首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 349 毫秒
1.
青光眼是第二大致盲性眼病,为不可逆致盲的最主要原因。视网膜神经节细胞损伤和死亡是青光眼所致视功能损害的根本原因。在青光眼视神经损伤的众多病理过程中,谷氨酸受体功能的改变是导致神经节细胞凋亡的重要因素。本研究组在大鼠慢性高眼压实验性青光眼模型上,围绕这一主题开展了一系列研究。研究结果表明,一方面,高眼压导致的众多信号变化通过直接调控谷氨酸的NMDA和AMPA受体功能参与神经节细胞的凋亡过程;另一方面,高眼压导致的细胞外谷氨酸集聚激活Müller细胞上的Ⅰ型代谢型谷氨酸受体(group Ⅰ metabotropic glutamate receptors,mGluRI),经下调细胞膜的Kir4.1钾通道引发Müller细胞的胶质化激活,进而导致神经节细胞的凋亡。结合这些结果,本文综述了有关谷氨酸受体在实验性青光眼视网膜细胞损伤中的作用及机制的若干研究进展。  相似文献   

2.
目的:VEGF165b是新发现的血管内皮生长因子的变构体之一,本研究将观察其对糖尿病大鼠视网膜神经节细胞的抗凋亡作用.方法:采用四氧嘧啶诱发糖尿病大鼠模型,分为正常对照组(CON),糖尿病组(DM),糖尿病VEGF165b低剂量治疗组(DMT1)、中剂量治疗组(DMT2),糖尿病高剂量治疗组(DMT3),糖尿病单纯胰岛素治疗组(DMT4),所有治疗组在糖尿病成模后1个月开始治疗.2个月后处死各组大鼠,摘取眼球进行光镜形态学观察、核苷酸末端转移酶介导的dUTP缺口翻译法(TUNEL法)视网膜神经节细胞凋亡检测.结果:VEGF165b治疗使糖尿病大鼠视网膜光镜形态学改变减轻,能有效的抑制视网膜神经节细胞凋亡.VEGF165b治疗组视网膜神经节凋亡细胞数较DM组明显减少(P<0.01),与糖尿病大鼠单纯胰岛素治疗组相比差异也有统计学意义.随着VEGF165b浓度的增加视网膜神经节细胞凋亡个数减少,但1ng/μL组与10ng/μL组相比差异无统计学意义.结论:VEGF165b对视网膜神经节细胞有保护作用,可能对糖尿病视网膜病变具有治疗有意义.  相似文献   

3.
青光眼视神经损伤的最后共同通路为视网膜神经节细胞的凋亡。但确切机制尚未阐明。为此,人们进行了大量相关体内、体外实验并取得一定成果。本文从凋亡的激发因素、信号传导及基因调控加以阐述。  相似文献   

4.
应用蛋白质组学技术对兔青光眼慢性高眼压视网膜组织的蛋白进行初步分析。左眼前房注入0.2mL复方卡波姆溶液制作成慢性高眼压模型,右眼为对照眼。28d后分离各组视网膜组织,用双向电泳分离试验组和对照组的蛋白,然后分析电泳图谱,对比、分析其表达蛋白质点的差异,寻找兔视网膜中与慢性高眼压相关的蛋白质。结果表明,慢性高眼压诱导视网膜组织3种蛋白质出现明显差异表达。质谱鉴定出3个蛋白质,分别为热休克蛋白70(heat shock 70 kD protein,HSP70),丙酮酸激酶(Pyruvate kinase)和烯醇酶(enolase)。通过双向电泳,发现兔视网膜蛋白质表达与对照眼相比有质和量的变化,这些变化涉及与神经节细胞(retinal ganglion cells,RGCs)糖酵解及应激反应有关的几组蛋白质,提示上述蛋白质组改变可能参与了慢性青光眼神经节细胞凋亡的过程。  相似文献   

