首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
DNA甲基化作为最早发现的一种表观遗传修饰方式,是目前研究的热点之一。甲基化修饰虽不改变DNA序列,但对基因的表达起重要的调节作用。原发性高血压作为全球主要的公共健康问题,其发生是遗传与环境等多因素共同作用的结果,被认为是受DNA甲基化等表观遗传学规律调控的人类重要疾病。现就近年来有关DNA甲基化与原发性高血压发病关联的研究进展作一综述。  相似文献   

2.
DNA甲基化是一种表观遗传学修饰方式,与多种疾病存在重要关联,日益成为研究的热点。DNA甲基化修饰虽然不会引起DNA序列的改变,却可干扰基因的表达。原发性高血压是一种严重影响人类健康的慢性疾病,已成为全球共同关注的公共卫生问题。原发性高血压与DNA甲基化存在着重要关联,因此,了解原发性高血压主要危险因素与DNA甲基化的关系,可以更好地解释原发性高血压和DNA甲基化之间的因果关系。现就原发性高血压主要危险因素与DNA甲基化关系的研究进展作一综述。  相似文献   

3.
原发性高血压(简称高血压病)是遗传和环境因素相互作用所导致的一种复杂性疾病.近年来的研究发现,高血压病的发生和发展与DNA甲基化密切相关.11β-HSD-2、ECE-1和AT1b等基因发生甲基化和去甲基化会影响代谢酶和受体的表达,从而通过肾素-血管紧张素-醛固酮系统激活以及肾性水钠潴留等途径引起高血压的发生,这可能是高血压发病的一个重要分子机制.基因组低甲基化(如:高同型半胱氨酸所引起的)会诱发AT1b、ECE-1等受体和代谢酶基因发生去甲基化,从而参与高血压病的发生.深入了解DNA甲基化调控在原发性高血压发病过程中的分子机制及药物代谢酶和受体基因甲基化状态的改变对高血压患者降压疗效的影响,将为临床制定合理化的用药方案提供依据.  相似文献   

4.
2 型糖尿病(Type 2 diabetes mellitus, T2DM)是由于遗传与环境因素共同作用而引起葡萄糖代谢紊乱的疾病。DNA甲基化修饰的研究发现环境因素可以通过影响DNA甲基化修饰, 显著地增加T2DM的患病风险。目前, T2DM环境相关基因的DNA甲基化修饰研究已在人及动物的不同组织中取得进展。此外, T2DM相关基因的甲基化研究主要集中在糖代谢、能量代谢、炎症等。文章系统地综述了目前T2DM致病环境因素与DNA甲基化研究进展。  相似文献   

5.
为研究DNA甲基化在帕金森病发病机制中的作用,本研究用环境毒素1-甲基-4-苯基-1,2,3,6-四氢吡啶(MPTP)连续腹腔给药诱导小鼠帕金森病(Parkison's disease,PD)模型,应用ELISA检测小鼠黑质脑组织总体甲基化水平,应用实时荧光定量PCR方法检测DNA甲基转移酶表达水平,探讨MPTP诱导的小鼠PD模型黑质部位是否存在DNA甲基化异常.进一步应用甲基化DNA免疫共沉淀结合DNA甲基化芯片方法,构建MPTP诱导的小鼠PD模型黑质脑组织DNA甲基化谱,并寻找DNA甲基化修饰异常的PD相关基因对其进行验证.结果表明,模型组小鼠黑质脑组织DNA总体甲基化水平较对照组显著降低,Dnmt1的表达水平显著增高.利用DNA甲基化芯片在全基因组内筛选出甲基化差异修饰位点共48个,涉及44个基因,这些甲基化差异基因参与信号转导、分子转运、转录调控、发育、细胞分化、凋亡调控、氧化应激、蛋白质降解等生物学过程.在甲基化差异修饰基因中,对Uchl1基因及Arih2基因进行了甲基化水平以及表达水平的验证.结果表明,模型组小鼠黑质脑组织Uchl1启动子区域甲基化水平较对照组增高,m RNA及蛋白质表达水平降低,Arih2启动子区域甲基化水平较对照组降低,m RNA及蛋白质表达水平增高.实验结果进一步证实,DNA甲基化修饰异常在帕金森病发病机制中有重要作用,环境因素(如MPTP)可以通过改变DNA甲基化修饰参与帕金森病的发生发展.  相似文献   

6.
基因的多态性改变和甲基化表观遗传的修饰是有关法洛四联症在遗传学方面研究最多的发病机制,在心脏发育过程中VEGF基因的多态性和ID2基因甲基化的异常改变,可以导致这些基因的转录和表达调控的异常,使心脏发育缺陷而导致法洛四联症。通过对基因多态性和DNA甲基化的深入研究有助于法洛四联症发病机制的探讨,为疾病的诊断和治疗开辟新思路。  相似文献   

