首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
In order to reveal the role of soil seed banks in vegetation recovery after fire in savanna, the spatial distribution and temporal changes in the soil seed banks of regularly burning savanna in Gambella, western Ethiopia, was studied. The seedling emergence technique was employed to determine the species composition and density of the soil seed bank of six sites ranging in fire severity from wooded grassland with frequent fires over woodland with intermediate fire frequency to forest with absence of fires. Species composition and density of seeds in the soil were compared between seasons, depths and sites with different types of standing vegetation. Fourteen plant species were recorded in the soil seed bank from the grassland and woodland sites and 6 from the dry forests; 60 % of the taxa in the soil seed bank were annuals and 40 % were perennials. The soil seed banks were largely dominated by graminoids and 48–97 % of the soil seed bank in the grasslands and woodlands was of a single grass species, Hyparrhenia confinis , which was absent from the dry forests. The soil seed pools ranged from less than 100 to 4700 seeds per m2 depending upon the season. The soil seed bank of graminoids was nearly empty after the onset of the rainy season whereas seeds of broadleaved herbs and woody species able to germinate were still found after this time. Floristic composition, representation of life forms and density of seeds in soil did not correspond closely with that of the standing vegetation, but within graminoids there was a strong similarity between the soil seed bank and the standing vegetation. The current fire regime of Ethiopian savanna woodlands appears to maintain the dominance of graminoids over broadleaved herbs and woody plants both as seeds in the soil and in the standing vegetation.  相似文献   

2.
Holmes  Patricia M.  Cowling  R. M. 《Plant Ecology》1997,133(1):107-122
We investigated vegetation-seed bank relationships at three fynbos sites on the Cape Peninsula, South Africa, and the impacts to these sites of invasion by the alien tree Acacia saligna. Soil-stored seed banks in uninvaded fynbos were of a similar density to those previously measured in fynbos (ca. 1100–1500 seeds m-2) and were dominated by mostly short-lived species. Lack of similarity between mature vegetation and seed banks, suggests that seed banks are poor predictors of mature vegetation composition and structure in fynbos. This lack of correspondence was attributed to the ephemerals (present only in the soil seed bank) and the dominance of serotinous (aerial seed bank) and sprouting (soil seed bank low to absent) species, in mature vegetation. Long-lived seeders were among the 10 most abundant species in the seed banks at all sites and at two sites shrub species contributed more to seed bank richness than any other growth form. Soil-stored seed banks, therefore, boost species richness and diversity both in early post-fire and later seral stages.There was a decline in fynbos species richness, diversity and abundance both in the standing vegetation and seed banks with increasing duration of invasion by the alien tree, Acacia saligna. However, the rate of decline was higher for the vegetation than the seed banks, suggesting that many fynbos species have long-term persistent seed banks. At two sites, there was no obvious shift in community composition associated with Acacia invasion: invaded sites were depauperate versions of the uninvaded site. However, at a third site, the vegetation composition shifted towards a community dominated by bird-dispersed thicket species and its seed bank shifted towards a community dominated by wind-dispersed perennials. Community composition of the soil seed banks under dense, recent Acacia was very similar to that of the corresponding uninvaded fynbos at all sites, indicating that there is good potential to return to species-rich fynbos vegetation after removal of the alien Acacia. Most seed bank species persisted in the soil seed bank of the long-invaded fynbos at low frequency and density, indicating high seed longevity in many species. We suggest that either a thick Acacia litter layer or a deep (>5 cm) burial moderated the fire and ambient temperature effects, preventing these seeds from germinating after fire and thus preventing loss from the seed bank.  相似文献   

