首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
目的:研究E-钙粘素(E-cadherin,E-cd)在口腔疣状癌和口腔鳞癌中的表达,探讨E-cd与口腔疣状癌,口腔鳞癌分化程度的关系。方法:采用免疫组织化学和免疫电镜方法检测18例口腔疣状癌、20例口腔鳞癌组织中的E-cd表达。结果:E-cd在正常口腔黏膜、口腔疣状癌、高分化鳞癌和低分化鳞癌中主要位于胞膜及胞浆上。电镜观察显示E-cd在胞膜主要定位于桥粒,胞浆主要定位于粗面内质网和线粒体上。定量检测显示:E-cd在正常口腔黏膜、口腔疣状癌、高分化鳞癌和低分化鳞癌中的阳性表达率分别100%(8/8)、61.1%(11/18)、50.0%(5/10)和30.0%(3/10)。口腔疣状癌E-cd蛋白的平均染色强度与高分化鳞癌间差异无显著性,但明显低于正常黏膜组(P<0.05)而高于低分化鳞癌(P<0.05)。结论:E-cd的表达水平随口腔肿瘤分化程度的降低而降低,且超微结构的表达部位与肿瘤的分化程度存在相关性。  相似文献   

2.
香烟烟雾提取物对小鼠气管环上皮钙粘附素表达的影响   总被引:1,自引:1,他引:0  
体外进行器官培养,通过免疫组织化学和原位杂交方法检测香烟烟雾提取物(CSE)作用48、72h,小鼠气管上皮细胞上皮钙粘附素(E-cd)表达的变化。结果表明,正常对照组E-cd分布于气管假复层纤毛柱状上皮细胞连接处的胞膜上,50%CSE作用后,膜上E-cd表达减少,随着作用时间延长,胞浆内E-cd表达明显增加(P<0.05),而细胞内E-cd mRNA含量无明显变化。提示,CSE对小鼠气管上皮细胞E-cd表达的调控在翻译后水平,胞膜上E-cd表达的下调与吸烟所致气道上皮细胞的损伤修复过程相关。  相似文献   

3.
许俊  严鹏科  刘少志 《现代生物医学进展》2012,12(33):6447-6450,6527
目的:探索降钙素基因相关肽(CGRP)对经血管紧张素Ⅱ (AngⅡ)损伤的人脐静脉内皮细胞(HUVECs)的保护作用且CGRP与细胞外信号调节激酶(ERK1/2)的关系.方法:不同浓度的CGRP、AngⅡ处理体外培养的HUVECs,噻唑蓝比色法检测HUVECs活力;流式细胞仪分析HUVECs凋亡率及其增殖指数;显微镜观察HUVECs的形态学变化;Western blot检测p-ERK1/2的表达.结果:AngⅡ (0.1-100 nmol/L)浓度依赖性降低HUVECs的活力,而CGRP (0.1-1000 nmol/L)浓度依赖性增加HUVECs的活力;HUVECs增殖指数PI值受AngⅡ、CGRP及PD98059(ERK1/2抑制剂)影响;AngⅡ孵育HUVECs在第10min时ERK1/2磷酸化水平可达到最大;CGRP能抑制AngⅡ诱导的HUVECs内ERK1/2磷酸化水平;CGRP8-37(CGRP受体拮抗剂)可部分减弱CGRP抑制ERK1/2磷酸化水平作用;PD98059(ERK1/2抑制剂)作用下,ERK1/2磷酸化水平显著降低,但是对细胞内总ERK1/2水平表达无明显影响.结论:CGRP可抑制AngⅡ对HUVECs的损伤作用,可能与CGRP抑制信号通路ERK1/2有关.  相似文献   

