首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
South African fynbos vegetation is threatened on a large scale by invasive woody plants. A major task facing nature conservation managers is to restore invaded areas. The aim of this study was to determine the restoration potential of fynbos following dense invasion by the Australian tree Acacia saligna. The impacts of dense invasion on seed‐bank composition and depth distribution were investigated to determine which fynbos guilds and species have the most persistent seed‐banks. Soil samples were excavated at three different depths for invaded and uninvaded vegetation at two sand plain and mountain fynbos sites. Seed‐banks were determined using the seedling emergence approach. Invasion caused a significant reduction in seed‐bank density and richness at all sites. There was a significant, but smaller, reduction in seed‐bank density and richness with soil depth at three sites. Seed‐bank composition and guild structure changed following invasion. Low persistence of long‐lived obligate seeders in sand plain fynbos seed‐banks indicates that this vegetation type will be difficult to restore from the seed‐bank alone following alien clearance. The dominance of short‐lived species, especially graminoids, forbs and ephemeral geophytes, suggests that regenerating vegetation will develop into a herbland rather than a shrubland. It is recommended that seed collecting and sowing form part of the restoration plan for densely invaded sand plain sites. As seed density remained higher towards the soil surface following invasion, there is no general advantage in applying a mechanical soil disturbance treatment. However, if the shallow soil seed‐bank becomes depleted, for example following a hot fire through dense alien slash, a soil disturbance treatment should be given to exhume the deeper viable seed‐bank and promote recruitment.  相似文献   

2.
Questions: How does invasion affect old‐field seed bank species richness, composition and density? How consistent are these effects across sites? Does the soil seed bank match vegetation structure in old‐fields? Location: Menorca, Balearic Islands, Spain, western Mediterranean basin. Methods: We monitored seed germination in soils from old‐fields that were both uninvaded and invaded (legacy effect) by the annual geophyte Oxalis pes‐caprae. We also added O. pes‐caprae bulbs to uninvaded soils to test O. pes‐caprae interference with seedling emergence (competitive effect). We compared species composition in the seed bank with that of the vegetation. Results: Species richness in the seed bank and in the vegetation was not significantly different between invaded and uninvaded areas. Uninvaded areas did not have larger seed banks than invaded areas. More seedlings, especially of geophytes, emerged when O. pes‐caprae bulbs were added to the soil. Species similarity between invaded and uninvaded areas was higher in the seed bank (74%) than in the vegetation (49%). Differences in species composition were as important as differences among sites. The degree of species similarity between the seed bank and the vegetation was very low (17%). Conclusions: Despite invasion by O. pes‐caprae not affecting species richness, the variation in the seed bank species composition in invaded and uninvaded areas, and the differences between the seed bank and the mature vegetation, highlights that even if the invader could be eradicated the vegetation could not be restored back to the exact composition as found in uninvaded areas.  相似文献   

3.
Invasion by woody alien plants, construction, and mining operations are among the major disturbances degrading vegetation in the Cape Floristic Kingdom, South Africa. The aim of this study was to assess whether native fynbos shrubland vegetation could be restored following dense alien invasion and disturbance by mining. An area supporting dense alien trees was cleared and topsoil was stripped and stockpiled to simulate mining disturbance. A field trial investigated the effects of topsoil depth, seed mix application, and fertilizer on native species recruitment and vegetation development over a three‐year period. Soil‐stored seed banks contributed 60% of the species recruited, indicating that areas invaded for three decades have good restoration potential. The addition of a fynbos seed mix, which included serotinous overstory species, improved both the richness and structural composition of the vegetation. Most species sown in untopsoiled plots established, but survival and growth was low compared to topsoil plots. Poor growth in combination with a lack of soil seed bank species, indicate that restoring a diverse and functional cover of indigenous vegetation on subsoil is not possible in the short‐term. Soil amelioration is required to improve rooting conditions and initiate ecosystem processes. Shallow and deep topsoil treatments yielded high plant density, richness, and projected canopy cover, but canopy cover was higher in deep topsoil plots throughout the trial. Fertilizer addition increased canopy cover in untopsoiled and shallow topsoil plots via an increase in alien annual species. Fertilizer addition ultimately may lead to increased native vegetation cover in untopsoiled areas, but as it increased proteoid mortality on deep topsoil plots, it is not recommended for sites where topsoil is available. A species‐rich and structurally representative fynbos community may be restored on topsoiled areas provided that the native disturbance regime is simulated and seeds of major structural guilds not present in the soil seed bank are included in the seed mix.  相似文献   

