首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gene encoding a cowpea trypsin inhibitor (CpTI), which confers insect resistance in trangenic tobacco, was introduced into rice. Expression of the CpTi gene driven by the constitutively active promoter of the rice actin 1 gene (Act1) leads to high-level accumulation of the CpTI protein in transgenic rice plants. Protein extracts from transgenic rice plants exhibit a strong inhibitory activity against bovine trypsin, suggesting that the proteinase inhibitor produced in transgenic rice is functionally active. Small-scale field tests showed that the transgenic rice plants expressing the CpTi gene had significantly increased resistance to two species of rice stem borers, which are major rice insect pests. Our results suggest that the cowpea trypsin inhibitor may be useful for the control of rice insect pests.  相似文献   

2.
The maize proteinase inhibitor (mpi) gene was introduced into two elite japonica rice varieties. Both constitutive expression of the mpi gene driven by the maize ubiquitin 1 promoter and wound-inducible expression of the mpi gene driven by its own promoter resulted in the accumulation of MPI protein in the transgenic plants. No effect on plant phenotype was observed in mpi-expressing lines. The stability of transgene expression through successive generations of mpi rice lines (up to the T(4) generation) and the production of functional MPI protein were confirmed. Expression of the mpi gene in rice enhanced resistance to the striped stem borer (Chilo suppressalis), one of the most important pests of rice. In addition, transgenic mpi plants were evaluated in terms of their effects on the growth of C. suppressalis larvae and the insect digestive proteolytic system. An important dose-dependent reduction of larval weight of C. suppressalis larvae fed on mpi rice, compared with larvae fed on untransformed rice plants, was observed. Analysis of the digestive proteolytic activity from the gut of C. suppressalis demonstrated that larvae adapted to mpi transgene expression by increasing the complement of digestive proteolytic activity: the serine and cysteine endoproteinases as well as the exopeptidases leucine aminopeptidase and carboxypeptidases A and B. However, the induction of such proteolytic activity did not prevent the deleterious effects of MPI on larval growth. The introduction of the mpi gene into rice plants can thus be considered as a promising strategy to protect rice plants against striped stem borer.  相似文献   

3.
The rice striped stem borer (SSB, Chilo suppressalis) is one of the most destructive pests of rice plants. Si‐mediated rice defense against various pests has been widely reported, and sodium silicate (SS) has been used as an effective source of silicon for application to plants. However, there is quite limited information about the direct effects of Si application on herbivorous insects. SSB larval performance and their insecticide tolerance were examined after they had been reared either on rice plants cultivated in nutrient solution containing 0.5 and 2.0 mM SS or on artificial diets with 0.1% and 0.5% SS. SS amendment in either rice culture medium or artificial diets significantly suppressed the enzymatic activities of acetylcholinesterase, glutathione S‐transferases, and levels of cytochrome P450 protein in the midgut of C. suppressalis larvae. Larvae fed on diets containing SS showed lower insecticide tolerance. Additionally, RNA‐seq analysis showed that SS‐mediated larval insecticide tolerance was closely associated with fatty acid biosynthesis and pyruvate metabolism pathways. Our results suggest that Si not only enhances plant resistance against insect herbivore, but also impairs the insect's capacity to detoxify the insecticides. This should be considered as another important aspect in Si‐mediated plant–insect interaction and may provide a novel approach of pest management.  相似文献   

4.
The rice stem borer, Chilo suppressalis, is one of the most damaging insect pests to rice production worldwide. Although C. suppressalis has been the focus of numerous studies examining cold tolerance and diapause, plant–insect interactions, pesticide targets and resistance, and the development of RNAi‐mediated pest management, the absence of a high‐quality genome has limited deeper insights. To address this limitation, we generated a draft C. suppressalis genome constructed from both Illumina and PacBio sequences. The assembled genome size was 824.35 Mb with a contig N50 of 307 kb and a scaffold N50 of 1.75 Mb. Hi‐C scaffolding assigned 99.2% of the bases to one of 29 chromosomes. Based on universal single‐copy orthologues (BUSCO), the draft genome assembly was estimated to be 97% complete and is predicted to encompass 15,653 protein‐coding genes. Cold tolerance is an extreme survival strategy found in animals. However, little is known regarding the genetic basis of the winter ecology of C. suppressalis. Here, we focused our orthologous analysis on those gene families associated with animal cold tolerance. Our finding provided the first genomic evidence revealing specific cold‐tolerant strategies in C. suppressalis, including those involved in glucose‐originated glycerol biosynthesis, triacylglycerol‐originated glycerol biosynthesis, fatty acid synthesis and trehalose transport‐intermediate cold tolerance. The high‐quality C. suppressalis genome provides a valuable resource for research into a broad range of areas in molecular ecology, and subsequently benefits developing modern pest control strategies.  相似文献   