5.
凋亡诱导因子与细胞凋亡   总被引:6,自引:1,他引:5  
凋亡诱导因子 (apoptosisinducefactor,AIF)是定位于线粒体膜间隙中的一种氧化还原酶 ,含有线粒体定位信号和核定位信号序列 ,具有很强的促凋亡活性 ,在类胚体成腔和胚胎早期分化过程中具有重要作用。在死亡信号或细胞胁迫的刺激下 ,线粒体通透性转变孔开放 ,释放AIF及细胞色素c至细胞质溶质中 ,具有核定位信号序列的AIF便进入细胞核内 ,引起染色质的初步凝集和DNA大规模断片化 (约 5 0kb) ,进而引发不依赖于胱冬肽酶的细胞凋亡途径 ;线粒体膜间隙释放出来的细胞色素c则可引起染色质的进一步凝集和DNA的寡核小体断片化 ,从而引发依赖于胱冬肽酶的细胞凋亡途径 ;与此同时 ,从线粒体膜间隙释放出来的AIF又可反馈放大线粒体通透性转变孔的渗透性 ,引起AIF与细胞色素c的进一步释放从而加快细胞死亡的进程。此外 ,细胞胁迫还可激活由多聚 (ADP 核糖 )聚合酶 1(PARP 1)所引发的细胞凋亡途径 ,通过AIF和细胞色素c引发细胞凋亡。最新研究结果表明 ,AIF同源线粒体关联死亡诱导者 (AIF homologousmitochondria associatedinducerofdeath ,AMID)与p5 3应答基因的编码产物 (p5 3 responsivegene 3,PRG3)均为AIF的同源蛋白质 ,可直接诱导人类细胞的凋亡。线虫的凋亡诱导因子WAH 1所诱导的细胞凋亡途径依赖于胱冬肽酶  相似文献   

6.
凋亡信号调节激酶1对细胞凋亡的调节作用   总被引:1,自引:0,他引:1  
细胞存活与凋亡之间的平衡是多细胞生物正常发育与稳态的关键。细胞凋亡是受多种因素高度调控的细胞程序性死亡过程。凋亡信号调节激酶 1 (ASK1 )是促分裂原活化蛋白激酶激酶激酶家族的成员之一 ,它分别激活SER1 JNK和MKK3 MKK6 p38途径 ,在细胞因子及应激诱导细胞凋亡过程中起着关键作用。TNF受体和Fas信号转导系统在抗凋亡与促凋亡过程中发挥重要作用 ,其中包括TNF受体Ⅰ相关死亡域蛋白 (TRADD)、Fas相关死亡域蛋白 (FADD)等多种蛋白因子。细胞色素C是线粒体依赖性死亡信号 ,受Bcl 2家族蛋白的调节。反应性氧化合物的氧化激活使硫氧还蛋白 (Trx)氧化 ,并与ASK1分离 ,从而激活ASK1造成细胞凋亡。总之 ,许多促凋亡与抗凋亡因子组成复杂的、相互拮抗的机制。在信号转导的各种不同的关卡上 ,这些因子的平衡作用最终决定细胞的生与死。  相似文献   

7.
腺苷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)是调节细胞能量代谢的关键酶。近年来研究还发现AMPK可通过抑制p53降解、上调Bim表达、抑制m TOR活性及升高活性氧(ROS)水平等途径促进细胞凋亡。本文综述了近年来关于AMPK促细胞凋亡机制的研究进展。  相似文献   

8.
凋亡,即程序性细胞死亡,是允许多细胞动物严格调控细胞生长,防止癌症、免疫缺陷及自身反应性等病理过程的一种关键机制。在哺乳动物细胞中,凋亡可通过两个主要途径起始:一个与死亡受体的参与有关,另一个则与线粒体释放细胞色素c有关。线粒体途径既可由外部信号也可由内部信号如DNA损伤所触发。Bcl-2家族的促凋亡(pro—apoptotic)和抗凋亡(anti—apoptotic)成员可聚集于线粒体表  相似文献   

9.
青蛙视网膜神经节细胞计数及分布特点的研究   总被引:9,自引:1,他引:8  
Maturana(1959),Jacobson(1962),Kalinina(1976)曾对青蛙视网膜神经节细胞的数量和分布进行过研究。Van Buren(1963)和Stone(1963)分别对人、猴、猫的视网膜神经节细胞数量进行过估计。这些研究都是利用显微镜及其附件进行的。 本文应用影象分析计算机(Quantimet 720 image analysis computer)做为工具,可以精确、简便、快速地研究青蛙视网膜神经节细胞的数量,各类神经节细胞的分布特点,及其密度分布情况。  相似文献   

10.
BcL2蛋白质家族——定位与转位   总被引:4,自引:0,他引:4  
Bcl-2蛋白质家族的抗凋亡和促凋亡成员,在线粒体水平上决定细胞的存活或死亡.在正常细胞中,这些成员呈现功能适应性的细胞内分布;抗凋亡成员主要定位于细胞内膜系特别是线粒体外膜上:但绝大多数促凋亡成员主要分布于细胞浆中.细胞接受死亡信号后,Bcl-2家族成员本身受到一系列的调节,如磷酸化、裂解、蛋白质-蛋白质相互作用等,结果之一是促凋亡成员发生细胞内定位的改变,从细胞浆转位于线粒体膜上,并引发线粒体功能异常及其内外膜间致凋亡因子的释放,最终导致细胞凋亡.  相似文献   