4.
Much of our current understanding of the impact of invasive species on plant communities is based on patterns occurring in the above-ground vegetation, while only few studies have examined changes in soil seed banks associated with plant invasions, despite their important role as determinants of vegetation dynamics. Here, we reviewed the literature on the impact of plant invasions on the seed bank and we provide a quantitative synthesis using a meta-analysis approach. Specifically, (1) we quantified the impact of 18 invasive alien plants on (i) species richness and (ii) density of the seed banks of invaded communities, based on 58 pair-wise invaded-uninvaded comparisons (cases); we identified (2) the invasive taxa that are responsible for the largest changes in the seed bank; and (3) the habitats where substantial changes occur. Our study showed three major findings: (1) species richness (68% of cases) and density (58% of cases) were significantly lower in native seed banks invaded by alien plants; (2) species richness and density of native and alien species were remarkably lower in seed banks invaded by large, perennial herbs compared to uninvaded sites; and (3) invaded seed banks were often associated with a larger richness and/or abundance of alien species. This study indicates a need for additional seed bank data in invasion ecology to characterize species-specific and habitat-specific impacts of plant invasions, and to determine whether changes in the seed banks of native and alien species are a symptom of environmental degradation prior to a plant invasion or whether they are its direct result. The findings of this study help improve our capacity to predict the long-term implications of plant invasions, including limitations in the recruitment of native species from the seed bank and the potential for secondary invasions by seeds of other alien species.  相似文献   

5.
The ability of plant communities to recover after non-native species invasion will depend upon the nature of their soil seed bank and seed rain characteristics. This study assessed changes in the soil seed bank and seed rain associated with the invasion of the non-native shrub Cytisus scoparius in subalpine vegetation. Soil seed bank and seed rain composition, density and richness were investigated at three areas of different stages of invasion: (i) recent (8–10 years), (ii) mature (15–16 years) and (iii) long-term (25 years). There were few changes in seed bank composition or richness regardless of invasion stage. By contrast, the seed rain composition, richness and density was substantially different within long-invaded areas. Very few seeds were able to colonise the dense barrier characteristic of larger, more mature C. scoparius stands. Some prominent herbs from the native vegetation were under-represented or absent from the seed bank, both in invaded and uninvaded areas. Laboratory germination experiments demonstrated that most native species germinate easily, which may imply a transient seed bank, rather than a persistent one. The majority of herbaceous and shrub species were capable of resprouting vegetatively. Therefore, regeneration appeared more reliant on the bud and tuber bank than a persistent soil seed bank. The dominance of graminoid species and C. scoparius rather than other herbaceous, shrub or tree species suggests that the regenerating vegetation will be dominated by grass species and/or C. scoparius. Hence, in areas where long-invaded C.␣scoparius stands are present the recovery of native subalpine vegetation maybe difficult. Recovery may only be possible through wind dispersal from the surrounding intact vegetation or through actively reseeding the area. This study highlights the importance of early intervention in invasive species management.  相似文献   

6.
Species composition, number of emerging seedlings, species diversity and functional group of the soil seed banks, and the influence of grazing on the similarity between the soil seed banks and aboveground vegetation, were studied in 2008 and 2009 in a semi‐arid savanna of Ethiopia. We tested whether the availability of persistent seeds in the soil could drive the transition from a degraded system under heavy grazing to healthy vegetation with ample perennial grasses. A total of 77 species emerged from the soil seed bank samples: 21 annual grasses, 12 perennial grasses, 4 herbaceous legumes, 39 forbs, and 1 woody species. Perennial grass species dominated the lightly grazed sites, whereas the heavily grazed sites were dominated by annual forbs. Heavy grazing reduced the number of seeds that can germinate in the seed bank. Species richness in the seed bank was, however, not affected by grazing. With increasing soil depth, the seed density and its species richness declined. There was a higher similarity in species composition between the soil seed bank and aboveground vegetation at the lightly grazed sites compared with the heavily grazed sites. The mean similarity between the seed banks and aboveground vegetation was relatively low, indicating the effect of heavy grazing. Moreover, seeds of perennial grasses were less abundant in the soil seed banks under heavy grazing. We concluded that restoration of grass and woody species from the soil seed banks in the heavily grazed areas could not be successful in semi‐arid savannas of Ethiopia.  相似文献   

