively mesic habitats, where fires are less frequent, the oldest Araucaria–Nothofagus pumilio stands originated after high‐severity fires. Overall, stand development patterns of subalpine AraucariaN. pumilio forests are largely controlled by moderate‐ to high‐severity fires, and therefore tree regeneration dynamics is strongly dominated by a catastrophic regeneration mode.  相似文献   

11.
Pollmann  William 《Plant Ecology》2004,174(2):355-371
Large, infrequent natural disturbances have been proposed as a key component in determining the distribution and abundance of Nothofagus in southern Andean temperate forests. In this study, a comparison of influences of small-to-intermediate-sized natural disturbances and effects of selective logging on the establishment and growth of Nothofagus forests in south-central Chile are synthesized with the results of other forest studies to develop general hypotheses on the regeneration dynamics of southern Chilean Nothofagus alpina forests. A synthesis is given for regeneration pattern in the abundance of 18 temperate rain forests in the Andean Range, Chile. The study aimed to determine the role of life history differences in promoting coexistence of the five main tree species (N. alpina, N. dombeyi, N. pumilio, N. macrocarpa and Laurelia philippiana) in N. alpina-dominated forests. Age data reported for N. alpina, a shade mid-tolerant emergent tree in the temperate rain forests of southern Chile, indicate maximum lifespans > 650 years, figures unprecedented for N. alpina. In low elevation stands, N. alpina coexists with broad-leaved evergreen tree species, such as L. philippiana, L. sempervirens, Persea lingue, and in these stands an intermittent establishment of Nothofagus occurred and appeared to be most dependent on small-to-intermediate disturbances. In high-elevation stands, in contrast, Nothofagus establishment was less dependent on disturbance, regeneration being much more continuous even in the absence of canopy openings. The forests studied provide another example of the general pattern of increasing dependence of Nothofagus on disturbance towards the more productive end of the environmental gradients. As a long-lived pioneer and despite its dependence on disturbance in lowland sites, N. alpina has been subject to selection for complementary growth, adult survivorship, and mid-tolerance to shade. Thus, interspecific differences in juvenile and adult life history characteristics of N. alpina and its competitors may be sufficient to maintain its persistence in the landscape. In conclusion, this study of population structures and replacement patterns provides a comprehensive picture on our understanding of regeneration dynamics and trait differentiation in southern temperate forests by recognizing both the influences of environmental gradients (i.e., altitude) on competing species and the disturbance regimes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Abstract

This study is focused on the selection of variables affecting lichen and bryophyte diversity in Mediterranean deciduous forests. Plots representing two forest types (Fagus sylvatica and Quercus cerris forests) and two forest continuity categories (old‐growth (OG) and non‐OG forests) were selected in the Cilento and Vallo di Diano National Park (Italy). The presence and the abundance of bryophytes and epiphytic lichens were recorded. Structural variables of the forests and vascular plant species richness have been used as predictors. A strong positive correspondence between the two groups of organisms was found. Higher species richness and the distribution of rare species are related to OG stands, while a qualitative (species composition) rather than a quantitative (species richness) difference between the two forest types was observed. Some species elsewhere considered as indicators of forest continuity, such as Lobaria pulmonaria, Antitrichia curtipendula, and Homalothecium sericeum, are associated with OG forests, independently from forest type, suggesting that they can be regarded as suitable indicators also in Mediterranean forests. Finally, our results suggest that old trees, high levels of basal area, a broad range of diameter classes, and high understory diversity are the main structural features affecting cryptogamic communities, while no correlation was found with the occurrence of deadwood.  相似文献   

13.
Human activities, like logging, modify the dynamics and composition of virgin forest, affecting the equilibrium between the natural species. Nothofagus forests sustain an entomofauna that is endemic, and includes relict species of significant conservation importance. The aim of this work was to evaluate the changes in insect diversity and abundance of a Nothofagus pumilio forest managed by a shelterwood cut system. Insect capture was carried out using a set of traps along a horizontal and vertical gradient. Sampling was taken in day and night conditions, in post-harvesting situations and different phases of stand development. The diversity and abundance of insects varied significantly during the forest cycle (defined as 100–200 years according to site quality). One morphospecies was lost every 11 years until the end of the forest cycle. It may be necessary to modify the current silvicultural system to one that conserves insect diversity through a reduction in disturbance.  相似文献   