11.
Intravitreal NMDA injection has been shown to induce the excitotoxic loss of retinal cells. The retinal ganglion cell apoptosis induced by NMDA is thought to play an important role in retinal ischemia injury and NMDA-injected rat has been used as a model of neuronal loss in diseases such as glaucoma. In this experimental model, we studied the early effects of NMDA leading to the degeneration of retinal ganglion cells. PKCζ regulates the NF-κB pathway in cellular responses to various stresses and we have shown that aspirin inhibits purified human PKCζ. We therefore investigated the molecular mechanism by which retinal cells limit ocular injury following NMDA treatment. We found that the NMDA-induced apoptosis of ganglion cells was mediated, at least partly, by PKCζ. This enzyme was activated early in the cellular response to NMDA. Prolonged activation was followed by PKCζ cleavage, and nuclear translocation of the C-terminal region of this protein—a critical event for the survival of retinal cells. We also found that pretreatment with aspirin or the coinjection of NMDA with a specific PKCζ inhibitor counteracted the effects of NMDA. These findings provide new insight into the role played by PKCζ in neuronal loss in glaucoma.  相似文献   

12.
Retinal neuroprotection by growth factors: a mechanistic perspective   总被引:7,自引:0,他引:7  
For more than a decade it has been known that certain growth factors inhibit apoptosis in genetically determined and experimental models of inner and outer retinal degeneration. The molecular mechanisms underlying these protective effects and the signaling that supports the survival of photoreceptors and retinal ganglion cells in these models have recently come under more in depth investigation. This paper reviews our current understanding of the balance of pro- and antiapoptotic signals that determine cell fate in the retina and how the activation of key signal transduction pathways by specific classes of neurotrophins protects retinal neurons.  相似文献   

13.
Abstract: Previous studies have indicated that certain members of the cyclin-dependent kinase/mitogen-activated protein kinase superfamily are involved in apoptosis of neuronal cells. Here, we have examined programmed cell death induced by withdrawal of neurotrophic support from CNS (rat retinal) and PNS (chick sympathetic, sensory, and ciliary) neurons. All four neuron types were equally rescued by the purine analogues olomoucine and roscovitine. Olomoucine inhibits multiple cyclin-dependent and mitogen-activated protein kinases with similar potency. Roscovitine is a more selective cyclin-dependent kinase inhibitor; but, so is butyrolactone I, which did not prevent retinal ganglion cell death. The specific p38MAPK inhibitor SB-203580 did not prevent apoptosis in retinal ganglion cells. Death of these cells in the absence of neurotrophic factors was accompanied by morphological changes indicative of apoptosis, including nuclear condensation and fragmentation. Treatment with olomoucine or roscovitine not only prevented these apoptotic changes in retinal ganglion cells but also blocked neurite outgrowth. The survival-promoting activity of olomoucine correlated with its in vitro IC50 for c-Jun N-terminal kinase-1 and its potency to repress c- jun induction in live PC12 cells. Roscovitine was more potent in rescuing neurons than in inhibiting Jun kinase. Thus, the antiapoptotic action of roscovitine might be due to inhibition of additional kinases.  相似文献   

14.
Glaucoma is a leading cause of blindness, ultimatively resulting in the apoptotic death of retinal ganglion cells. However, molecular mechanisms involved in ganglion cell death are poorly understood. While the involvement of ionotropic glutamate receptors has been extensively studied, virtually nothing is known about its metabotropic counterparts. Here, we compared the retinal gene expression of metabotropic glutamate receptors (mGluR) in eyes with normal and elevated intraocular pressure (IOP) of DBA/2J mice, a model for secondary angle-closure glaucoma using RT-PCR and immunohistochemistry. Elevated IOP in DBA/2J mice significantly increased retinal gene expression of mGluR1a, mGluR2, mGluR4a, mGluR4b, mGluR6 and mGluR7a when compared to C57BL/6 control animals, while mGluR5a/b and mGluR8a were decreased and no difference was observed for mGluR3 and mGluR8b. Specific antibodies detected an increase of mGluR1a and mGluR5a/b in both synaptic layers and in the ganglion cell layer of the retina under elevated IOP. Because ganglion cell death in DBA/2J mice occurs most likely by apoptotic mechanisms, we demonstrated up-regulation of mGluRs in neurons undergoing apoptosis. In summary, we support the idea that the specific gene regulation of mGluRs is a part of the glaucoma-like pathological process that develops in the eyes of DBA/2J mice.  相似文献   