7.
DNA甲基化是一种重要的表观遗传调控方式,可在转录前水平调节基因的表达.近年来的研究表明,动脉粥样硬化的发生发展与DNA甲基化密切相关. 对DNA甲基化模式改变在动脉粥样硬化发病的相关机制做深入研究,可能为动脉粥样硬化的诊治提供一种新的途径.本文将从基因组低甲基化、相关基因异常甲基化以及动脉粥样硬化危险因素的DNA甲基化等方面重点阐述DNA甲基化与动脉粥样硬化的关系.  相似文献   

8.
司鑫鑫  孙玉洁 《遗传》2014,36(5):411-419
肿瘤耐药是导致肿瘤化疗失败的主要原因, 其产生机制复杂多样, 是多种因素共同作用的结果。近年来, 表观遗传改变在肿瘤耐药中的作用日益受到关注。DNA甲基化是一种重要的表观遗传修饰, 在调节基因表达和维持基因组稳定性中扮演着重要角色。原发性或获得性耐药的肿瘤细胞大多伴随DNA异常甲基化, 越来越多的证据显示, DNA甲基化异常是肿瘤细胞耐药表型产生的重要机制。文章就DNA甲基化异常与肿瘤细胞耐药的关系及相关作用机制进行了综述。  相似文献   

9.
DNA甲基化与脊椎动物胚胎发育   总被引:1,自引:0,他引:1  
杨晓丹  韩威  刘峰 《遗传》2012,34(9):1108-1113
DNA甲基化是指DNA甲基转移酶(DNMT)将DNA序列中的5′胞嘧啶转变为5′甲基胞嘧啶的化学修饰, 可以调控基因的时空特异性表达, 从而影响细胞命运决定和分化等生物学过程。近年来研究发现, DNA甲基化在脊椎动物胚胎早期发育中有重要作用, Dnmt基因的缺失会影响胚胎早期发育和多个器官的形成及分化, 如胚胎早期致死、内脏器官和神经系统终末分化缺陷以及血液发生紊乱等。文章总结了DNA甲基化转移酶在小鼠和斑马鱼发育过程中的动态变化, 并系统阐述了DNA甲基化在胚胎早期发育和器官发生中的作用, 重点揭示DNA 甲基化转移酶与组蛋白甲基化转移酶如何协同调控DNA甲基化从而影响基因转录的分子机理。DNA甲基化作为一种关键的表观遗传学因素, 全面系统地理解其在胚胎发育过程中的作用机制对靶向治疗人类相关疾病有一定的理论指导意义。  相似文献   

10.
肝癌表观遗传学研究进展   总被引:2,自引:0,他引:2  
黄健 《中国科学C辑》2008,38(10):913-922
肝细胞癌是原发性肝癌的主要类型,也是恶性程度最高的肿瘤之一.目前人们对肝癌的发病机制并不十分清楚.研究表明,由遗传学和表观遗传学改变弓『起的原癌基因的活化和抑癌基因的灭活而引起细胞恶性改变是肿瘤发生的核心生物学过程.过去人们普遍认为遗传学上的基因突变是肿瘤发病机制中的关键事件,尤其是抑癌基因的体细胞突变与肿瘤的发生有着密切的关系.但是,近年来随着对肿瘤认识的深入,人们发现DNA序列以外的调控机制(即表观遗传学)异常在肿瘤的发生、发展过程中也起到非常重要的作用.表观遗传学机制包括:DNA甲基化修饰,组蛋白修饰,非编码RNAs(包括microRNA),染色质重塑等.其中,DNA甲基化和microRNA与肝癌发生的关系是得到最为深入研究的表观遗传学机制.本文将结合本课题组的研究重点,综述DNA甲基化和microRNA在肝癌研究中的进展.  相似文献   

11.
高血压是心脑血管疾病重要的危险因素,可损伤重要脏器如心、脑、肾的结构和功能,最终导致这些器官的功能衰竭,是危害人类健康的一大杀手。假性高血压(Pseudohypertension,PHT)是指普通袖带测压法所测血压值高于动脉穿刺直接测得的血压值的一种特殊现象,也是难治性高血压的一个主要原因。已有研究表明,假性高血压在老年人、动脉硬化、肾功不全及糖尿病患者中较为多见。目前国内外有限的研究显示假性高血压发病率1.7%-50%。在临床治疗中如不能准确识别假性高血压而对患者行过度降压治疗,将会造成严重的灌注不足事件如中风,甚至死亡。因此,假性高血压日益受到重视,本文就其诊断标准、产生机制、流行病学等方面作一综述。  相似文献   

12.