7.
Questions: Are soil seed banks affected by invasions of alien plants? How can we rigorously assess alterations in seed bank communities associated with invasive species and account for the high spatial variability of seed bank data? How do multivariate approaches compare with more traditional approaches based on analysis of variance? Location: Three riparian sites, Ireland. Methods: A protocol based on a combination of multivariate techniques was used to characterize soil seed bank communities associated with the herbaceous invasive species Heracleum mantegazzianum in May and October. Permutational multivariate analysis of variance (PERMANOVA) was used to test the effects of the factors “invasion”, “site”, “plot” and “depth” on the soil seed bank, while multivariate analysis of dispersion (PERMDISP) provided a measure of the variability of seed bank data at different spatial scales. Similarity percentages analysis (SIMPER) was used to identify the species that contributed most to the differences between invaded and uninvaded communities. A comparison between the results of PERMANOVA and ANOVA analyses was also made. Results: The composition of seed bank communities invaded by H. mantegazzianum differed significantly from that of uninvaded seed banks. Invaded seed banks were less diverse and had reduced abundance, and were dominated by only a few species, such as Urtica dioica and Juncus effusus. Such patterns were recorded at each of three depth categories, indicating that invasive plants can affect both the transient and the more persistent component of the soil seed bank. Seed bank variability was significantly higher within uninvaded areas, supporting the notion that invasions tend to lead to more homogeneous communities. Conclusion: The analytical protocol used in this study was effective in quantifying the effect of plant invasions, at different spatial scales, providing a statistically robust analysis of alterations in soil seed bank communities. Compared to ANOVA, this protocol provided more biological information and was more appropriate for analysis of the data. This approach is therefore recommended in soil seed bank and invasion ecological studies.  相似文献   

8.
Soil-stored seed banks of grassland, fynbos and thicket, all growing on calcareous dunes and each subject to different disturbance regimes, were examined. Seed banks were determined from counts of germinants from 50 soil cores from each type. Aboveground estimates of plant species cover in 10 1-m2 plots were used in determining vegetation/seed bank similarities. There was no evidence for seed bank densities to be markedly higher in the most frequently disturbed community (grassland -4273 seeds/m2) than the least disturbed community (thicket - 3417 seeds/m2). Highest similarity between seed bank and above-ground vegetation composition in terms of species and growth form/life-span classes was recorded for grassland (CC = 50%). Lowest similarity (CC = 13%) was found in the less frequently disturbed thicket where no seeds of climax trees were recorded in the seed bank. A fynbos community on a north-facing (warm, dry) slope had intermediate-sized seed banks (1683 seeds/m2) with intermediate vegetation/seed bank similarity (CC = 46%). However, on the south-facing slope, which has a large post-fire ephemeral herb component, seed banks were larger (4518 seeds/m2) but less similar to above-ground vegetation (CC = 39%o). Ordination (DCA) of vegetation data from the four communities was different from an ordination of their seed bank data. Fynbos shrub species were absent from seed banks of both grassland and thicket, even though secondary succession proceeds from grassland, through fynbos to thicket. Their seed banks appear less persistent than those of European heath or Californian chaparral shrubs.  相似文献   

9.
Recruitment limitation may limit the ability of sites to regenerate after disturbances such as weed invasion and weed management. We investigated seed bank constraints and dispersal limitation in coastal dune communities on the east coast of Australia. The ability of sites to regenerate naturally following weed removal was assessed in coastal dune communities invaded by the invasive alien, bitou bush (Chrysanthemoides monilifera subsp. rotundata). To investigate recruitment limitation, seed banks and vegetation of invaded, native, intensively managed (selective application of herbicide and some re-vegetation) and extensively managed (large-scale, non-selective herbicide application) sites were compared. We investigated the dispersal mechanisms of species in the seed bank and vegetation to determine if communities might be dispersal-limited, i.e. contain significant numbers of species with only short-distance dispersal capabilities. Species richness and composition of soil seed banks differed from the vegetation in foredunes and hinddunes. Invasion depleted seed banks further. About half of the species had short-distance dispersal mechanisms indicating the potential for dispersal limitation. Secondary weed invasion following management was evident although alien species occurred in both seed banks and vegetation. Our results indicated that coastal dune communities suffer recruitment limitation. Native, managed and invaded dune communities appear to be both seed bank and dispersal-limited although management and invasion exacerbates recruitment. Regeneration of coastal dune communities will require active reintroduction of species, particularly those with short-distance dispersal mechanisms.  相似文献   