3.
Soil seed banks can play an important role in the regeneration of wetland vegetation. However, their potential role in the restoration of degraded wetland forests is less certain. I surveyed the soil seed bank and extant floras of four sites across a eucalypt wetland forest of variable vegetation condition. At each site, the extant vegetation was surveyed within two 5 × 5 m2 quadrats, each from which five composite soil seed bank samples were collected. Across the four sites, 57 (including 18 exotic) species were identified in the extant vegetation, while from the seed bank samples 6379 seedlings emerged from 80 taxa, 33 of which were exotic species. The soil seed bank was dominated by native and exotic monocots, and contained very few seeds of wetland tree or shrub species. Overall, the similarity between the extant and seed bank floras was very low (~24 %). Soil seed banks are likely to be of limited use in the restoration of degraded wetland forests, because the dominant species in such systems—woody and clonal plants—are typically absent from the soil seed bank. Wetland soil seed banks may contribute to the maintenance and diversity of understorey vegetation, however, they may also act as a source of exotic plant invasions, particularly when a wetland is degraded.  相似文献   

4.
Seed bank species-composition and seed-density were determined in a successional calcareous (alvar) grassland in western Estonia. Three similar study areas were chosen to compare two different successional stages: open alvar grassland and overgrown areas with young pine forest 30 to 40 years old. In both successional stages, the centre and the edge of a relatively uniform stand were examined. Fifteen soil samples (7 cm in diameter, 5 cm deep) were taken from each of twelve sampling sites. The seedling emergence method was used to estimate seeds in the soil samples. A total of 69 species were detected in the seed bank, of which 18 did not occur in the vegetation. Eighty-nine taxa were recorded in the vegetation and of these 38 were not detected in the seed bank. Fifty-one species occurred both in the seed bank and in the vegetation. The three most abundant taxa in the seed bank wereCarex tomentosa, Linum catharticum andPlantago media, which together made up 49% of the seedlings recorded. Differences in the species compositions of seed bank samples from grassland and forest sites were negligible, although the species richness per area of the above-ground vegetation was significantly higher in the open grassland. The only species tending to be lost from forest site vegetation but still occurring in the forest soil seed bank wereArenaria serpylifolia, Cerastium fontanum andLinum catharticum. About half of all the emerged species from all samples belonged to the transient or short-term persistent seed bank. In the grassland sites there were more species which belonged to the transient seed bank than in the forest sites, where the seed bank contained more short-term persistent type seeds. The seed density was significantly higher in forest sites and lower in grassland sites, which may be explained by the better germination conditions in well-illuminated communities. On the basis of the current study it might be assumed that the soil seed banks of overgrown alvar grasslands which include young pine forests can play a certain role in grassland restoration management.  相似文献   

5.
Large seed banks have been found in tropical dry forests and also in habitats with high seasonality in rainfall. However, patchily structured vegetation could induce great spatial variation in the seed bank. We characterized the seed bank in a patchy vegetation of restinga, a common type of coastal vegetation found in the Atlantic forest biome. We also evaluated whether there is any spatial variation between the litter and soil layer, bare sand, and the edge and center of vegetation patches with distinct species dominance. We found 104 seeds/m2 in the seed bank using a 5‐cm‐depth sampling. Seven out of 16 species found in the restinga seed bank germinated; two of these were found in the early stages of vegetation patches. We found a higher number of seeds at the edge than in the center of vegetation patches. However, there were no significant differences in the number of seeds in the seed bank between the litter and soil layer, and between vegetation patches with distinct species dominance. Bare sandy soils had lower seed bank densities than vegetation patches. A small seed bank size might be explained by the low proportion of seeds from herbaceous and woody species, which are pioneers in the Atlantic forest. However, seed bank might play an important role in the early stages of the successional process, due to the occurrence of the few species that are able to colonize new young vegetation patches.  相似文献   

6.
Seed dispersal is a key process in plant community dynamics, and soil seed banks represent seed dispersal in time rather than in space. Despite their potential importance, seed bank dynamics in the Arctic are poorly understood. We investigated soil seed banks and corresponding plant community composition in three contrasting vegetation types in West Greenland, viz. dwarf shrub heaths, herb slopes and fell‐fields. Through germination testing, 31 species were documented in soil seed banks. All of these were herbaceous, while no dwarf‐shrub species, which represents the dominating growth form in the above‐ground vegetation, were emerging from the seed bank. Consequently, across vegetation types, the lowest similarity between seed bank and above‐ground vegetation was found in dwarf shrub heath. Nine plant species were exclusively found in seed bank, all of which were non‐clonal forbs. Seed bank size (total number of seeds) and species richness seemed to increase with the level of natural disturbance. Additionally, we examined the effect of different experimental light and temperature conditions on the quantity and diversity of germinating seeds. The difference in diversity in vegetation and seed bank at the species level will impact population dynamics, regeneration of vegetation after disturbances and its potential to respond to climate change.  相似文献   

