首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
2.
P L Chen  P Scully  J Y Shew  J Y Wang  W H Lee 《Cell》1989,58(6):1193-1198
Introduction of an exogenous retinoblastoma (RB) gene in RB-deficient retinoblastoma or osteosarcoma cells has been shown to suppress their neoplastic phenotype. In experiments designed to explore the potential mechanism of RB tumor suppression, we report here that the phosphorylation state of RB protein is modulated during normal cellular events. In resting cells, RB protein is present in its least phosphorylated form; in rapidly proliferating cells, RB protein is highly phosphorylated. Maximal phosphorylation is associated with S phase of the cell cycle. Induction of differentiation in several human leukemia cell lines by treatment with phorbol ester or retinoic acid leads to dephosphorylation of RB. Time course studies indicate that RB dephosphorylation precedes the total arrest of cell growth during differentiation. These observations strongly suggest that the function of RB protein is modulated by a phosphorylation/dephosphorylation mechanism during cell proliferation and differentiation.  相似文献   

3.
Li J  Xie C  Xie XY  Wang DM  Pei XT 《生理学报》2005,57(2):188-192
为了研究HTm4基因在造血细胞细胞周期调控中的作用,以佛波酯(phorbol 12-myristate 13-acetate,PMA)诱导K562细胞分化为模型,利用流式细胞术(FACS)及半定量RT-PCR对分化过程中细胞周期的变化及HTm4基因的表达进行了分析,并利用Tet-Off调控表达系统,将HTm4基因以及C端功能域缺失的HTm4-ct转染K562细胞,观察对细胞周期的影响。结果表明,PMA同时引起了K562细胞的增殖和分化,G0/G1期细胞的比例以及HTm4基因的表达均呈现出波浪形的变化趋势,说明HTm4基因可能参与了细胞退出细胞周期的过程。HTm4基因转染后引起K562细胞滞留于G0/G1期,但C端功能域缺失的HTm4-ct没有此作用,说明C端功能域在HTm4基因调控细胞周期的功能中发挥重要作用。  相似文献   

4.
Activin A, a member of the transforming growth factor (TGF)-beta superfamily, is involved in the regulation of erythroid differentiation. Previous studies have shown that activin A inhibited the colony-forming activity of mouse Friend erythroleukemia cells, however, the mechanism remains unknown. First, we show herein that activin A induced the expression and activated the promoters of alpha-globin and zeta-globin in K562 cells, confirming that activin A induces erythroid differentiation in K562 cells. The p38 mitogen activated protein kinase (MAPK) inhibitor, SB203580, inhibited and the extracellular signal regulated kinase (ERK) inhibitor, PD98059, enhanced the expression and promoter activities of alpha-globin and zeta-globin by activin A, indicating that p38 MAPK and ERK are crucial for activin A-induced erythroid genes expression. Second, SB203580 inhibited the inhibitory effect of activin A on the colony-forming activity of K562 cells using the methylcellulose colony assay, indicating that activin A inhibits K562 colony formation by activating p38 MAPK. In addition, mitogenic cytokines SCF, IL-3, and GM-CSF induced colony formation of K562 cells that could be inhibited by PD98059 or enhanced by SB203580, respectively, indicating that these mitogenic cytokines induce K562 colony formation by activating ERK and inactivating p38 MAPK. Furthermore, activin A reduced the induction effect of these mitogenic cytokines on K562 colony formation in a dose-dependent manner. The inhibition of p38 MAPK reverted the inhibitory effect of activin A on mitogenic cytokine-mediated K562 colony formation. We conclude that activin A can regulate the same pathway via p38 MAPK to coordinate cell proliferation and differentiation of K562 cells.  相似文献   