14.
Species richness and composition of the Chrysomelidae (Coleoptera) were studied in larch (Larix kaempheri [Lamb.] Carrière) plantations, secondary forests, and primary forests. In addition, the effects of forest management practices, such as thinning and long rotation, were examined in the larch plantation. The species richness of Chrysomelidae was higher in the larch plantation than in the secondary forest or in the primary forest. Among the larch plantations, the species richness in old-aged plantations was higher than that in middle-aged plantations. The composition of the beetle assemblages in the larch plantation differed from that in the secondary forest or in the primary forest. Exosoma akkoae (Chujo), Batophila acutangula Heikertinger, and Calomicrus nobyi Chujo were caught with a bias toward the larch plantation. Longitarsus succineus (Foudras) and Sphaeroderma tarsatum Baly were caught more in the secondary forest and the primary forest, respectively. More B. acutangula and S. tarsatum were caught in stands where their host plants occurred at higher rates. Species richness of understory plants was an important factor for chrysomlid species richness, and frequency of host occurrence affected the number of individuals of leaf beetles examined. It seems that forest types and forest management practices affect host plants as well as Chrysomelidae, and that these effects on the host plants also influence chrysomelid assemblages.  相似文献   

15.
In a Mapuche community situated in the sub-antarctic forest of the northwest of Argentine Patagonia, analysis was carried out on forest environmental perception and its relation to the resilience of the body of traditional botanical knowledge regarding medicinal plants. Data was obtained on the ethno-classification and differential use of the forest gathering environment with respect to its practical and cultural value. Semi-structured interviews were carried out with 30 randomly chosen inhabitants, and the data were analysed using qualitative methods and non-parametric statistics. Most citations (64.5%) were of species gathered in Nothofagus antarctica forest, 26.2% were of species from N. pumilio forest, and 20.3% referred to species from a mixed forest, with N. dombeyi. The forests studied have low values for similarity in terms of medicinal species richness, indicating a unique offer of therapeutic resources in each one. The use of the different forest types seems to be associated with the search for therapeutic resources for specific ailments. However, the redundancy of functions of species in each forest type can offer alternative remedies, which provides plant conservation, security and the possibility of reorganisation of their traditional medicinal knowledge. This case study showed the importance of considering folk systems and the role that this knowledge has played in plant resource management and forest protection. Different forests are used and valued differentially, not only with regard to usefulness but also in symbolic-religious terms, and together they fulfil a cushioning function, protecting holistically traditional botanical knowledge, people’s health and forests. It is of great importance, therefore, that conservation policies favouring environmental heterogeneity are implemented, and that local inhabitants participate in the development of management plans.  相似文献   

16.
Abstract Leaf litter decomposition experiments were conducted on two deciduous (Nothofagus obliqua (roble)) and Nothofagus pumilio (lenga)) and one evergreen (Nothofagus dombeyi) Nothofagus (Nothofagaceae) species from a single Chilean forest in order to understand how congeneric trees with differing leaf lifespans impact the soil in which they grow. Single‐species litter samples were decomposed in a mixed hardwood forest in Ohio and in a deciduous‐evergreen Nothofagus forest in Chile. In the Ohio forest, the two deciduous species’ litters decomposed at k ≈ 1.00 per year and the evergreen at k ≈ 0.75 per year. In Chile k ranged from k ≈ 0.06 (N. obliqua) to k ≈ 0.23 (N. pumilio) per year. In both experiments, N and P were released faster from the deciduous litters than from evergreen litter. In Ohio, evergreen litter immobilized more N and P for a longer time period than did deciduous litter. As N. dombeyi stands tend to have lower available soil N and P in this particular mixed Nothofagus forest, the increased time of N and P immobilization by N. dombeyi litter suggests a feedback role of the tree itself in perpetuating low N and P soil conditions.  相似文献   

17.
Anthropogenic fires and land-use change, including the conversion from native to exotic species canopies, are two major types of disturbances that strongly affect the functioning of forest ecosystems around the world. These disturbances alter the resource availability for plants, which may lead to changes in species richness. Here we examined the relative effects of canopy cover type, light availability and soil nutrient (N and P) availability on species richness, including invasive species, at different post-fire plant systems. Additionally, we tested the resource heterogeneity hypothesis (RHH) for plant diversity, which proposes that diversity is higher in habitats with spatially heterogeneous resources. We evaluated four different canopy cover types, including mature and second-growth Nothofagus pumilio forests, treeless prairie, Pinus sylvestris afforestations, all of which were converted from mature N. pumilio forests. Using generalized mixed-effects model correlations, we determined (1) the relative influence of canopy cover type, light and soil nutrient availability on understory species richness and (2) the relationship between species richness and resource heterogeneity. We found that canopy cover type was the factor that best explained species richness, much more than fine-scale light and soil nutrient availability. Additionally, we found that the more homogeneous the light environment the higher the number of exotic species (mainly found in the prairie where the highest light intensity occurred), which is contrary to what the RHH states. In conclusion, canopy cover type, a stand-scale driver, and not fine-scale resource (light, N and P) availability, was most important for explaining native and exotic (including invasive) species understory richness in a landscape affected by anthropogenic fires and posterior land-use change.  相似文献   