7.
Abstract. As part of a wider study examining regeneration pathways in monsoon rain forest vegetation in northern Australia, the dormant component of the soil seed bank was assessed by storing soil samples for over six dry season months, before watering in shade-house trials. Six soil samples were collected from each of 34 sites broadly representative of the range of regional monsoon rain forest vegetation. Four floristic seed bank groups were derived through TWINSPAN classification. Mean group densities of germinants ranged from 25–144/m2. Dormant seed banks were least dense, and most sparsely distributed, in sandy soils. Seed bank samples were dominated by woody pioneer monsoon rain forest species, especially figs; exotic weeds and savanna taxa (e.g. Poaceae) were relatively more common at seasonally dry sites. Dormant seed banks comprised species mostly present in the standing vegetation, although a small number of germinants represented species not growing at half the sites. Regeneration of woody pioneers from dormant seed banks is least likely to be of importance on infertile, seasonally dry sites.  相似文献   

8.
Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi‐arid savanna of Ethiopia. We tested whether the availability of persistent seeds in the soil could drive the transition from a degraded system under heavy grazing to healthy vegetation with ample perennial grasses. A total of 77 species emerged from the soil seed bank samples: 21 annual grasses, 12 perennial grasses, 4 herbaceous legumes, 39 forbs, and 1 woody species. Perennial grass species dominated the lightly grazed sites, whereas the heavily grazed sites were dominated by annual forbs. Heavy grazing reduced the number of seeds that can germinate in the seed bank. Species richness in the seed bank was, however, not affected by grazing. With increasing soil depth, the seed density and its species richness declined. There was a higher similarity in species composition between the soil seed bank and aboveground vegetation at the lightly grazed sites compared with the heavily grazed sites. The mean similarity between the seed banks and aboveground vegetation was relatively low, indicating the effect of heavy grazing. Moreover, seeds of perennial grasses were less abundant in the soil seed banks under heavy grazing. We concluded that restoration of grass and woody species from the soil seed banks in the heavily grazed areas could not be successful in semi‐arid savannas of Ethiopia.  相似文献   

9.
The species composition in the soil seed bank of degraded hillslopes in southern Wello, Ethiopia, was assessed using the seedling emergence method and compared with that of the standing vegetation. Surface soils were sampled at 0‐to 5‐cm depth from 49 plots of four physiognomic vegetation classes (hereafter vegetation classes): forests, shrublands, grasslands, and degraded sites. Soils were spread on sterile sand in a glasshouse and watered. Emerging seedlings were recorded for five months until no new seedlings emerged. A total of 3969 seedlings belonging to 71 species and 30 families germinated. The species composition of the seed bank was dominated by 53 herb species (75%) compared to 2 tree species which accounted for only 3 percent of the total number of species. Seedling density differed significantly among vegetation classes and ranged from 391 to 7807 seeds/m2. Mean species richness also differed significantly among the vegetation classes. Forty‐two species were found to be common to the seed banks and the standing vegetation; however, correspondence between species numbers and composition of the seed banks and the standing vegetation was poor. Although most of the species that germinated in the seed banks were herbs and grasses, they can develop a vegetative cover and contribute to reduction of soil erosion. Regeneration of the tree species (some of which have seed viability up to four years) however, requires both time and the presence of mature individuals. Together with hillside closure and soil conservation measures (e.g., terracing), planting of native woody seedlings might help to expedite rehabilitation of degraded hillslopes devoid of trees and shrubs.  相似文献   