Objective

There is emerging evidence from animal studies suggesting a key role for methylation in the pathogenesis of essential hypertension. However, to date, very few studies have investigated the role of methylation in the development of human hypertension, and none has taken a genome-wide approach. Based on the recent studies that highlight the involvement of inflammation in the development of hypertension, we hypothesize that changes in DNA methylation of leukocytes are involved in the pathogenesis of hypertension.

Method & Results

We conducted a genome-wide methylation analysis on 8 hypertensive cases and 8 normotensive age-matched controls aged 14–23 years and performed validation of the most significant CpG sites in 2 genes in an independent sample of 36 hypertensive cases and 60 normotensive controls aged 14–30 years. Validation of the CpG sites in the SULF1 gene was further conducted in a second replication sample of 36 hypertensive cases and 34 controls aged 15.8–40 years. A CpG site in the SULF1 gene showed higher methylation levels in cases than in healthy controls in the genome-wide step (p = 6.2×10−5), which was confirmed in the validation step (p = 0.011) for subjects ≤30 years old but was not significant for subjects of all ages combined (p = 0.095).

Conclusion

The identification of a difference in a blood leukocyte DNA methylation site between hypertensive cases and normotensive controls suggests that changes in DNA methylation may play an important role in the pathogenesis of hypertension. The age dependency of the effect further suggests complexity of epigenetic regulation in this age-related disease.  相似文献   

13.
14.
Zhang  Lin  Hao  Changfu  Zhai  Ruonan  Wang  Di  Zhang  Jianhui  Bao  Lei  Li  Yiping  Yao  Wu 《Respiratory research》2018,19(1):1-9
Background

Genetic and environmental factors play a role in the development of COPD. The epigenome, and more specifically DNA methylation, is recognized as important link between these factors. We postulate that DNA methylation is one of the routes by which cigarette smoke influences the development of COPD. In this study, we aim to identify CpG-sites that are associated with cigarette smoke exposure and lung function levels in whole blood and validate these CpG-sites in lung tissue.

Methods

The association between pack years and DNA methylation was studied genome-wide in 658 current smokers with >5 pack years using robust linear regression analysis. Using mediation analysis, we subsequently selected the CpG-sites that were also associated with lung function levels. Significant CpG-sites were validated in lung tissue with pyrosequencing and expression quantitative trait methylation (eQTM) analysis was performed to investigate the association between DNA methylation and gene expression.

Results

15 CpG-sites were significantly associated with pack years and 10 of these were additionally associated with lung function levels. We validated 5 CpG-sites in lung tissue and found several associations between DNA methylation and gene expression.

Conclusion

This study is the first to validate a panel of CpG-sites that are associated with cigarette smoking and lung function levels in whole blood in the tissue of interest: lung tissue.

  相似文献   

15.
BackgroundDNA methylation levels change with age. Recent studies have identified biomarkers of chronological age based on DNA methylation levels. It is not yet known whether DNA methylation age captures aspects of biological age.ResultsHere we test whether differences between people’s chronological ages and estimated ages, DNA methylation age, predict all-cause mortality in later life. The difference between DNA methylation age and chronological age (Δage) was calculated in four longitudinal cohorts of older people. Meta-analysis of proportional hazards models from the four cohorts was used to determine the association between Δage and mortality. A 5-year higher Δage is associated with a 21% higher mortality risk, adjusting for age and sex. After further adjustments for childhood IQ, education, social class, hypertension, diabetes, cardiovascular disease, and APOE e4 status, there is a 16% increased mortality risk for those with a 5-year higher Δage. A pedigree-based heritability analysis of Δage was conducted in a separate cohort. The heritability of Δage was 0.43.ConclusionsDNA methylation-derived measures of accelerated aging are heritable traits that predict mortality independently of health status, lifestyle factors, and known genetic factors.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-015-0584-6) contains supplementary material, which is available to authorized users.  相似文献   

16.
Irier HA  Jin P 《DNA and cell biology》2012,31(Z1):S42-S48
Gene expression is modulated by epigenetic factors that come in varying forms, such as DNA methylation, histone modifications, microRNAs, and long noncoding RNAs. Recent studies reveal that these epigenetic marks are important regulatory factors in brain function. In particular, DNA methylation dynamics are found to be essential components of epigenetic regulation in the mammalian central nervous system. In this review, we provide an overview of the literature on DNA methylation in neurodegenerative diseases, with a special focus on methylation of 5-position of cytosine base (5mC) and hydroxymethylation of 5-position of cytosine base (5hmC) in the context of neurodegeneration associated with aging and Alzheimer's disease.  相似文献   