10.
Increasing attention in invasion biology is being paid to measuring and understanding the impacts of invasive species. For plant invasions, however, the impact of invasion on soil seed bank communities has been under-studied. At six sites in southern Germany, we investigated whether areas invaded by Solidago gigantea and Solidago canadensis experienced a reduction in seed bank species richness, size and diversity, and a change in species composition compared to adjacent uninvaded areas. We found no overall effect of invasion on seed bank size, or on species richness and diversity. Seed bank size significantly decreased from 0–5 cm to 5–10 cm depth in both invaded and uninvaded areas. A significant amount of variation in species composition was explained by invasion, but it was only one-tenth of that explained solely by site effects. Our study suggests that invasion by Solidago species may not have the same impacts on the soil seed banks of native species as other invasive perennial forbs that have so far been studied.  相似文献   

11.
Invasions by alien plants significantly affect native biodiversity and ecosystem functioning. We conducted a 5-year field experiment to investigate potential effects of the annual invasive plant Impatiens glandulifera on both the native above-ground vegetation and the soil seed bank in a deciduous forest in Switzerland. Eight years after the establishment of I. glandulifera, we set up plots in patches invaded by the alien plant, in plots from which the invasive plant had been manually removed and in plots which were not yet colonized by the invasive plant. We examined plant species richness, diversity and plant species composition in the above-ground vegetation and soil seed bank in all plots one year and five years after the initiation of the experiment. The 36 plots (3 plot types × 6 replicates × 2 sites) were equally distributed over two forest sites. Neither the native above-ground vegetation nor the soil seed bank was influenced by the presence of I. glandulifera one year after the start of the field experiment. After five years, however, plant species richness of both the above-ground vegetation and the soil seed bank was reduced by 25% and 30%, respectively, in plots invaded by the alien plant compared to plots from which I. glandulifera had been removed or uninvaded plots. Furthermore, plots invaded by the alien plant had a lower total seedling density (reduction by 60%) and an altered plant species composition in the soil seed bank compared to control plots. Our field experiment indicates that negative effects of the annual invasive plant on the native above-ground vegetation and soil seed bank of deciduous forests become visible with a delay of several years.  相似文献   

12.
The relationship between vegetation cover and soil seed banks was studied in five different ungulate herbivore-prairie dog treatment combinations at three northern mixed-grass prairie sites in Badlands National Park, South Dakota. There were distinct differences in both the seed bank composition and the aboveground vegetation between the off-prairie dog colony treatments and the on-colony treatments. The three on-colony treatments were similar to each other at all three sites with vegetation dominated by the forbs Dyssodia papposa, Hedeoma spp., Sphaeralcea coccinea, Conyza canadensis, and Plantago patagonica and seed banks dominated by the forbs Verbena bracteata and Dyssodia papposa. The two off-colony treatments were also similar to each other at all three sites. Vegetation at these sites was dominated by the grasses Pascopyrum smithii, Bromus tectorum and Bouteloua gracilis and the seed banks were dominated by several grasses including Bromus tectorum, Monroa squarrosa, Panicum capillare, Sporobolus cryptandra and Stipa viridula. A total of 146 seedlings representing 21 species germinated and emerged from off-colony treatments while 3069 seedlings comprising 33 species germinated from on-colony treatments. Fifteen of the forty species found in soil seed banks were not present in the vegetation, and 57 of the 82 species represented in the vegetation were not found in the seed banks. Few dominant species typical of mixed-grass prairie vegetation germinated and emerged from seed banks collected from prairie dog colony treatments suggesting that removal of prairie dogs will not result in the rapid reestablishment of representative mixed-grass prairie unless steps are taken to restore the soil seed bank.  相似文献   