10.
The soil seed bank is considered as an important component for resilience of climacic vegetation. Whereas several related studies have been conducted in Asian, American and some African tropical forests, no investigation has ever been conducted in Central African rainforests, especially in logged forests where the soil seed bank could contribute to regeneration of timber of trees species. We studied the soil seed bank characteristics in relation to the standing vegetation in three Cameroonian forest zones with different disturbance regimes. There was no significant difference between sites in terms of density of the seed bank; the average mean density was 87.6 seeds m−2. But dissimilarities of the floristic compositions between sites were quite high. Overall, seeds came from 43 species including three commercial tree species. Whereas the seedlings emerging from soil samples mostly came from weedy and short-lived pioneer species, climax species predominated in the extant vegetation, leading to a very weak similarity between soil seed flora and the surrounding vegetation: Sorensen's index ranged from 3.5 to 7.6%. Canopy openness could significantly affect the species richness of soil seed stocks but not the seed density. These results show that the soil seed bank contribution to the resilience of mature tropical forests is low. In particular, very few timber tree species could benefit from soil seed stocks for their regeneration. Therefore, the development of enrichment techniques including use of the soil seed bank as a source of tree regeneration in such a context would be irrelevant.  相似文献   

11.
滇东南岩溶山地次生林土壤种子库储量与优势成分   总被引:5,自引:0,他引:5  
沈有信  陈胜国  江洁  蔡光丽  张平 《广西植物》2003,23(6):528-532,540
采用样线取样与温室萌发实验相结合的方法 ,调查了滇东南典型岩溶山地次生林的土壤种子库储量及其优势成分。结果发现 ,岩溶山地次生林下贮存有丰富的植物种子 ,在厚度为 1 0cm的表层土壤中的种子储量变动于 493 0~ 1 493 0粒 /m2 之间 ,高于对照成熟林的 3 780粒 /m2 。在 1 0cm的垂直剖面上 ,单位体积的种子储量在厚度为 0~ 2、2~ 5、5~ 1 0cm的三个层面间逐渐下降 ,但 5~ 1 0cm土层内仍然储藏了大量的种子。三种次生林的乔、灌、草、藤的比例组成与对照成熟林的差异不大 ,无论是种子个体数量还是物种种类数都以草本为主 (平均为 85 .5 %和 69.9% ) ,灌木次之 (平均为 1 2 .8%和 1 9.4% ) ,藤本 (平均为 1 .6%和 4.2 % )和乔木 (平均为 0 .6%和 6.5 % )稀少。在所研究的三个次生林样地内种子数量处于前三位的种子都来自菊科的紫茎泽兰 (Eupatoriumadenophorum) ,胜红蓟 (Ageratumconyzoides) ,劲直白酒草 (Conyzastricta) ,一点红(Emiliasonchifolia)等四个物种中的三个种 ,与成熟林下的土壤种子库中前三位物种基本相同。土壤种子库与地表植被间的相似性较小。  相似文献   

12.
Soil stockpiles are essential to the reclamation of large‐ and small‐scale mining and other industrial sites. However, stockpiling soils can lead to the degradation of seed banks. This study examines the diversity, composition, depth of seed storage, and relationships between the aboveground and seed bank plant communities in stockpiles and compares them to the nearby boreal forest. The seed bank and aboveground vegetation sampled at eight stockpiles and six mature forest sites were near Fort McMurray (57.337°N, 111.755°W) and Cold Lake (54.695°N, 110.730°W), Alberta, Canada. Seed bank samples were taken from the forest floor (LFH) and depths of 0–5, 5–10, 10–20, 20–30, >50 cm. Aboveground vegetation cover was also estimated at these locations. The seed bank composition was determined using the seedling emergence method in a greenhouse. Stockpile seed banks had higher seedling abundance and species richness than nearby forested sites but were dominated by grasses and non‐native forbs. Most seeds germinated from the surface layer, with 92% of seeds germinating from the LFH layers in the forested sites, and 68% from the 0 to 5 cm layer in the stockpiles. Mature forest sites had more similar aboveground and seed bank communities than the stockpiles. Overall, integrating information on seed bank and aboveground plant communities would improve reclamation decisions, rather than relying on aboveground vegetation alone.  相似文献   