17.
Retinopathy, characterized by an alteration of the retinal microvasculature, is a common complication of diabetes mellitus. These changes can cause increased permeability and alter endothelial cell proliferation, edema, and abnormal neovascularization and eventually result in blindness. The pathogenesis of diabetic retinopathy (DR) is complicated, involving many factors/mediators such as genetic susceptibility, microRNAs, and cytokines. One of the factors involved in DR pathogenesis is epigenetic changes that can have a key role in the regulation of gene expression; these include microRNAs, histone modifications, and methylation of DNA. The main epigenetic modifications are DNA methylation and posttranslational modifications of the histones. Generally, the studies on epigenetics can provide new opportunities to investigate the molecular basis of diseases with complicated pathogenesis, including DR, and provide essential insights into the potential design of strategies for its treatment. The aim of this study is an investigation of DR pathogenesis and epigenetic modifications that involve in DR development.  相似文献   

18.
Elevated levels of homocysteinemia (Hcy), a risk factor for late‐onset Alzheimer's disease (AD), have been associated with changes in cell methylation. Alzheimer's disease is characterized by an upregulation of the 5‐lipoxygenase (5LO), whose promoter is regulated by methylation. However, whether Hcy activates 5LO enzymatic pathway by influencing the methylation status of its promoter remains unknown. Brains from mice with high Hcy were assessed for the 5LO pathway and neuronal cells exposed to Hcy implemented to study the mechanism(s) regulating 5LO expression levels and the effect on amyloid β formation. Diet‐ and genetically induced high Hcy resulted in 5LO protein and mRNA upregulation, which was associated with a significant increase of the S‐adenosylhomocysteine (SAH)/S‐adenosylmethionine ratio, and reduced DNA methyltrasferases and hypomethylation of 5‐lipoxygenase DNA. In vitro studies confirmed these results and demonstrated that the mechanism involved in the Hcy‐dependent 5LO activation and amyloid β formation is DNA hypomethylation secondary to the elevated levels of SAH. Taken together these findings represent the first demonstration that Hcy directly influences 5LO expression levels and establish a previously unknown cross talk between these two pathways, which is highly relevant for AD pathogenesis. The discovery of such a novel link not only provides new mechanistic insights in the neurobiology of Hcy, but most importantly new therapeutic opportunities for the individuals bearing this risk factor for the disease.  相似文献   

19.
DNA methylation is essential in brain function and behavior; therefore, understanding the role of DNA methylation in brain-based disorders begins with the study of DNA methylation profiles in normal brain. Determining the patterns and scale of methylation conservation and alteration in an evolutionary context enables the design of focused but effective methylation studies of disease states. We applied an enzymatic-based approach, Methylation Mapping Analysis by Paired-end Sequencing (Methyl-MAPS), which utilizes second-generation sequencing technology to provide an unbiased representation of genome-wide DNA methylation profiles of human and mouse brains. In this large-scale study, we assayed CpG methylation in cerebral cortex of neurologically and psychiatrically normal human postmortem specimens, as well as mouse forebrain specimens. Cross-species human-mouse DNA methylation conservation analysis shows that DNA methylation is not correlated with sequence conservation. Instead, greater DNA methylation conservation is correlated with increasing CpG density. In addition to CpG density, these data show that genomic context is a critical factor in DNA methylation conservation and alteration signatures throughout mammalian brain evolution. We identify key genomic features that can be targeted for identification of epigenetic loci that may be developmentally and evolutionarily conserved and wherein aberrations in DNA methylation patterns can confer risk for disease.  相似文献   

20.
《Epigenetics》2013,8(11):1308-1318
DNA methylation is essential in brain function and behavior; therefore, understanding the role of DNA methylation in brain-based disorders begins with the study of DNA methylation profiles in normal brain. Determining the patterns and scale of methylation conservation and alteration in an evolutionary context enables the design of focused but effective methylation studies of disease states. We applied an enzymatic-based approach, Methylation Mapping Analysis by Paired-end Sequencing (Methyl-MAPS), which utilizes second-generation sequencing technology to provide an unbiased representation of genome-wide DNA methylation profiles of human and mouse brains. In this large-scale study, we assayed CpG methylation in cerebral cortex of neurologically and psychiatrically normal human postmortem specimens, as well as mouse forebrain specimens. Cross-species human-mouse DNA methylation conservation analysis shows that DNA methylation is not correlated with sequence conservation. Instead, greater DNA methylation conservation is correlated with increasing CpG density. In addition to CpG density, these data show that genomic context is a critical factor in DNA methylation conservation and alteration signatures throughout mammalian brain evolution. We identify key genomic features that can be targeted for identification of epigenetic loci that may be developmentally and evolutionarily conserved and wherein aberrations in DNA methylation patterns can confer risk for disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号