4.
为了探讨肺内调节肽对人支气管上皮细胞(human bronchial epithelial cells,HBECs)人类白细胞抗原DR(human leukocyte antigen DR,HLA—DR)、CD80和CD86表达的影响,采用免疫细胞化学技术和流式细胞术检测HBECs在非应激和臭氧应激两种状态下HLA-DR、CD80、CD86的表达。结果显示,HBECs表达HLA—DR,臭氧应激状态下HBECs HLA-DR表达降低(P〈0.05);VIP、P3513和CGRP使非应激和臭氧应激两种状态下的HBECs HLA—DR表达增高(均P〈0.05)。HBECs表达协同刺激分子CD80,臭氧应激状态下CD80表达降低(P〈0.05),VIP对非应激的HBECs的CD80表达无影响,使臭氧应激状态下CD80表达增高(P〈0.05);CGRP使非应激状态下的HBECs的CD80表达降低(P〈0.05),使臭氧应激状态下CD80表达增高(P〈0.05);P3513使非应激状态下CD80表达增高(P〈0.05),可使臭氧应激状态下CD80表达降低(P〈0.05)。在HBECs没有检测到CD86表达,臭氧攻击也不能刺激其表达。上述结果提示,HBECs具备成为抗原递呈细胞的必要条件,肺内调节肽可通过调节HLA—DR和协同刺激分子的表达调节HBECs的抗原递呈作用。  相似文献   

5.
目的:探讨毛蕊异黄酮促乳腺癌细胞MCF-7凋亡的机制。方法:MTT检测低、中、高(10μM,50μM,100μM)剂量的毛蕊异黄酮对细胞活力的影响;Tunel检测毛蕊异黄酮对细胞凋亡的影响;Western blot检测SIRT1,p53和cleaved caspase-3的蛋白表达;Real-time PCR检测caspase-3 mRNA的表达。结果:毛蕊异黄酮能够剂量依赖性地降低细胞活力,100μM剂量组的毛蕊异黄酮显著地促进肿瘤细胞凋亡并降低SIRT1,增加p53和cleaved caspase-3的蛋白表达。SIRT1抑制剂烟酰胺(Nicotinamide,NAM,300μM)组与毛蕊异黄酮处理组相比显著地抑制SIRT1的蛋白表达,p53和cleaved caspase-3蛋白表达水平进一步增加;SRT1720(SIRT1特异性激动剂)与毛蕊异黄酮共孵育组逆转SIRT1蛋白表达,降低p53和cleaved caspase-3的蛋白水平。结论:毛蕊异黄酮促进肿瘤细胞MCF-7的凋亡,部分可能是通过降低SIRT1的表达水平,从而增加p53和cleaved caspase-3的蛋白表达促进细胞凋亡。  相似文献   

6.
目的:研究糖皮质激素(皮质酮)对肥大细胞胞膜流动性的快速作用。方法:采用荧光偏振法检测膜流动性,检测不同浓度皮质酮对肥大细胞膜流动性的快速影响以及加用糖皮质激素受体拮抗剂RU38486看其是否影响皮质酮对肥大细胞膜流动性的快速作用。结果:与阴性对照组比较,皮质酮能够在7min内剂量依赖性地快速降低肥大细胞胞膜流动性,稳定肥大细胞胞膜(P0.01);加用糖皮质激素受体拮抗剂RU38486后能部分阻断皮质酮对肥大细胞膜流动性的快速作用(P0.01)。结论:糖皮质激素能够快速降低肥大细胞胞膜流动性,稳定肥大细胞胞膜,这一作用可能是糖皮质激素快速抑制肥大细胞脱颗粒非基因组机制作用的靶点之一。  相似文献   