13.
Soil seed bank dynamics in alpine wetland succession on the Tibetan Plateau   总被引:3,自引:0,他引:3  
The primary goal was to address several questions with regard to how soil seed banks change in a successional series. How does the composition of the viable seed bank change, and how does the relationship of the soil seed bank and vegetation change with succession? Can the seed bank be regarded as a potential as a source of seeds for wetland restoration? We collected soil seed bank samples and sampled the vegetation in four different successional stages and used the NMDS (nonmetric multidimensional scaling) to evaluate the relationship of species composition between the seed banks and vegetation. The difference of seed density and species richness in different habitats and soil depths also was compared. Viable seeds of half (37) the species in the early-successional stage were found in all the successional stages. Similarity between seed bank and vegetation increased with succession. Both seed density and species richness in the seed bank increased with successional age and decreased with soil depth. The majority of species from the early-successional stage produced long-lived seeds. Seed density and species richness increased with succession, mainly as a result of increasing seed production, and hypotheses predicting decreasing density of buried seeds and species richness were not confirmed. Seed banks play a minor role in contributing to the regeneration of vegetation, and managers cannot rely on soil-stored seed banks for restoration of wetlands.  相似文献   

14.
以山西文峪河上游13种典型的河岸林为研究对象,通过土壤种子库和树种更新研究,分析群落种子库与林下更新随演替进展的变化趋势,以及该区河岸树种的繁殖对策。结果表明:13种群落的土壤种子库密度间于1290±103~3950±154粒/m2,63.5%的种子留存于0~5 cm的层次;种子库包含49种植物,以多年生草本为主,存在耐干扰种和湿地植物的种子;处于相同或相邻演替阶段的群落,种子库相似性较高;随演替进展,种子库密度、丰度、Shannon-Wiener指数及种子库与地上植被的相似性均呈降低趋势;处于演替后期的青杄Picea wilsonii林存在丰富的"青杄幼苗库";先锋种白桦Betula platyphylla的种子存在于演替各阶段的群落中,储量丰富,其更新主要依赖于风媒种子,并存在少量萌蘖;青杄、白杄P.meyeri、华北落叶松Larix principis-rupprechtii、油松Pi-nus tabulaeformis和辽东栎Quercus liaotongensis的种子库损耗严重,没有或仅存少量种子,其中云杉和油松的更新幼苗幼树多,属持久幼苗库更新;华北落叶松幼苗幼树少,且仅出现于林缘或林窗等开阔地,属植被空隙中季节性更新;辽东栎主要依赖丰富的幼苗库进行更新,同时存在一定的萌蘖;青杨Populus cathayana以大量风媒种子更新结合营养扩展。  相似文献   

15.
Restoration and creation of freshwater wetlands using seed banks   总被引:12,自引:0,他引:12  
The minimum information about a seed bank needed for a wetland restoration or creation project is a species list. There are two basic techniques for determining the composition of seed banks: (1) mechanical separation of seeds from a volume of soil and (2) germination of seeds from a volume of soil under appropriate environmental conditions. The latter method always gives biased results. It is best to collect as many random samples as possible when sampling a wetland seed bank. These can be combined as needed for processing. Field studies in India have demonstrated that vestigial seed banks can be used to re-establish a former vegetation type in a monsoonal wet-land that had become overgrown by a species of grass. In less than a year, 9 of 1 I species in the vestigial seed bank were found growing in areas cleared of the grass. Vestigial seed banks of drained prairie wetlands in the northcentral United States contained a few wetland species after 70 years, although species diversity and seed density declined significantly after 20 to 30 years of drainage and cultivation. In Florida, U.S.A., wetlands have been established in strip-mined areas using donor soils from existing wetlands. Newly established wetlands quickly developed a dense cover of vegetation, although this vegetation often lacked many desirable wetland species. Experimental studies of soil moisture conditions using a seed bank from the Delta Marsh, Canada, demonstrated that soil moisture affected both the total number of seeds, and the relative proportion of seeds of each species that germinated from a seed bank. The density of seedlings of emergent wetland species in the treatments was directly proportional to soil moisture, while that of terrestrial annuals was inversely proportional. Emergent species made up nearly 90% of the seedlings in the wettest treatment and 0% in the driest.From a paper presented at the Third International Wetlands Conference, 19–23 September, 1988, University of Rennes, France.  相似文献   