13.
Abstract. Hawaiian ecosystems are prone to invasion by alien plant species. I compared the seed rain, seed bank, and vegetation of a native Hawaiian forest to examine the potential role that seed ecology plays in allowing alien species to invade native forest. Absolute cover of seed plants in the forest was 126 %, annual seed rain was 5 713 seeds m-2 yr-1, and the mean density of seedlings emerging from the seed bank averaged across four seasons was 1 020/m2. The endemic tree Metrosideros polymorpha was the most abundant species in the vegetation, seed rain and winter seed bank. Overall, native seed plants comprised 95 % of the relative cover in the vegetation and 99 % of the seeds in the seed rain, but alien species comprised 67 % of the seeds in the seed bank. Alien species tended to form persistent seed banks while native species formed transient or pseudo-persistent seed banks. Dominance of the seed bank by alien species with persistent seed banks suggests that aliens are favorably placed to increase in abundance in the vegetation if the forest is disturbed.  相似文献   

14.
Aims In recent years, there has been an increasing interest in the impact of invasive alien plant species on the soil seed bank. Soil seed banks play an important role in determining the composition and dynamics of the vegetation through time. Therefore, an ability to form a persistent seed bank and/or a capacity to alter the structure of the seed bank of invaded communities could be important factors in determining the success of many alien plant species. In this study, we report on a detailed assessment of the characteristics of the seed bank community associated with the herbaceous plant invader, Gunnera tinctoria, a newly emerging and potentially globally significant invasive plant species. This species, native to South America, is invasive in a range of wet habitats in Europe, Australasia and the USA.Methods A comprehensive assessment of the seed bank of invaded and comparable uninvaded areas was made at two points in time (May and October), at three sites in western Ireland. The seedling emergence approach was used to assess the structure (diversity, dominance and abundance) of the soil seed bank. Differences between invaded and uninvaded seed bank communities were investigated at the spatial scales of site, plot and depth.Important findings Gunnera tinctoria formed a large persistent seed bank at the study sites. Approximately 30-000 seedlings per square metre emerged from soils collected from invaded areas, of which 30% were found in deep soil layers. Seedlings of this invader represented 53–86% of the total number of seedlings associated with invaded areas. Both the transient and the more persistent component of the seed bank of invaded communities were significantly less diverse and abundant than those of uninvaded areas, and were characterized by higher dominance, even when seedlings of the invader were not included in the analysis. The seed bank of invaded areas was largely composed of seeds of agricultural weeds in addition to those of the invader. These results suggest that G. tinctoria has the capacity to profoundly alter the seed bank of invaded communities. These results have direct relevance for the development of control and management strategies, for this and other comparable invasive species, which should account for both quantitative and qualitative alterations in the seed bank community. Our study also suggests that control measures that result in disturbance of areas colonized by G. tinctoria could promote the germination of undesirable weeds.  相似文献   

15.

Questions

The degree to which renosterveld shrublands are fire‐dependent is currently unclear. To address this issue, the following questions were asked: (1) does smoke stimulate germination of soil‐stored seeds in renosterveld; (2) does recently‐burned renosterveld display changed composition and higher diversity than unburned vegetation; and (3) how do the species compositions of renosterveld soil seed banks and standing vegetation compare?

Location

Swartland, Cape Floristic Region, South Africa.

Methods

Soil seed bank samples from a north‐ and south‐facing slope were smoke‐treated and germinated to test for smoke‐stimulated germination. Burned standing vegetation was surveyed 16 months post‐fire, as was unburned vegetation on the same slopes. Seed bank species richness and density were compared between smoke‐treated and untreated samples within and between slopes. Burned and unburned standing vegetation were compared within and between slopes in terms of species richness, abundance and aerial cover. Compositional similarity of the seed banks and standing vegetation was assessed.

Results

Seed banks were dominated by annuals and graminoids. Smoke treatment had no effect, except for driving significantly higher species richness and seedling density in south‐facing slope perennial shrubs. Species richness and seedling density were significantly higher in seed banks on the south‐facing slope compared to the north‐facing slope. Burned standing vegetation exhibited significantly higher diversity than unburned vegetation. Annuals and graminoids displayed significantly higher species richness and aerial cover in burned renosterveld. The north‐facing slope contained less than half the number of species/m2 compared to the south‐facing slope. The seed banks and standing vegetation showed low to intermediate similarity (Sørensen = 31%–53%), but grouped close together on an NMDS plot, suggesting intermediate similarity overall.