5.
We compare the effects of Imatinib mesylate (Glivec) on chronic myeloid leukemia derived cell lines K562 and JURL-MK1. In both cell lines, the cell cycle arrests in G(1)/G(0) phase within 24 h after the addition of 1 microM Imatinib. This is followed by a decrease of Ki-67 expression and the induction of apoptosis. In JURL-MK1 cells, the apoptosis is faster in comparison with K562 cells: the caspase-3 activity reaches the peak value (20 to 30 fold of the control) after about 40 h and the apoptosis proceeds to its culmination point, the DNA fragmentation, within 48 h following 1 microM Imatinib addition. Unlike K562 cells, JURL-MK1 cells possess a probably functional p53 protein inducible by TPA (tetradecanoyl phorbol acetate) or UV-B irradiation. However, no increase in p53 expression was observed in Imatinib-treated JURL-MK1 cells indicating that the difference in the apoptosis rate between the two cell lines is not due to the lack of p53 in K562 cells. Imatinib also triggers erythroid differentiation both in JURL-MK1 and K562 cells. Glycophorin A expression occurred simultaneously with the apoptosis, even at the single cell level. In K562 cells, but not in JURL-MK1 cells, the differentiation process involved increased hemoglobin synthesis. However, during spontaneous evolution of JURL-MK1 cells in culture, the effects produced by Imatinib progressively changed from the fast apoptosis to the more complete erythroid differentiation. We suggest that the apoptosis and the erythroid differentiation are parallel effects of Imatinib and their relative contributions, kinetics and completeness are related to the differentiation stage of the treated cells.  相似文献   

6.
Activin A can induce erythroid differentiation, whereas basic fibroblast growth factor (bFGF) can maintain the undifferentiated status of erythroid progenitors. How these two factors together can affect the regulation of erythroid differentiation in hematopoietic cells has not been elucidated. This study demonstrates that bFGF antagonizes activin A-mediated growth inhibition and hemoglobin (Hb) synthesis in K562 cells. Analyses of mitogen-activated protein kinases revealed that activin A-induced p38 phosphorylation and inhibited ERK1/2 phosphorylation. In contrast, bFGF worked antagonistically to induce ERK1/2 phosphorylation and inhibited p38 phosphorylation in K562 cells. Furthermore, co-treatment of cells with activin A and bFGF decreased p38 phosphorylation and increased ERK1/2 phosphorylation. SB203580 inhibition of p38 activity eliminated activin A-mediated growth inhibition and Hb synthesis, whereas U0126 inhibition of ERK1/2 activity augmented the effects of activin A on K562 cells. These results suggest that bFGF can negatively modulate p38 and positively modulate ERK1/2 to antagonize activin A-mediated growth inhibition and Hb synthesis in K562 cells.  相似文献   

7.
We studied the effect of 2-(6-(2-thieanisyl)-3(Z)-hexen-1,5-diynyl)aniline(THDA), a newly developed anti-cancer agent, on cell proliferation, cell cycle progression, and induction of apoptosis in K562 cells. THDA was found to inhibit the growth of K562 cells in a time-and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest and apoptosis in K562 cells following 24 h exposure to THDA. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a time-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that THDA did not change the steady-state levels of cyclin B1, cyclin D3 and Cdc25C, but decreased the protein levels of Cdk1, Cdk2 and cyclin A. THDA also caused a marked increase in apoptosis, which was associated with activation of caspase-3 and proteolytic cleavage of poly (ADP-ribose) polymerase. These molecular alterations provide an insight into THDA-caused growth inhibition, G2/M arrest and apoptotic death of K562 cells.  相似文献   

8.
9.
目的:通过,IPA诱导K562细胞分化过程中干预细胞铁代谢探讨白血病细胞铁与细胞分化的关系及对EGR1mRNA表达的影响。方法:应用体外细胞培养技术通过细胞形态,细胞化学染色观察细胞生长分化情况;用FCM、RT—PCR等技术检细胞周期、细胞表面分化抗原CD33、CD14及EGR1mRNA的表达。结果:在,IPA诱导K562细胞分化过程中铁剥夺可明显抑制K562细胞生长,并可阻止,IPA诱导K562细胞分化,使K562细胞停止在S期。铁剥夺可降低,TPA诱导K562细胞分化过程中EGR1mRNA的表达。讨论:铁剥夺明显抑制K562细胞生长、阻止TPA诱导K562细胞分化,故铁剥夺剂(DFO)可能作为一种辅助抗癌药用于白血病的化疗,但由于它能阻止白血病细胞的分化,故不宜用于白血病的诱导分化治疗。铁剥夺使K562细胞分化过程中E—GR1mRNA表达降低可能参与了阻止TPA诱导K562细胞的分化过程。  相似文献   