15.
The p38 members of the mitogen-activated protein kinase (MAPK) superfamily are activated by both environmental stress and endogenous signals, and may have either permissive or inhibitory roles upon both cell proliferation and cell death in the retina. We have previously shown that anisomycin, a protein synthesis inhibitor, and 2-aminopurine, a specific inhibitor of the double stranded-RNA dependent protein kinase, block apoptosis of ganglion cells induced by axotomy, and induce apoptosis of cells in the neuroblastic layer in developing rat retina. Using a specific inhibitor, we found that p38-stress activated MAP kinase is required for the death of post-mitotic cells induced by anisomycin, but not for the death of proliferating cells induced by 2-aminopurine, nor of axon-damaged retinal ganglion cells. We also show that p38 activation occurs either upstream of or parallel to the requirement for cyclic AMP to block apoptosis of post-mitotic cells, since the cyclic AMP-producing agent forskolin did not prevent p38 phosphorylation induced by anisomycin. Finally, the lack of immunostaining for phospho-p38 in apoptotic profiles suggests that p38 activation does not kill retinal cells directly, but more likely through the mediation of neighboring cells.  相似文献   

16.

Purpose

To investigate the protective effects of a novel cyclopeptide C*HSDGIC* (CHC) from the cyclization of Pituitary adenylate cyclase-activating polypeptide (PACAP) (1–5) in cellular and rodent models of retinal ganglion cell apoptosis.

Methodology/Principal Findings

Double-labeling immunohistochemistry was used to detect the expression of Thy-1 and PACAP receptor type 1 in a retinal ganglion cell line RGC-5. The apoptosis of RGC-5 cells was induced by 0.02 J/cm2 Ultraviolet B irradiation. MTT assay, flow cytometry, fluorescence microscopy were used to investigate the viability, the level of reactive oxygen species (ROS) and apoptosis of RGC-5 cells respectively. CHC attenuated apoptotic cell death induced by Ultraviolet B irradiation and inhibited the excessive generation of ROS. Moreover, CHC treatment resulted in decreased expression of Bax and concomitant increase of Bcl-2, as was revealed by western-blot analysis. The in vivo apoptosis of retinal ganglion cells was induced by injecting 50 mM N-methyl-D-aspartate (NMDA) (100 nmol in a 2 µL saline solution) intravitreally, and different dosages of CHC were administered. At day 7, rats in CHC+ NMDA-treated groups showed obvious aversion to light when compared to NMDA rats. Electroretinogram recordings revealed a marked decrease in the amplitudes of a-wave, b-wave, and photopic negative response due to NMDA damage. In retina receiving intravitreal NMDA and CHC co-treatment, these values were significantly increased. CHC treatment also resulted in less NMDA-induced cell loss and a decrease in the proportion of dUTP end-labeling-positive cells in ganglion cell line.

Conclusions

C*HSDGIC*, a novel cyclopeptide from PACAP (1–5) attenuates apoptosis in RGC-5 cells and inhibits NMDA-induced retinal neuronal death. The beneficial effects may occur via the mitochondria pathway. PACAP derivatives like CHC may serve as a promising candidate for neuroprotection in glaucoma.  相似文献   

17.
1. We investigated the association of c-Jun with apoptosis within retinal tissue. Explants of the retina of neonatal rats were subject to a variety of procedures that cause apoptosis of specific classes of retinal cells at distinct stages of differentiation. The expression of c-Jun was detected by Western Blot, and immunohistochemistry was done with antibodies made for either N-terminal or C-terminal domains of c-Jun, and correlated with apoptosis detected either by chromatin condensation or by in situ nick end labeling of fragmented DNA.2. c-Jun protein content was increased in retinal tissue subject to induction of both photoreceptor and ganglion cell death.3. c-Jun N-terminal immunoreactivity was found mainly in the cytoplasm of apoptotic cells regardless of cell type, of the stage of differentiation, including proliferating cells, or of the means of induction of apoptosis.4. The data are consistent with the hypothesis that c-Jun is involved in the control of cell death in retinal tissue, but other proteins that cross-react with c-Jun N-terminal antibodies may also be major markers of retinal apoptosis.5. Antibodies directed to c-Jun N-terminal (aa 91-105) are useful tools to follow apoptotic changes in retinal tissue.  相似文献   