5.
6.
China has a long history of rice cultivation, incorporating several cultural practices known to influence damage by insect pests. Transgenic Bt rice expresses lepidopteran‐specific insecticidal proteins that primarily target lepidopteran insect pests. However, the effectiveness of Bt rice against target insect pests under different cultural regimes has not been evaluated. In this study, the effectiveness of Bt rice lines against rice leaffolder, Cnaphalocrocis medinalis (Guenée) (Lepidoptera: Pyralidae), and striped stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae), was evaluated under various transplanting densities, crop establishment methods, and planting times. The results showed that Bt rice lines (T2A‐1 and T1C‐19, containing Cry2A and Cry1C, respectively) could prevent damage by these target pests under a range of cultural practices. Injury by C. medinalis or C. suppressalis on rice did not differ with the rice lines under various transplanting densities. Direct‐seeded non‐Bt rice MH63 suffered heavier injury by C. medinalis and C. suppressalis than it did with transplanting, whereas injury to the two Bt rice lines did not differ with planting methods. Planting time significantly affected injury by C. medinalis or C. suppressalis on non‐Bt rice, whereas injury to Bt rice lines did not differ with planting time. These results suggest that transplanting density, planting method, and planting time did not significantly affect the resistance of two Bt rice lines, due to their high insecticidal activity against target insects.  相似文献   

7.
In Iranian rice fields, different varieties of rice are cultivated which are differentially impacted by females of the rice stem borer, Chilo suppressalis. To elucidate the role odours may play in their host plant finding behaviour, female Ch. suppressalis were exposed to four varieties of rice plants and their volatiles in a four‐arm olfactometer. In whole plant tests, Ch. suppressalis were significantly attracted to the variety previously characterized as most susceptible, least attracted to one characterized as semisusceptible, and showed no attraction to those varieties characterized as semi‐ and highly resistant. Tests using headspace volatile extracts yielded similar results in the case of the most susceptible variety, but showed no attraction to the semisusceptible and highly resistant varieties, and low attraction to the semiresistant variety. Subsequent analysis of the volatile composition identified a panel of 27 components, some of which were either unique to, or abundantly present in, particular varieties, and may explain the observed variation in their attractiveness. Our findings show that rice plant volatiles can play a role in the host selection behaviour of this pest species, and we suggest compounds which may be important to this process and the future application of volatiles in rice pest management programs.  相似文献   

8.
A member of the potato proteinase inhibitor II (PPI II) gene family that encodes for a chymotrypsin iso-inhibitor has been introduced into tobacco (Nicotiana tabacum) usingAgrobacterium tumefaciens-mediated T-DNA transfer. Analysis of the primary transgenic plants (designated R0) confirmed that the introduced gene is being expressed and the inhibitor accumulates as an intact and fully functional protein. For insect feeding trials, progeny from the self-fertilization of R0 plants (designated R1) were used. Leaf tissue, either from transgenic or from control (non-transgenic) plants, was fed to larvae ofChrysodeixis eriosoma (Lepidoptera: Noctuidae, green looper),Spodoptera litura (F.) (Lepidoptera: Noctuidae) andThysanoplusia orichalcea (F.) (Lepidoptera: Noctuidae) and insect weight gain (increase in fresh weight) measured. Consistently,C. eriosoma larvae fed leaf tissue from transgenic plants expressing thePPI II gene grew slower than insects fed leaf tissue from non-transgenic plants or transgenic plants with no detectablePPI II protein accumulation. However, larvae of bothS. litura andT. orichalcea consistently demonstrated similar or faster growth when fed leaf tissue from transgenic plants compared with those fed non-transgenic plants. In agreement with the feeding trials, the chymotrypsin iso-inhibitor extracted from transgenic tobacco effectively retarded chymotrypsin-like activity measured inC. eriosoma digestive tract extracts, but not in extracts fromS. litura. We conclude, therefore, that for certain insects the use of chymotrypsin inhibitors should now be evaluated as an effective strategy to provide field resistance against insect pests in transgenic plants, but further, that a single proteinase inhibitor gene may not be universally effective against a range of insect pests. The significance of these observations is discussed with respect to the inclusion of chymotrypsin inhibitors in the composite of insect pest resistance factors that have been proposed for introduction into crop plants.  相似文献   