7.
目的:观察异丙酚对人肺动脉内皮细胞中ACE2的影响。方法:以人肺动脉内皮细胞为研究对象,利用Real-time PCR检测不同浓度(1、10、20、40、50μmol/L)异丙酚在不同时间点(6、12、18、24、30h)对HPAEC中ACE2 mRNA表达的影响;Western Blot检测不同浓度(1、10、20、40、50μmol/L)异丙酚对HPAEC中ACE2蛋白表达的影响;观察磷脂酰肌醇-3-激酶(PI3K)抑制剂LY294002对异丙酚调节HPAEC中ACE2 mRNA表达的影响。结果:异丙酚呈剂量和时间依赖性可提高人肺动脉内皮细胞ACE2mRNA水平(P0.05)。但异丙酚浓度为1μmol/L时对ACE2 mRNA水平表达无明显影响(P0.05)。Western Blot检测结果显示异丙酚可增加HPAEC中ACE2蛋白的表达,且在24 h内具有剂量依赖性。异丙酚在24h时剂量依赖性提高Akt的磷酸化,而LY294002可逆转异丙酚对Akt磷酸化的影响。结论:异丙酚可分别通过PI3K/Akt信号途径上调ACE2的表达,使RAS轴处在动态平衡中,从而发挥舒张血管和镇痛作用。  相似文献   

8.
以THP-1巨噬细胞为研究对象,观察蛋白激酶C(PKC)激动剂佛波酯(PMA)和抑制剂钙磷酸结合蛋白C(CalphostinC)对胞膜PKC活性、胞膜PKCα及胞浆内过氧化物酶体增殖物激活受体(PPARγ)和adipophilin表达以及细胞内脂质蓄积的影响,初步探讨PKC调控adipophilin表达及脂质蓄积的作用机制.采用PepTagRAssay、RT-PCR、蛋白质印迹、油红O染色和高效液相色谱法,观察到100nmol/LPMA在激活胞膜PKC((0.2514±0.0154)U/ml)的同时可以与氧化低密度脂蛋白(oxLDL)协同增强PKCα、PPARγ和adipophilin表达并使细胞内脂滴的蓄积极大地增强.细胞内胆固醇酯/总胆固醇比值增至(69.8±9.5)%;300nmol/L CalphostinC对荷脂THP-1巨噬细胞的处理则抑制酶活性至((0.0927±0.0056)U/ml,细胞内脂滴减少,胆固醇酯/总胆固醇比值降至(40.1±9.1)%;CalphostinC呈剂量依赖性的方式下调酶活性、PKCα、PPARγ和adipophilin表达,400nmol/LCalphostinC基本上可以逆转50mg/LoxLDL诱导的酶活化和PKCα、PPARγ和adipophilin表达的上调.结果提示,蛋白激酶C活性的改变可以影响adipophilin介导的脂质蓄积,其中PPARγ可能在这一调控机制中发挥了重要作用.  相似文献   

9.
目的:研究人参总皂苷(TSPG)对人红白血病细胞株(K562)促红细胞生成素受体(EpoR)的作用.方法:以50、100、200、300、500mg/L TSPG刺激K562细胞24h,采用流式细胞仪检测细胞膜EpoR表达的变化;Elisa检测K562细胞膜、细胞浆EpoR表达量的改变;激光共聚焦显微镜观察K562细胞EpoR表达的分布.结果:以不同剂量,TSPG作用K562细胞24h,流式细胞仪检测显示K562细胞膜表面EpoR呈剂量依赖性下降;细胞Elisa实验结果也显示K562细胞膜表面EpoR表达呈剂量依赖性下降,而细胞浆内EpoR表达呈剂量依赖性增加;激光共聚焦显微镜观察可见K562细胞经200mg/L TSPG作用24h后其膜上的EpoR数量明显减少,荧光强度明显减弱.结论:TSPG可使K562细胞浆EpoR的表达增强,且随着剂量的加大更加明显,而使细胞膜中EpoR的表达减少,这可能是,TSPG抑制K562细胞增殖的作用机制之一.  相似文献   