16.
We assessed the size of seed bank, species diversity and similarity between seed bank and standing vegetation in four oriental beech (Fagus orientalis Lipsky) community types of the central Hyrcanian forests of northern Iran. For this purpose a total of 52 relevés was established in two associations and two subassociations of the beech forests, and six soil samples (20 × 20 cm square and to a depth of 10 cm) were collected in each relevé in mid-spring, after the germination season had ended. Soil seed bank was investigated using the seedling emergence method. A total of 63 species, 57 genera and 36 families was represented in the persistent soil seed bank of the forest communities. The seed bank contained 28 species not found as adult plants in the vegetation, but these were mostly early successional species. Size of the seed bank ranged from 3740 to 4676 individuals m−2 in the Rusco hyrcani-Fagetum orientalis and Danae racemosae-Fagetum orientalis associations, respectively. Species composition of seed banks and aboveground vegetation had low similarity with an average of 24.3% in the four plant communities, because only 38% of the species were the same in the vegetation and the seed banks. Most seeds in the seed bank were from early successional species, and the only tree with a large persistent seed bank was the fast-growing pioneer Alnus subcordata. DCA ordination also demonstrated low similarity between soil seed bank and vegetation. The soil seed banks of the four beech communities did not differ significantly in size, composition, diversity and uniformity. Although above ground vegetation in the four community types is floristically distinct, there is considerable overlap among the soil seed banks because they contain in a similar way early successional species. Further, the absence of typical forest species in the soil seed bank indicates that restoration of forest tree species cannot rely on the soil seed bank.  相似文献   

17.
铜尾矿废弃地与相邻生境土壤种子库特征的比较   总被引:5,自引:0,他引:5  
沈章军  欧祖兰  田胜尼  汤伟 《生态学报》2013,33(7):2121-2130
土壤种子库是植被群落的重要组成部分,其特征决定了群落的演替方向。对铜陵杨山冲尾矿库6个植被群落及相邻两处生境的土壤种子库进行了研究。结果表明,尾矿内各植被群落种子库的种子密度间存在较大差异,变化范围为57—593粒/m2,平均种子密度为370粒/m2,尾矿坝体和周围山体种子库种子密度分别为999和121粒/m2,各样地土壤中种子均主要集中在0—5 cm范围内。尾矿种子库与坝体种子库间的相似性指数大于其与周围山体种子库的相似性指数,但尾矿内各植被群落种子库间的相似性较差,相似性指数的变化范围为0.308—0.636。可见,群落微生境对土壤种子库的种子密度和物种组成产生了较大的影响。尾矿种子库种类与地上植被的平均相似指数为0.355,低于坝体种子库种类与地上植被相似性系数。3处样地土壤种子库的物种多样性、丰富度和均匀度指数均表现为坝体>尾矿>山体。尾矿种子库在农田土壤中萌发并正常生长的幼苗为16科44属53种,而在尾矿基质中仅为9科36属45种,均以禾本科、菊科和豆科植物萌发和生长状况较好,这3科构成了尾矿地上植被的主要类型。尾矿种子库在尾矿基质中萌发成活率为62.2%—91.2%,约为坝体和山体土壤种子库在尾矿基质中萌发成活率的2倍。说明,组成尾矿种子库的种子大部分已经适应了尾矿的极端恶劣环境或者其本身就是耐性极强的植物类型。  相似文献   

18.
The density of seeds in soil seed banks and the species composition of both seed banks and aboveground vegetation were examined in naturally restored sites (NRS) and aerially seeded sites (ASS) in the Hunshandak sandlands of northern China. Five sites were naturally restored 1, 2, 4, 8, and 15 years ago and four sites were aerially seeded 1, 2, 5, and 7 years ago. In total, 36 species were recorded in the seed bank and 41 species in the aboveground vegetation for all NRS, whereas the numbers were 17 and 19, respectively, for ASS, indicating that the NRS can support higher diversity of species than the ASS. During the initial 2 years of restoration, introduced alien shrubs by aerial seeding dominated the vegetation of ASS, although there were indigenous pioneer species in the seed bank which failed to establish in the community. In contrast, indigenous species were dominant components in both the seed bank and the vegetation at the NRS. These findings suggest that the establishment of introduced species might have restricted the germination of certain indigenous pioneer species. Seed bank density of NRS significantly increased with time from 459 ± 76 seeds m−2 at NRS2 to 3,351 ± 694 seeds m−2 at NRS15, showing that the seed bank in degraded grassland is large enough to allow natural restoration. It is not always necessary to actively introduce seeds to enhance vegetation diversity.  相似文献   