9.
Protease inhibitors of Manduca sexta expressed in transgenic cotton   总被引:2,自引:0,他引:2  
Summary To explore the effectiveness of insect derived protease inhibitors in protecting plants against insect feeding, anti-trypsin, anti-chymotrypsin and anti-elastase protease inhibitor (PI) genes from Manduca sexta L. were expressed in transgenic cotton (Gossypium hirsutum L.). From 198 independent transformants, 35 elite lines were further analyzed. Under the control of the 35S promoter of CaMV, PI accumulated to approximately 0.1% of total protein, depending on the tissue analyzed. Using cell-flow cytometry, DNA content/ nuclei of transgenic and non-transformed cotton were identical. On cotton plants expressing PIs, fecundity of Bemisia tabaci (Genn.), the sweetpotato whitefly, was reduced compared to controls. Expression of these protease inhibitors may reduce the developmental rate of B. tabaci and other insects, and provide a strategy for cotton protection.  相似文献   

10.
11.
12.
Increasing drought resistance without sacrificing grain yield remains an ongoing challenge in crop improvement. In this study, we report that O ryza s ativa CCCH‐t andem z inc f inger protein 5 (OsTZF5) can confer drought resistance and increase grain yield in transgenic rice plants. Expression of OsTZF5 was induced by abscisic acid, dehydration and cold stress. Upon stress, OsTZF5‐GFP localized to the cytoplasm and cytoplasmic foci. Transgenic rice plants overexpressing OsTZF5 under the constitutive maize ubiquitin promoter exhibited improved survival under drought but also growth retardation. By introducing OsTZF5 behind the stress‐responsive OsNAC6 promoter in two commercial upland cultivars, Curinga and NERICA4, we obtained transgenic plants that showed no growth retardation. Moreover, these plants exhibited significantly increased grain yield compared to non‐transgenic cultivars in different confined field drought environments. Physiological analysis indicated that OsTZF5 promoted both drought tolerance and drought avoidance. Collectively, our results provide strong evidence that OsTZF5 is a useful biotechnological tool to minimize yield losses in rice grown under drought conditions.  相似文献   

13.
14.
We have investigated the effects of long-term ingestion of two serine proteinase inhibitors (PIs), the Kunitz Soybean trypsin inhibitor (SBTI) and the Bowman-Birk inhibitor (BBI) on survival, learning abilities involved in the foraging behaviour, and digestive physiology of the honeybee (Apis mellifera L., Hymenoptera). A threshold-dose was established, above which adverse effects of long-term ingestion of the PIs tested are to be expected. The experiments reported herein could be extended to other PIs or gene products used to confer insect resistance, and be part of a general procedure used to assess the innocuousness of transgenic melliferous plants to honeybees.  相似文献   

15.
Plant derived protease inhibitors(PIs)are a promising defensin for crop im-provement and insect pest management.Although agronomist made significant efforts in utilizing PIs for managing insect pests.the potentials of PIs are still obscured.Insect ability to compensate nutrient starvation induced by dietary PI feeding using different strategies,that is,overexpression of PI-sensitive protease,expression of PI-insensitive proteases,degradation of PI,has made this innumerable collection of PIs worthless.A practical challenge for agronomist is to identify potent PI candidates,to limit insect compensatory responses and to elucidate insect compensatory and resistance mechanisms activated upon herbivory.This knowledge could be further efficiently utilized to identify potential targets for RNAi-mediated pest control.These vital genes of insects could be functionally anno-tated using the advanced gene-editing technique,CRISPR/Cas9.Contemporary research is exploiting different in silico and modern molecular biology techniques to utilize PIs in controlling insect pests efficiently.This review is structured to update recent advancements in this field,along with is chronological background.  相似文献   