Conclusions

Elevated germination of perennial shrubs in smoke‐treated seed bank samples and increased diversity of post‐fire standing vegetation suggest the renosterveld in this study shows elements of a fire‐driven system. Certain species only recruited in burned sites, suggesting fire‐stimulated germination. Aspect had a major influence on plant community composition, with the mesic south‐facing slope being more diverse than the xeric north‐facing slope. The similarity between the seed banks and standing vegetation was higher than previously shown for renosterveld, and appears to be higher than for fynbos.  相似文献   

16.
Abernethy  V.J.  Willby  N.J. 《Plant Ecology》1999,140(2):177-190
This study used germination methods to examine the density, species composition and functional composition of propagule banks in a series of riverine wetland aquatic habitats subject to varying degrees of hydrological and management-related disturbance. Under permanent inundation (the conditions prevailing at most sites during the growing season) propagule germination and species richness was low, with floodplain perennials and helophytes particularly affected. Densities of floodplain annuals were largely maintained through continued germination of a few flooding tolerant species. On damp mud (conditions associated with hydrological instability) total seedling number and species richness increased significantly, but species richness of germinating hydrophytes declined. Mean seedling density at 0–0.1m depth was 15450 ± 4400 m–2, reaching a maximum (162 050 m–2) in temporary backwaters. Annual (e.g., Lindernia dubia, Cyperus fuscus) and facultative ruderal species (e.g., Lythrum salicaria and Alisma plantago-aquatica) predominated. Vertical zonation of the propagule bank was weakly developed. The numbers of individuals and species germinating varied significantly between sites. The seasonal, most intensely disturbed sites (temporary backwaters) supported a numerically large, species-rich propagule bank based on floodplain annuals, while the permanent, less disturbed sites (ditches and an oxbow pond) had a small, species-poor propagule bank composed of hydrophytes and helophytes supplemented by allochthonous seed inputs. Sites intermediate on the gradient had a propagule bank dominated by facultative amphibious, ruderal hydrophytes. The composition of the seed bank and the established vegetation was most similar at the heavily disturbed sites where the seed bank was maintained by vigorously fruiting annuals and supplemented by inputs from temporary habitats upstream. At permanent sites much of the propagule bank composition could be accounted for by inputs of floodborne seed from the immediately adjacent floodplain. The established vegetation at such sites appeared to be maintained mainly by vegetative propagation with recruitment from the propagule bank likely only after severe disturbance. The potential contribution of functionally diverse propagule banks to sucessional processes within fluvially dynamic floodplain aquatic habitats is emphasised.  相似文献   

17.
Question: Are the seed banks of an isolated subtropical oceanic island capable of naturally regenerating vegetation either with species of the historical forest community or with the existing grassland community after severe damage to the vegetation by goats? Location: Nakoudojima Island, Bonin Archipelago (Ogasawara Shoto), Japan. Methods: Soil samples were collected at 0–5 cm and 5–10 cm depths from seven plots in forests, grasslands, artificially matted areas and bare land. Soil seed banks were assessed using the seedling emergence method followed by the hand‐sorting of ungerminated seeds. We determined the size and composition of the seed banks in upper soil layers of plots and compared the seed banks to the standing vegetation. Results: A total of 12 220 seedlings belonging to 42 species from 20 families germinated. Total mean seed density (0–5 cm depth) was low in all plots within forest, grassland, and heavily degraded vegetation types (34.7 ± 8.6 to 693.5 ± 123.6, 58.6 ± 7.8 to 107.1 ± 10.0, and 1.1 ± 0.5 to 7.2 ± 2.3 seeds/m2, respectively). Forbs and graminoids dominated the seed banks of grassland and forest plots including Cyperus brevifolius, Gnaphalium pensylvanicum, Oxalis corniculata and Solanum nigrum, and these alien species comprised 90% of the density of the seed bank. There was little correlation between seed banks and standing vegetation of the island (Sørensen similarity coefficient values 0.26 to 0.45). Conclusions: If natural regeneration occurs from the seed bank of the island, future vegetation will not move toward the original forest community, because the seed bank is dominated by non‐native herbaceous grassland species. Though isolated, a few forest remnants with low species richness could be an important source for the natural re‐establishment of forest on the island; however, seed availability may be limited by either poor dispersal or pollination so that woody species will probably recover very slowly on this goat‐impacted island.  相似文献   