10.
Lu MC  Yang SH  Hwang SL  Lu YJ  Lin YH  Wang SR  Wu YC  Lin SR 《Life sciences》2006,78(20):2378-2383
Squamocin is one of the annonaceous acetogenins and has been reported to have anticancer activity. Squamocin was found to inhibit the growth of K562 cells in a time- and dose-dependent manner. Cell cycle analysis showed G2/M phase arrest in K562 cells following 24 h exposure to squamocin. During the G2/M arrest, cyclin-dependent kinase inhibitors (CDKIs), p21 and p27 were increased in a dose-dependent manner. Analysis of the cell cycle regulatory proteins demonstrated that squamocin did not change the steady-state levels of Cdk2, Cdk4, cyclin A, cyclin B1, cyclin D3 and cyclin E, but decreased the protein levels of Cdk1 and Cdc25C. These results suggest that squamocin inhibits the proliferation of K562 cells via G2/M arrest in association with the induction of p21, p27 and the reduction of Cdk1 and Cdc25C kinase activities.  相似文献   

11.
RB-dependent S-phase response to DNA damage   总被引:7,自引:0,他引:7       下载免费PDF全文
The retinoblastoma tumor suppressor protein (RB) is a potent inhibitor of cell proliferation. RB is expressed throughout the cell cycle, but its antiproliferative activity is neutralized by phosphorylation during the G(1)/S transition. RB plays an essential role in the G(1) arrest induced by a variety of growth inhibitory signals. In this report, RB is shown to also be required for an intra-S-phase response to DNA damage. Treatment with cisplatin, etoposide, or mitomycin C inhibited S-phase progression in Rb(+/+) but not in Rb(-/-) mouse embryo fibroblasts. Dephosphorylation of RB in S-phase cells temporally preceded the inhibition of DNA synthesis. This S-phase dephosphorylation of RB and subsequent inhibition of DNA replication was observed in p21(Cip1)-deficient cells. The induction of the RB-dependent intra-S-phase arrest persisted for days and correlated with a protection against DNA damage-induced cell death. These results demonstrate that RB plays a protective role in response to genotoxic stress by inhibiting cell cycle progression in G(1) and in S phase.  相似文献   

12.
为了探讨敲除LSD1基因后抑制人慢性髓系白血病 K562细胞增殖的原因,使用前期CRISPR/Cas9技术构建的人慢性髓系白血病 K562 LSD1基因敲除株,通过细胞凋亡Annexin V/PI(碘化丙啶)双染色、细胞PI染色以及流式细胞术技术,探究敲除LSD1基因后,K562细胞的凋亡水平是否改变,细胞周期是否受到影响。结果表明敲除LSD1基因后K562细胞被阻滞在G0/G1期,进入DNA复制期的细胞变少,因此导致细胞增殖速度减慢;通过细胞凋亡Annexin V/PI双染色并分析早期以及晚期凋亡细胞总比例,显示敲除LSD1基因后,不影响K562细胞的凋亡。研究结果表明,敲除LSD1基因后人慢性髓系白血病 K562细胞的增殖受到抑制,这是由于K562细胞增殖周期发生了改变,进入DNA复制期和分裂期的细胞减少;而与细胞凋亡水平的变化无关。  相似文献   