16.
Nitrogen is a critical factor for plant development and nitrogen input is one of the important tactics to enhance the development and yield of crops. Nevertheless, nitrogen input could influence the occurrence of insects positively or negatively. Nitrogen is also one of the main elements composing the insecticidal crystal (Cry) protein. Cry protein production could affect nitrogen partitioning in Bt plants and as such nitrogen input may influence insect pest management in transgenic Bt rice, Oryza sativa L. (Poaceae). To test this possibility, we evaluated the impacts of nitrogen regimes on the main insect pests and their predators on two Bt rice lines, T2A‐1 and T1C‐19, expressing Cry2A and Cry1C, respectively, and their non‐transgenic parental counterpart MH63. The results showed that Cry proteins with different nitrogen regimes have enough insecticidal activity on rice leaffolder, Cnaphalocrocis medinalis Guenée (Lepidoptera: Crambidae), in both laboratory and field experiments. Laboratory studies indicated that relevant parameters of ecological fitness in brown planthopper, Nilaparvata lugens (Stål) (Hemiptera: Delphacidae), a non‐target insect pest, were significantly affected by nitrogen input both on Bt and MH63 rice lines. Nymphal survival, female adult longevity, and egg hatchability in N. lugens differed significantly among rice varieties. The experiments conducted in rice fields also demonstrated that nitrogen was positively correlated with the abundance of N. lugens on Bt rice, similar to that on MH63 rice. The abundances of two predators – the wolf spider Pirata subpiraticus (Boesenberg & Strand) (Araneae: Lycosidae) and the bug Cyrthorhinus lividipennis Reuter (Hemiptera: Miridae) – were significantly affected by rice growth stages but not by nitrogen input and rice varieties. In conclusion, the above results indicate that high nitrogen regimes for Bt rice (T2A‐1 and T1C‐19) and non‐Bt rice (MH63) cannot facilitate the management of insect pests.  相似文献   

17.
Plant age‐ and plant stage‐related changes in the resistance of rice, Oryza sativa, to its most important insect pest in the US, the rice water weevil (Lissorhoptrus oryzophilus), were investigated in a series of field and greenhouse choice and no‐choice studies. Rice plants were susceptible to infestation by rice water weevils over a broad range of plant ontogenetic stages, from at least the early vegetative stage to well into the reproductive stage. There was, however, a clear preference expressed by rice water weevils in both choice and no‐choice experiments for plants in (or nearly in) the tillering stage of development, with pre‐tillering and reproductive stage plants less preferred. The relationship between rice plant age and susceptibility to weevils is thus nonlinear. This study constitutes one of the most thorough studies to date of the relationship in a grass species between plant age and susceptibility to herbivores. The results provide a biological explanation for observed patterns of weevil infestations and a rationale for the cultural practice of delayed flooding.  相似文献   

18.
Pigeon pea is an important legume. Yield losses due to insect pests are enormous in the cultivation of this crop. Expression of cry proteins has led to increased resistance to pests in several crops. We report in this paper, expression of a chimeric cry1AcF (encoding cry1Ac and cry1F domains) gene in transgenic pigeon pea and its resistance towards Helicoverpa armigera. PCR, Southern hybridization, RT‐PCR and Western analysis confirmed stable integration and expression of the cry1AcF gene in pigeon pea transgenics. When screened for efficacy of the transformants for resistance against H. armigera, the transgenics showed not only high mortality of the larva but could also resist the damage caused by the larvae. Analysis for the stable integration, expression and efficacy of the transgenics resulted in the identification of four T3 plants arising from two T1 backgrounds as highly promising. The results demonstrate potentiality of the chimeric cry1AcF gene in developing H. armigera‐resistant pigeon pea.  相似文献   

19.
20.
Proteinase inhibitors are widely distributed in animals, plants and microorganisms and their roles in plants are associated with defense against pests. The utilization of proteinase inhibitors for crop protection has been actively investigated with a variety of proteinase inhibitors. Soybean Kunitz trypsin inhibitor (SKTI), one of the major seed storage protein, is synthesized for a short period during seed development. To investigate the role of SKTI in a plant's defense system against insect predation, a recombinant plasmid containing the full-length cDNA of SKTI under control of the CaMV 35S promoter was introduced into rice protoplasts by using the PEG direct gene transfer method and a large number of transgenic rice plants were regenerated. The integration, expression, and inheritance of this gene was demonstrated in R1 and R2 generations by Southern, northern, and western analyses. Accumulation levels (0.05–2.5% of soluble proteins) of SKTI protein were detected in R1 and R2 plants. Bioassay with R1 and R2 transgenic plants revealed that transgenic plants are more resistant to destructive insect pest of rice, brown planthopper (Nilaparvata lugens Stål), than the control plants. Thus, introduction of SKTI into rice plants can be used to control insect pests.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号