10.
目的:观察不同剂量的三氧化二砷(arsenic trioxide,As2O3)对心肌细胞膜上延迟整流钾电流蛋白表达的影响。方法:将豚鼠随机分为4组:正常对照组、As2O3小剂量组(0.4 mg/kg)、中剂量组(0.8 mg/kg)、大剂量组(1.6 mg/kg),给药后不同时间间隔记录心电图,测量QT间期和RR间期,计算QTc的值的变化,同时应用荧光免疫组化技术检测心肌延迟整流钾通道IKr、IKs通道蛋白的表达量。结果:1在不同剂量的As2O3作用下,0.8 mg/kg和1.6 mg/kg As2O3组的豚鼠QTc明显延长,并且这种延长作用与给药剂量和时间密切相关。在2 h的观察时间内,0.8 mg/kg和1.6 mg/kg As2O3分别使QTc从对照组的324±7 ms延长到368±11 ms(P0.01)和388±11 ms(P0.01)。2大剂量组豚鼠心肌缓慢型延迟整流钾通道Kv LQT1和GPERG蛋白表达与对照组相比显著降低(P0.01)。结论:As2O3对豚鼠心肌QT间期有明显延长效果,其机制可能与降低Kv LQT1和GPERG蛋白的表达,影响了钾通道的功能有关。  相似文献   

11.
Guan CX  Cui YR  Zhang M  Bai HB  Khunkhun R  Fang X 《Peptides》2007,28(9):1667-1673
Vasoactive intestinal peptide (VIP), a non-adrenergic, non-cholinergic neuromediator, plays an important role in maintaining the bronchial tone of the airway and has anti-inflammatory properties. Recently, we reported that VIP enhances wound repair in human bronchial epithelial cells (HBEC). In the present study, we have identified the intracellular signaling molecules that are involved in VIP-mediated wound healing in HBEC. The effects of VIP on wound repair of HBEC were partially blocked by H-7 (a protein kinase C (PKC) inhibitor), W-7 (a calmodulin inhibitor), H-89 (a protein kinase A (PKA) inhibitor), and PD98059 (a specific extracellular signal-regulated kinase (ERK) inhibitor). VIP-induced chemotactic migration was inhibited in the presence of W-7, H-89, PD98059 or H-7. H-7, W-7, and H-89 were also found to decrease VIP-induced expression of Ki67 as well as the proliferation index in HBEC. Furthermore, H-7, W-7, H-89, and PD98059 inhibited the expression of E-cd protein and mRNA induced by VIP. These results suggest that intracellular signaling molecules such as PKA, PKC, ERK, and calmodulin play important role in VIP-mediated wound healing of HBEC.  相似文献   

12.
Skin wound healing requires epithelial cell migration for re-epithelialization, wound closure, and re-establishment of normal function. We believe that one of the earliest signals to initiate wound healing is the lateral electric field generated by the wound current. Normal human epidermal keratinocytes migrate towards the negative pole, representing the center of the wound, in direct currents of a physiological strength, 100 mV/mm. Virtually nothing is known about the signal transduction mechanisms used by these cells to sense the endogenous electric field. To elucidate possible protein kinase (PK) involvement in the process, PK inhibitors were utilized. Two important findings have been described. Firstly, addition of 50 nM KT5720, an inhibitor of PKA, resulted in a 53% percent reduction in the directional response of keratinocytes in the electric field, while not significantly affecting general cell motility. The reduction was dose-dependent, there was a gradual decrease in the directional response from 5 to 50 nM. Secondly, addition of 1 microM ML-7, a myosin light chain kinase inhibitor, resulted in an approximate 31% decrease in the distance the cells migrated without affecting directional migration. The PKC inhibitors GF109203X at 4 microM and H-7 at 20 microM and W-7, a CaM kinase inhibitor, did not significantly alter either directed migration or cell migration, although they all resulted in a slight reduction in directional migration. D-erythro-sphingosine at 15 microM, a PKC inhibitor, had virtually no effect on either migration distance or directed migration. These findings demonstrate that divergent kinase signaling pathways regulate general cell motility and sustained directional migration and highlight the complexity of the signal transduction mechanisms involved. The inhibitor studies described in this paper implicate a role for PKA in the regulation of the directional migratory response to applied electric fields, galvanotaxis.  相似文献   