18.
In order to reduce flood risk, river management policies advise floodplain restoration and the recreation of water retention areas. These measures may also offer opportunities for the restoration of species-rich floodplain habitats through rewetting and the restoration of flood dynamics. The potential to enhance biodiversity in such flood restoration areas is, however, still subject to debate. In this paper we investigate whether flooding along a small altered lowland river can contribute to the potential and realised species richness of semi-natural meadows. We compare the seed bank and vegetation composition of flooded and non-flooded semi-natural meadows and test the hypothesis that flooding contributes to an input of diaspores into the meadow seed banks, thereby promoting seed density and potential species richness. Furthermore we hypothesise that, where habitat conditions are suitable, flooding leads to a higher realised species richness. Results showed that seed densities in flooded meadows were significantly higher than in non-flooded meadows. The seed banks of flooded meadows also contained a higher proportion of exclusively hydrochorous species. However, the seed bank species richness, as well as the species richness realised in the vegetation did not differ significantly between flooded and non-flooded meadows. Finally, the seed bank and standing vegetation of flooded sites showed larger differences in species composition and Ellenberg nitrogen distribution than non-flooded sites. From these results we conclude that, although flooding does contribute to the density and composition of the seed bank, most imported seeds belong to only a few species. Therefore, it is unlikely that flooding substantially enhances the potential species richness. Furthermore, even if new species are imported as seeds into the seed bank, it seems unlikely that they would be able to establish in the standing vegetation. However, it is unclear which factors impede the establishment of imported species in the vegetation. The implications of our findings for flood meadow restoration are discussed.  相似文献   

19.
Invasions by alien plant species may substantially alter soil seed bank communities. While decreases in seed bank species richness, diversity, and composition as a consequence of plant invasions have been reported, the characteristics of seed banks associated with different invasive species have not been compared in any detail. Here, we describe changes in the characteristics of soil seed banks invaded by three large herbaceous invasive plants, Fallopia japonica, Gunnera tinctoria, and Heracleum mantegazzianum. The study was carried out at the spatial scales of site and plot, to reduce variability in seed bank data. Information on seed bank persistence was inferred from seed depth (0–5, 5–10, and 10–15 cm) and from time of sampling (May and October). Despite differences in the reproductive strategy and geographic distribution of these invaders, as well as in the standing vegetation and habitat types examined, the seed banks of invaded areas were similar in composition and in the relative abundance of different species. Invaded seed banks were dominated by seeds of a few agricultural weed species and/or rushes, suggesting that common features of the invaders, including a large standing biomass, extensive litter production, and the formation of mono-species stands may result in comparable selection pressures that favors traits that are largely genera or species-specific. These findings have a direct relevance for the development of strategies aimed at restoring previously-invaded sites while also improving our understanding of the long-term implications of plant invasions.  相似文献   

20.
Questions: Do soil seed banks of semi‐arid grasslands reassemble after abandonment from cultivation? Do seeds of native and exotic species persist in the soil? Does time since abandonment affect compositional similarity between the vegetation and seed bank? Does the seed bank contribute to resilience in the vegetation? Location: Native grasslands in northern Victoria, Australia. Methods: Seed bank sampling was conducted in spring and autumn over 3 yrs, across a 100‐yr chronosequence. Species richness, composition and germinant density were determined using the seedling emergence method. Seed persistence was assessed by comparing seed densities in spring and autumn. Seed bank composition was compared with the vegetation. Results: The spring seed bank was dominated at all stages by sedges and rushes; hence, native species richness and seed density were largely unaffected by abandonment. In autumn, grassland species contributed more to the seed bank, but richness was reduced after abandonment and showed little recovery, although seed density partially recovered. Seed bank composition showed some recovery in both seasons. Most species had low persistence in the soil. Compositional similarity between the vegetation and seed bank was greater in old fields than uncultivated grasslands in spring, but not autumn. Conclusions: Resilience varied among seed bank parameters and seed banks had low functional importance. Patterns in the seed bank followed, rather than caused, those in the vegetation. Thus, vegetation recovery cannot rely on the seed bank and persistent seeds were not the key mechanism of resilience in the vegetation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号