19.
Estimates of soil seed banks are important to many ecological investigations and plant conservation, yet seed banks are among the most difficult plant community attributes to accurately quantify. To compare extraction and emergence seed bank characterization methods, we collected 0- to 5-cm soil seed bank samples and measured plant community composition in six microsite types (below different perennial plant species and interspaces) at 10 field sites in the Mojave Desert, USA. Extraction detected five times more species sample?1 and orders of magnitude greater seed density than emergence, though evaluating viability of extracted seed was not straightforward. Only 13 % of 847 tested seeds from extraction emerged in follow-up assays. Considering all sites, species detection was more similar between methods: 21 taxa for emergence and 28 for extraction. Results suggest that: (i) capturing microsite variation is critical for efficiently estimating site-level desert seed banks; (ii) method comparisons hinged on the scale of analysis for species richness, as differences in species detection between methods diminished when increasing resolution from the sample to the regional scale; (iii) combining data from all seed bank methods provided the strongest correlation with vegetation; and (iv) improving knowledge of seed germinability is important for advancing both seed bank methods, including for extraction to evaluate the proportion of extracted seeds that are viable. Multifactor approaches that balance several effectiveness measures (e.g., both seed density and species detection at multiple scales) and procedural challenges are most likely to accurately represent complexity in tradeoffs for choosing methods to quantify soil seed banks.  相似文献   

20.
Soil seed banks of two montane riparian areas: implications for restoration   总被引:8,自引:0,他引:8  
Understanding the role of seed banks can be important for designing restoration projects. Using the seedling emergence method, we investigated the soil seed banks of two montane, deciduous riparian forest ecosystems of southeastern Arizona. We contrasted the seed banks and extant vegetation of Ramsey Canyon, which is the site of riparian restoration activities, with that of Garden Canyon, which has been less affected by human land uses. Fewer plant species were found at Ramsey Canyon than Garden Canyon, for both the seed bank and extant vegetation, and the vegetation at Ramsey Canyon (seed bank and extant) had consistently drier wetland indicator scores. As well, vegetation patterns within sampling zones (channel margins and adjacent riparian forests) differed between canyons. At Garden Canyon channel margins, the seed bank and extant vegetation had relatively high similarity, with herbaceous wetland perennial species dominating. Extant vegetation in the floodplain riparian forest zone at Garden Canyon had a drier wetland indicator score than the seed bank, suggesting that the floodplains are storing seeds dispersed from wetter fluvial surfaces. Vegetation patterns for Ramsey Canyon channel margins were similar to those for Garden Canyon floodplains. Vegetation patterns in the Ramsey Canyon riparian forest zone were indicative of non-flooded conditions with an abundance of upland species in the soil seed bank and extant vegetation. Channel geomorphology measurements indicated that much of the riparian forest zone at Ramsey Canyon is functionally a terrace, a condition that may be a legacy of channel erosion from historic land uses. Steep, erodible channel slopes may contribute to the low seed bank germinant density at Ramsey Canyon channel margins, and narrower flood-prone area may explain the greater terrestrialization of the vegetation in both sampling zones. We recommend testing the use of donor soils from more diverse stream reaches to restore biodiversity levels at Ramsey Canyon, following restoration activities such as channel-widening. Seed banks from Garden Canyon, for example, although predominantly consisting of herbaceous perennials, would supply species with a range of moisture tolerances, life spans, and growth forms. We also recommend that restorationists take care not to harm seed banks exposed during removal of introduced species; at Ramsey Canyon, soil seed banks were equally diverse in areas with high and low cover of the introduced Vinca major (a legacy of Ramsey Canyon land use).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号