13.
The isoquinolinesulfonamide PKC inhibitors H-7 and H-8 inhibit primary, in vivo generated cytotoxic T lymphocyte (CTL) activity by 50% at concentrations approximating their reported Ki values for PKC, 6 uM and 15 uM respectively. However, a greater than ten-fold higher concentration of H-7 (100 uM) is required to reduce secondary or clone 8F CTL-mediated cytotoxicity by 50%. At this concentration H-7 is also reported to inhibit calmodulin (CaM)-dependent enzymes. To distinguish between the effect of 100 uM H-7 on PKC versus CaM the napthalenesulfonamide CaM antagonist W-7 was investigated. W-7 inhibited primary, secondary and clone 8F CTL-mediated cytolysis by 50% near its reported Ki value for CaM-dependent kinase activity, 12 uM. We conclude that W-7 and 100 uM H-7 reduce cytolysis by inhibiting CaM-dependent reactions and not PKC. Thus, these findings indicate that primary killers require both PKC- and CaM-dependent activation pathways for lethal hit delivery, whereas highly lytic cultured CTL use only one pathway dependent upon CaM.  相似文献   

14.
The aim here was to examine the possible roles of adenylyl cyclase- and protein kinase A (PKA)-dependent processes in ionotropic glutamate receptor (iGluR)-mediated neurotransmission using superfused mouse striatal slices and a non-metabolized L-glutamate analogue, D-[3H]aspartate. The direct and indirect presynaptic modulation of glutamate release and its susceptibility to changes in the intracellular levels of cyclic AMP (cAMP), Ca(2+) and calmodulin (CaM) and in protein phosphorylation was characterized by pharmacological manipulations. The agonists of iGluRs, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) and kainate, stimulated the basal release of D-[3H]aspartate, while N-methyl-D-aspartate (NMDA) was without effect. Both the AMPA- and kainate-mediated responses were accentuated by the beta-adrenoceptor agonist isoproterenol. These facilitatory effects were mimicked by the permeable cAMP analogue dibutyryl-cAMP. The beta-adrenoceptor antagonist propranolol, the adenylyl cyclase inhibitor MDL12,330A, the inhibitor of PKA and PKC, H-7, and the PKA inhibitor H-89 abolished the isoproterenol effect on the kainate-evoked release. The dibutyryl-cAMP-induced potentiation was also attenuated by H-7. Isoproterenol, propranolol and MDL12,330A failed to affect the basal release of D-[3H]aspartate, but dibutyryl-cAMP was inhibitory and MDL12,330A activatory. In Ca(2+)-free medium, the kainate-evoked release was enhanced, being further accentuated by the CaM antagonists calmidazolium and trifluoperazine, though these inhibited the basal release. The potentiating effect of calmidazolium on the kainate-stimulated release was counteracted by both MDL12,330A and H-7.We conclude that AMPA- and kainate-evoked glutamate release from striatal glutamatergic terminals is potentiated by beta-adrenergic receptor-mediated adenylyl cyclase activation and cAMP accumulation. Glutamate release is enhanced if the Ca(2+)- and CaM-dependent, kainate-evoked processes do not prevent the excessive accumulation of intracellular cAMP.  相似文献   

15.
Abstract: The rod photoreceptors of teleost retinas elongate in the light. To characterize the role of protein kinases in elongation, pharmacological studies were carried out with rod fragments consisting of the motile inner segment and photosensory outer segment (RIS-ROS). Isolated RIS-ROS were cultured in the presence of membrane-permeant inhibitors that exhibit selective activity toward specific serine/threonine protein kinases. We report that three distinct classes of protein kinase inhibitors stimulated elongation in darkness: (1) cyclic AMP-dependent protein kinase (PKA)-selective inhibitors (H-89 and KT5720), (2) a protein kinase C (PKC)-selective inhibitor (GF 109203X) that affects most PKC isoforms, and (3) a kinase inhibitor (H-85) that does not affect PKC and PKA in vitro. Other kinase inhibitors tested neither stimulated elongation in darkness nor inhibited light-induced elongation; these include the myosin light chain kinase inhibitors ML-7 and ML-9, the calcium-calmodulin kinase II inhibitor KN-62, and inhibitors or activators of diacylglycerol-dependent PKCs (sphingosine, calphostin C, chelerythrine, and phorbol esters). The myosin light chain kinase inhibitors as well as the PKA and PKC inhibitors H-89 and GF 109203X all enhanced light-induced elongation. These observations suggest that light-induced RIS-ROS elongation is inhibited by both PKA and an unidentified kinase or kinases, possibly a diacylglycerol-independent form of PKC.  相似文献   