13.
Abstract

Activin A is a member of the transforming growth factor-beta (TGF-β) protein superfamily, which acts as a hormone in regulating cell proliferation and differentiation. Structurally, activin is a dimer of two subunits linked by a disulfide bond. Since the correct folding of this protein is essential for its function, we aimed to use a modified signal peptide to target the expressed recombinant protein to the periplasm of Escherichia coli as an effective strategy to produce correctly-folded activin A. Therefore, the coding sequence of native Iranian Bacillus licheniformis α-amylase signal peptide was modified and its efficiency was checked by SignalP bioinformatics tool. Then its final sequence was cloned upstream of the activin A mature cDNA. Protein expression was done using 1?mM of isopropyl thio-β-D-galactoside (IPTG) and a post-induction time of 8?hr. Additionally, following purification of recombinant activin A, circular dichroism spectroscopy was used to determine the accuracy of secondary structure of the protein. Importantly, differentiation of K562 cells to the red blood cell was confirmed by measuring the amount of Fe+2 ions after treatment with recombinant activin A. The results indicated that the produced recombinant activin A had the same secondary structure as the commercial human activin A and was fully functional.  相似文献   

14.
15.
目的:研究三氧化二砷对多药耐药急性白血病细胞株K562/A02凋亡与细胞周期的影响及可能机制。方法:取阿霉素(Adr)的耐药白血病细胞株分为未加药的对照组及加入不同浓度的三氧化二砷(其终浓度为4.0μmol/L、5.0μmol/L)组,流式细胞仪检测细胞凋亡及细胞周期分布,Western blot方法检测不同浓度三氧化二砷对K562/A02细胞核NF-κBp65蛋白水平。结果:与对照组比较,三氧化二砷可显著增加Adr对K562/A02细胞凋亡率,阻滞细胞于G0/G1期,降低K562/A02细胞胞核中NF-kB p65的表达(P均<0.05)。结论:三氧化二砷可能是通过抑制NF-kB的胞内活化转位,从而促进K562/A02细胞凋亡及抑制细胞增殖。  相似文献   

16.
The signaling pathway leading to TGF-beta1-induced apoptosis was investigated using a TGF-beta1-sensitive hepatoma cell line, FaO. Cell cycle analysis demonstrated that the accumulation of apoptotic cells was preceded by a progressive decrease of the cell population in the G(1) phase concomitant with a slight increase of the cell population in the G(2)/M phase in response to TGF-beta1. TGF-beta1 induced a transient increase in the expression of Cdc2, cyclin A, cyclin B, and cyclin D1 at an early phase of apoptosis. During TGF-beta1-induced apoptosis, the transient increase in cyclin-dependent kinase (Cdk) activities coincides with a dramatic increase in the hyperphosphorylated forms of RB. Treatment with roscovitine or olomoucine, inhibitors of Cdc2 and Cdk2, blocked TGF-beta1-induced apoptosis by inhibiting RB phosphorylation. Overexpression of Bcl-2 or adenovirus E1B 19K suppressed TGF-beta1-induced apoptosis by blocking the induction of Cdc2 mRNA and the subsequent activation of Cdc2 kinase, whereas activation of Cdk2 was not affected, suggesting that Cdc2 plays a more critical role in TGF-beta1-induced apoptosis. In conclusion, we present the evidence that Cdc2 and Cdk2 kinase activity transiently induced by TGF-beta1 phosphorylates RB as a physiological target in FaO cells and that RB hyperphosphorylation may trigger abrupt cell cycle progression, leading to irreversible cell death.  相似文献   

17.
Scalarane-type sesterterpenes, PHC-1-PHC-7, which have been isolated from a marine sponge, increased hemoglobin production in human chronic myelogenous leukemia cell line K562 at the concentration of 0.1-5 microg/ml. PHC-1, the major constituent, induced the expression of glycophorin A and the enucleation for K562 cells. These sesterterpenes were found to induce erythroid differentiation in K562 cells. In addition, PHC-1 induced G1 arrest of the cell cycle of K562 cells.  相似文献   