18.
We compared the vegetation structure between old (>70 year) stands of planted diversified native forests and stands of Eucalyptus tereticornis embedded in a mosaic of Eucalyptus stands. We then tested for differences in the abundance, species richness, species composition, and ecological traits (forest dependence, sensitivity to forest fragmentation, and diet) of the understory bird assemblages inhabiting both kinds of stands. We expected differences in the structure of the bird assemblages because of the different origins and management strategies (contrary to native stands, Eucalyptus stands were selectively logged in the past). Three stands of each habitat (native and Eucalyptus) were sampled with mist nets during 11 months. Eucalyptus stands had a denser understory, whereas native plantations had a more developed vertical structure and a greater density of native trees. The abundance distribution of bird species was more homogeneous in Eucalyptus than in native stands. Eucalyptus had slightly higher species richness (36 species) than native stands (32 species). The composition of species and the occurrence of the diet, forest dependence, and sensitivity to forest fragmentation categories were similar between habitats. Some bird species (e.g. Turdus leucomelas), however, were more abundant in one habitat over the other. Old stands of Eucalyptus and planted native forest can harbor a diverse bird community similar in structure but not exactly equivalent for individual bird species. Planting native diversified forests and keeping set‐aside stands of the exotic tree should be viewed as complementary rather than alternative strategies for maintaining bird diversity within plantations.  相似文献   

19.
In NW Patagonia, South America, natural shrublands and mixed forests of short Nothofagus antarctica (G. Forst.) Oerst. trees are currently being replaced by plantations with Pseudotsuga menziesii (Mirb) Franco. This land use change is controversial because the region is prone to drought, and replacement of native vegetation by planted forests may increase vegetation water use. The goal of this study was to examine the physiological differences, especially the response of water flux and canopy conductance to microclimate, that lead to greater water use by exotic trees compared to native trees. Meteorological variables and sapflow density of P. menziesii and four native woody species were measured in the growing season 2005–2006. Canopy conductance (gc) was estimated for both the exotic (monoculture) and native (multi-species) systems, including the individual contributions of each species of the native forest. Sapflow density, stand-level transpiration and gc were related to leaf-to-air vapor pressure difference (VPD). All native species had different magnitudes and diurnal patterns of sapflow density compared to P. menziesii, which could be explained by the different gc responses to VPD. Stomatal sensitivity to VPD suggested that all native species have a stronger stomatal control of leaf water potential and transpiration due to hydraulic limitations compared to P. menziesii. In conclusion, differences in water use between a P. menziesii plantation and a contiguous native mixed forest of similar basal area could be explained by different gc responses to VPD between species (higher sensitivity in the native species), in addition to particular characteristics of the native forest structure.  相似文献   

20.
Giant knotweeds (Reynoutria spp.) are highly productive and aggressive invaders in riparian wetlands of Europe and North America. We sampled ground-dwelling beetles by pitfall traps from six sites comparing monotypic Reynoutria stands with the invaded native Urtica-dominated stands. Three sites were located in a semi-natural softwood forest and three sites were on a ruderal embankment. The analyses are based on a total of 13,244 individuals from 218 species. Location and site significantly influenced beetle assemblages. Moreover, there were pronounced differences between vegetation stands. The monotypic Reynoutria stands exhibited lower beetle abundance, species richness and rarefaction diversity irrespective of location. However, the negative effect on species richness, abundance and assemblage similarities were stronger on the transformed ruderal embankment than in the semi-natural softwood forest. Reynoutria invasion seems to influence microclimatic conditions. We found a higher abundance of silvicolous and a lower abundance of xerophilous ground beetles in the Reyountria stands than in the Urtica-dominated stands. Feeding guilds reacted differently to Reynoutria invasion that reduced the abundance of predators and herbivores but enhanced that of detritivores. Detritivores assumingly profit from the perennial presence of the large quantities of Reynoutria litter. We conclude that highly productive invaders pauperise the arthropod fauna and alter link strengths in trophic cascades shifting primary producer-based food webs to detritus-based food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号