16.
The nitric oxide (NO) synthase inhibitor N(omega)-nitro-L-arginine (L-NNA) inhibits heat stress (HS)-induced NO production and the inducible 70-kDa heat shock protein (HSP-70i) in many rodent organs. We used human intestinal epithelial T84 cells to characterize the inhibitory effect of L-NNA on HS-induced HSP-70i expression. Intracellular Ca(2+) concentration ([Ca(2+)](i)) was measured using fura-2, and protein kinase C (PKC), and PKA activities were determined. HS increased HSP-70i mRNA and protein in T84 cells exposed to 45 degrees C for 10 min and allowed to recover for 6 h. L-NNA treatment for 1 h before HS inhibited the induction of HSP-70i mRNA and protein, with an IC(50) of 0.0471 +/- 0.0007 microM. Because the HS-induced increase in HSP-70i mRNA and protein is Ca(2+) dependent, we measured [Ca(2+)](i) after treating cells with L-NNA. L-NNA at 100 microM significantly decreased resting [Ca(2+)](i). Likewise, treatment with 1 microM GF-109203X or H-89 (inhibitors of PKC and PKA, respectively) for 30 min also significantly decreased [Ca(2+)](i) and inhibited HS-induced increase in HSP-70i. GF-109203X- or H-89-treated cells failed to respond to L-NNA by further decreasing [Ca(2+)](i) and HSP-70i. L-NNA effectively blocked heat shock factor-1 (HSF1) translocation from the cytosol to the nucleus, a process requiring PKC phosphorylation. These results suggest that L-NNA inhibits HSP-70i by reducing [Ca(2+)](i) and decreasing PKC and PKA activity, thereby blocking HSF1 translocation from the cytosol to the nucleus.  相似文献   

17.
Although the absence of Substance P (SP), a neurotransmitter in the trigeminal nerve, has been speculated as a cause for developing neurotrophic keratitis, its exact pathogenesis is still not clarified. In a previous report, we showed with electron microscopic examination that epithelial cell attachment was weakened in denervated corneas. In this study, SV40-transformed human corneal epithelial cells (HCE-Ts) were used to explore the molecular mechanisms responsible for mediating regulation of E-cadherin expression in response to Substance P receptor stimulation. Expression of the mRNAs for specific SP receptors, neurokinin (NK)-1R, NK-2R, and NK-3R, was demonstrated with RT-PCR. The cells were treated with various concentrations of SP in vitro, and the expression of an adhesion molecule E-cadherin was analyzed by immunofluorescence, immunoblotting, and enzyme-linked immunosorbent assay (ELISA) using an anti-E-cadherin antibody. E-cadherin expression was increased by SP in a dose-dependent manner both in the cytosolic fraction and in the cell membrane fraction. This increase in E-cadherin expression was completely inhibited by Calphostin C (PKC inhibitor) and KN-62 (CaMK inhibitor), but not by H-89 (PKA inhibitor), indicating that SP-induced E-cadherin expression involves the activation of protein kinase C (PKC) and calmodulin kinase (CaMK). SP did not affect cell proliferation at all. All these findings indicate that SP induced E-cadherin expression through PKC and CaMK activation and suggest that a lack of SP may account in part for the pathogenesis of neurotrophic keratitis.  相似文献   