18.
Programmed cell death is an established developmental process in the nervous system. Whereas the regulation and the developmental role of neuronal cell death have been widely demonstrated, the relevance of cell death during early neurogenesis, the cells affected and the identity of regulatory local growth factors remain poorly characterized. We have previously described specific in vivo patterns of apoptosis during early retinal neurogenesis, and that exogenous insulin acts as survival factor (Díaz, B., Pimentel, B., De Pablo, F. and de la Rosa, E. J. (1999) Eur. J. Neurosci. 11, 1624-1632). Proinsulin mRNA was found to be expressed broadly in the early embryonic chick retina, and decreased later between days 6 and 8 of embryonic development, when there was increased expression of insulin-like growth factor I mRNA, absent or very scarce at earlier stages. Consequently, we studied whether proinsulin and/or insulin ((pro)insulin) action in prevention of cell death has physiological relevance during early neural development. In ovo treatment at day 2 of embryonic development with specific antibodies against (pro)insulin or the insulin receptor induced apoptosis in the neuroretina. The distribution of apoptotic cells two days after the blockade was similar to naturally occurring cell death, as visualized by TdT-mediated dUTP nick end labeling. The apoptosis induced by the insulin receptor blockade preferentially affected to the Islet1/2 positive cells, that is, the differentiated retinal ganglion cells. In parallel, the insulin survival effect on cultured retinas correlated with the activation of Akt to a greater extent than with the activation of MAP kinase. These results suggest that the physiological cell death occurring in early stages of retinal development is regulated by locally produced (pro)insulin through the activation of the Akt survival pathway.  相似文献   

19.
Autophagy is an essential recycling pathway implicated in neurodegeneration either as a pro-survival or a pro-death mechanism. Its role after axonal injury is still uncertain. Axotomy of the optic nerve is a classical model of neurodegeneration. It induces retinal ganglion cell death, a process also occurring in glaucoma and other optic neuropathies. We analyzed autophagy induction and cell survival following optic nerve transection (ONT) in mice. Our results demonstrate activation of autophagy shortly after axotomy with autophagosome formation, upregulation of the autophagy regulator Atg5 and apoptotic death of 50% of the retinal ganglion cells (RGCs) after 5 days. Genetic downregulation of autophagy using knockout mice for Atg4B (another regulator of autophagy) or with specific deletion of Atg5 in retinal ganglion cells, using the Atg5(flox/flox) mice reduces cell survival after ONT, whereas pharmacological induction of autophagy in vivo increases the number of surviving cells. In conclusion, our data support that autophagy has a cytoprotective role in RGCs after traumatic injury and may provide a new therapeutic strategy to ameliorate retinal diseases.  相似文献   

20.
Lycium barbarum polysaccharides (LBP), extracts from the wolfberries, are protective to retina after ischemia-reperfusion (I/R). The antioxidant response element (ARE)–mediated antioxidant pathway plays an important role in maintaining the redox status of the retina. Heme oxygenase-1 (HO-1), combined with potent AREs in its promoter, is a highly effective therapeutic target for the protection against neurodegenerative diseases, including I/R-induced retinal damage. The aim of our present study was to investigate whether the protective effect of LBP after I/R damage was mediated via activation of the Nrf2/HO-1-antioxidant pathway in the retina. Retinal I/R was induced by an increase in intraocular pressure to 130 mm Hg for 60 minutes. Prior to the induction of ischemia, rats were orally treated with either vehicle (PBS) or LBP (1 mg/kg) once a day for 1 week. For specific experiments, zinc protoporphyrin (ZnPP, 20 mg/kg), an HO-1 inhibitor, was intraperitoneally administered at 24 h prior to ischemia. The protective effects of LBP were evaluated by quantifying ganglion cell and amacrine cell survival, and by measuring cell apoptosis in the retinal layers. In addition, HO-1 expression was examined using Western blotting and immunofluorescence analyses. Cytosolic and nuclear Nrf2 was measured using immunofluorescent staining. LBP treatment significantly increased Nrf2 nuclear accumulation and HO-1 expression in the retina after I/R injury. Increased apoptosis and a decrease in the number of viable cells were observed in the ganglion cell layer (GCL) and inner nuclear layer (INL) in the I/R retina, which were reversed by LBP treatment. The HO-1 inhibitor, ZnPP, diminished the LBP treatment-induced protective effects in the retina after I/R. Taken together, these results suggested that LBP partially exerted its beneficial neuroprotective effects via the activation of Nrf2 and an increase in HO-1 protein expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号