18.
目的初步探讨低浓度丰加霉素对人白血病K562细胞集落形成抑制作用的机制。方法甲基纤维素集落形成实验检测低浓度丰加霉素对人白血病K562细胞集落形成能力的影响;CCK-8法检测低浓度丰加霉素对K562细胞的生长抑制率;AnnexinV/PI双染流式细胞仪检测低浓度丰加霉素作用下的K562细胞凋亡率;PI单染流式细胞仪检测药物作用后细胞的周期分布改变;Western免疫印迹和实时定量PCR检测周期相关分子表达水平变化。结果低浓度丰加霉素对人白血病K562细胞具有较强的集落形成抑制作用;可明显抑制K562细胞的生长,呈时间一剂量依赖性;尽管短时间(48h)的药物处理仅出现轻度的细胞凋亡和周期阻滞,但10nmol/L和30nmol/L的丰加霉素长时间(7d)作用后,K562细胞G0/G1期比例分别是(62.3±1.7)%和(76.9±0.7)%,与对照组(38.9±1.1)%相比差异具有高度统计学意义(P〈0.01);低浓度丰加霉素长时间作用后诱导K562细胞周期相关分子P16蛋白水平和转录水平的高表达。结论丰加霉素在低浓度,长时间作用于人白血病K562细胞后,具有较强的集落形成抑制和生长抑制作用,此作用可能与诱导细胞周期相关分子p16高表达,导致细胞G0/G1期阻滞有关。  相似文献   

19.
Terminal cell differentiation usually results in an irreversible arrest in the G1 phase of the cell cycle and loss of cell renewal ability. Human promyelocytic leukemia HL-60 cells induced with 12-o-tetradecanoylphorbol-13-acetate (TPA) differentiate into monocytes/macrophages and accumulate in G1. We determined the effect of TPA on the growth kinetics of a human leukemia cell line (KOPM-28), which developed several of the characteristics of megakaryocytes in response to TPA, such as the surface antigen complex IIb/IIIa, platelet peroxidase and polyploidy. Cell growth was immediately and completely inhibited by TPA. Flow cytometric analysis of cellular DNA content revealed a gradual decrease in cells in G1 and an accumulation of cells in G2. These data suggest that TPA prolonged G1 and rapidly arrested the cells in G2. Synchronized cells were utilized to further analyze the rapid G2 arrest. Cells arrested with aphidicolin at the G1/S interphase were released, and the effects of TPA (added at different intervals) on cell cycle progression were examined 14 h after release. The results showed that TPA added at the end of the S phase, as well as at the G1/S interphase incompletely but distinctly arrested cells in G2. Moreover, G2 arrest was observed when TPA was added to cells released from a colcemid-induced G2/M block, suggesting that cells already in G2 were inhibited by TPA from moving through M to G1. Since some cells became multi-nucleated in the course of incubation with TPA, this G2 accumulation may have resulted at least in part from a prolongation of the phase or a transient G2 block. These changes in cell cycle progression induced by TPA may be characteristic of and/or related to megakaryocytic differentiation of hemopoietic precursor cells.  相似文献   

20.
Jolkinolide B, a bioactive diterpene isolated from the roots of Euphorbia fischeriana Steud, has various biological and pharmacological properties. In this study, the cytotoxicity of highly purified jolkinolide B was tested in human chronic myeloid leukemia (K562) and 2 other cell lines (human esophageal carcinoma Eca-109 and human hepatoma HepG2). The results indicate a significant decrease in the proliferation of all the 3 cell lines when treated with jolkinolide B for 24 h; the IC50 value of cytotoxicity was 12.1 microg/mL (for K562 cells), >50.0 microg/mL (for HepG2 cells), and 23.7 microg/mL (for Eca-109 cells). Further study of K562 cells involving fluorescence and transmission electron microscopy revealed characteristic apoptotic features, such as cell shrinkage, membrane blebbing, loss of microvilli, and nuclear condensation. Agarose electrophoresis of genomic DNA showed a typical fragmentation pattern for apoptotic cells. A kinetic cell-cycle analysis demonstrated that the cell cycle was arrested in the G1 phase. All these results suggest that the anti-proliferation effect of jolkinolide B on K562 cells is achieved by arresting the cell cycle in the G1 phase and subsequently inducing apoptosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号