18.
Inhibition of osteoblast-mediated mineralization is one of the major catabolic effects of parathyroid hormone (PTH) on bone. Previously, we showed that PTH induces matrix gamma-carboxyglutamic acid (Gla) protein (MGP) expression and established that this induction is critical for PTH-mediated inhibition of osteoblast mineralization. In the present study, we focus on the mechanism through which PTH regulates MGP expression in osteoblastic MC3T3-E1 cells. Following transient transfection of these cells with a -748 bp murine MGP promoter-luciferase construct (pMGP-luc), PTH (10 (-7) M) induced promoter activity in a time-dependent manner with a maximal four- to six fold induction seen 6 h after PTH treatment. Both H-89 (PKA inhibitor) and U0126 (MEK inhibitor), suppressed PTH induction of MGP promoter activity as well as the MGP mRNA level. In addition, forskolin (PKA activator) stimulated MGP promoter activity and mRNA levels confirming that PKA is one of the signaling molecules required for regulation of MGP by PTH. Co-transfection of MC3T3-E1 cells with pMGP-luc and MEK(SP), a plasmid encoding the constitutively active form of MEK, led to a dose-dependent increase in MGP promoter activity. Both MGP promoter activity and MGP mRNA level were not affected by the protein kinase C (PKC) inhibitor, GF109203X. However, phorbol 12-myristate 13-acetate (PMA), a selective PKC activator induced MGP mRNA expression through activation of extracellular signal-regulated kinase (ERK). Taken together, these results indicate that PTH regulates MGP via both PKA- and ERK-dependent pathways.  相似文献   

19.
The effects of the protein kinase A (PKA) inhibitor H-89 on ATP-sensitive K+ (KATP) and inward rectifier K+ (Kir) currents were examined in rabbit coronary arterial smooth muscle cells using the patch clamp technique. The H-89, in a dose-dependent manner, inhibited KATP and Kir currents with apparent Kd values of 1.19+/-0.18 and 3.78+/-0.37 microM, respectively. H-85, which is considered as an inactive form of H-89, inhibited KATP and Kir currents, similar to the result of H-89. KATP and Kir currents were not affected by either Rp-8-CPT-cAMPs, which is a membrane-permeable selective PKA inhibitor, or KT 5720, which is also known as a PKA inhibitor. Also, these two drugs did not significantly alter the effects of H-89 on the KATP and Kir currents. These results suggest that H-89 directly inhibits the KATP and Kir currents of rabbit coronary arterial smooth muscle cells independently of PKA inhibition.  相似文献   

20.
It has been reported previously that a short synthetic immunomodulating peptide (Pa) and the neuropeptide beta-endorphin modulate the immune system. We have found now that NF-kappaB participates in the stimulation of monocytes by both peptides and we investigated the molecular mechanism by which these stimuli activate NF-kappaB. Pa and beta-endorphin induce accumulation of cyclic 3('),5(')-adenosine monophosphate (cAMP) in a calcium/calmodulin-dependent fashion since it was completely inhibited by the calmodulin antagonist W-7. The effect of these complexes seems to be mediated, at least in part, by nitric oxide (NO) synthesized by constitutive NO synthase since the NO synthase inhibitor N-methyl-L-arginine (NMLA) reduced the elevation of cAMP. Furthermore, the NO donor SIN-1 provoked nitration of G(S)alpha, leading to the cAMP elevation that was suppressed by the G(S)alpha-selective antagonist NF-449. Interestingly, the rapid degradation of NF-kappaB inhibitor IkappaBalpha induced by Pa- and beta-endorphin was reversed by a pretreatment with H-89 and cyclosporin A, inhibitors of protein kinase A (PKA) and protein phosphatase 2B (PP2B), respectively. These observations are consistent with the inhibition caused by W-7, NMLA, H-89, and cyclosporin A on NF-kappaB induction by these agonists, indicating the involvement of PKA and PP2B in the regulation of NF-kappaB in human monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号