首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
探讨大气CO2浓度和水分变化对3种典型绿肥植物光合性能及水分利用效率的影响,可为未来气候变化情形下草地生态系统适应性管理提供理论支持。本试验利用可精准控制CO2浓度的人工气候室,设置400(自然大气)和800 μmol·mol-1(倍增)两个CO2浓度,80%土壤田间持水量(FC)(充分灌水对照)、55%~60%FC(轻度水分亏缺)、35%~40%FC(中度水分亏缺)、<35%FC(重度水分亏缺)4个水分梯度,研究CO2浓度增加和水分亏缺对甘蓝型油菜、白三叶和紫花苜蓿叶绿素含量、气体交换参数及水分利用效率(WUE)的影响。结果表明: 同一CO2浓度下,与充分灌水对照相比,当土壤水分<40%FC时,3种植物的叶绿素含量和气体交换参数均显著降低;土壤水分为55%~60%FC时,3种植物的叶绿素总含量无显著变化,而白三叶和紫花苜蓿的光合速率(Pn)、蒸腾速率(Tr)降低了6%~25%,但WUE无显著性差异。与大气CO2浓度相比,CO2浓度倍增使充分灌水处理下甘蓝型油菜的Pn显著降低了21.5%,而显著增加了轻度水分亏缺下3种植物的Pn,且增加了中度水分亏缺下甘蓝型油菜和紫花苜蓿的Pn,但只对重度水分亏缺下紫花苜蓿的Pn有所改善;CO2浓度倍增显著增加了白三叶和紫花苜蓿在所有水分处理下的WUE,但只增加了甘蓝型油菜在轻度水分亏缺下的WUE。CO2浓度和水分的交互作用对3种植物的Pn均有显著影响,但仅对甘蓝型油菜的WUE有显著影响。综上,3种植物对大气CO2浓度倍增和水分亏缺的响应存在明显差异,CO2浓度升高能改善轻度水分亏缺对3种植物光合性能和WUE的不利影响,但只改善了重度水分亏缺下紫花苜蓿的光合性能。  相似文献   

2.
在CO2浓度分别为350μmol·mol-1和倍增浓度(700μmol·mol-1)的两个开顶式生长室内,研究了干旱胁迫下小麦(Triticum aestivum L.)光合作用和抗氧化酶活性的变化.结果表明,CO2浓度升高显著提高了小麦的净光合速率,降低了蒸腾速率,提高了气孔阻力和水分利用效率.倍增CO2浓度明显提高了SOD、POD及CAT酶活性,增强了小麦的抗氧化保护能力和抗旱性.  相似文献   

3.
通过测定小麦拔节期叶片的光合气体交换参数和光强-光合速率(Pn)响应曲线,研究了氮素对长期高大气CO2浓度(760 μmol·mol-1)下小麦叶片光合作用的影响.结果表明:在长期高大气CO2浓度下,增施氮肥能提高小麦叶片Pn、蒸腾速率(Tr)和瞬时水分利用效率(WUEi);与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片的Pn和WUEi增加,气孔导度(Gs)和胞间CO2浓度(Ci)降低.随光合有效辐射的增强,高大气CO2浓度下小麦叶片的Pn和WUEi均高于正常大气CO2浓度处理,Gs则较低,而Ci和Tr无显著变化.高氮水平下小麦叶片Gs与Pn、Tr、WUEi呈线性正相关,Gs与Ci在正常大气CO2浓度下呈线性负相关,但高大气CO2浓度下二者无相关性;低氮水平下小麦叶片的Gs与Pn、WUEi无相关性,而与Ci和Tr呈线性正相关,表明高大气CO2浓度下低氮水平的小麦叶片Pn由非气孔因素限制.  相似文献   

4.
柚树(Citrus grandis)幼树生长在砂和石至石的生长介质.每周供给0.05mmol P(正常P,P)和0.1mmol P(高磷,2P)的营养液.植株分别生长在空气CO2分压(约39Pa)和倍增CO2分压(81±5Pa)下45d.利用CI-301PS(CID,Inc)光合作用测定系统在较高光强(1150μmol·m-2·s-1)下测定叶片光合速率并得出的Pn-Pi关系曲线和在较高CO2分压(PCO2,56Pa)下得出Pn-PAR关系曲线计算有关光合参数.结果表明,大气CO2分压下2P植株最大光合速率较P植株高13.3%,倍增CO2分压下,无论P或2P植株最大光合速率较大气CO2分压下相应植株低,但在倍增CO2分压下2P植株较P植株高.且2P植株有较P植株高的表观量子产率和光能利用效率(P<0.05),但并不改变Γ*、Rd和Rubisco羧化速率(Vc)和氧速率的比率(P>0.05).在大气CO2分压下2P植株的Vcmax和Jmax较P植株分别高8.3%和12.5%.在倍增CO2分压下2P植株的Vcmax和Jmax均较P植株高.柚树在高CO2驯化中改变叶N在Rubisco和捕光组分分配系数,但不改变叶N在光合电子传递链的分配系数,结果表明,增加P供给可以促进高CO2分压下光合碳循环中P的周转,提高倍增CO2分压下植株的光合速率.调节柚树叶片的CO2驯化的光合参数.  相似文献   

5.
利用LI-6400便携式光合作用测定仪, 测定不同灌溉措施下紫花针茅(Stipa purpurea)的光合特性对CO2浓度和温度的响应, 探讨了土壤水分、温度和CO2浓度升高对藏北高寒草地紫花针茅光合作用的影响。结果表明: 1)紫花针茅各项光合特性参数对CO2浓度、温度和土壤水分的变化响应显著, 并表现出明显的交互作用; 2) CO2浓度升高促进光合速率, 但CO2浓度过高时光合速率反而下降; 温度升高抑制光合速率, 土壤水分增加对高温条件下的光合作用具有补偿作用; 土壤水分增加促进紫花针茅光合速率的升高; 3)随着CO2浓度的升高, 胞间CO2浓度逐渐增大, 蒸腾速率降低, 水分利用效率升高, 气孔导度逐渐减小, 且温度升高加剧气孔导度下降的程度。各光合参数在不同温度水平和土壤水分下表现不同: 气孔导度在20 ℃时达到最大值, 且土壤水分增加利于气孔导度的增大; 温度上升抑制了胞间CO2浓度, 且在土壤水分充足的条件下更显著; 蒸腾速率随着温度的上升而加快, 蒸腾速率与土壤水分的正相关关系明显; 叶片饱和水汽压亏缺与温度成正比, 充足的土壤水分会适当降低饱和水汽压亏缺; 水分利用效率随着温度上升和土壤水分增多而减小。不同土壤水分条件下光合参数对温度的响应结果表明, 土壤水分的增加对较高温度下光合及其生理参数与温度的关系具有一定的补偿作用。  相似文献   

6.
大气CO2浓度升高和N沉降以及二者之间的耦合作用对陆地森林生态系统的影响是当前国际生态学界关注的热点之一。该实验运用大型开顶箱(open-top chamber, OTC)研究: 1)高CO2浓度(700 μmol×mol-1) +高N沉降(100 kg N×hm-2×a-1) (CN); 2)高CO2浓度(700 μmol×mol-1)和背景N沉降(CC); 3)高N沉降(100 kg N×hm-2×a-1)和背景CO2浓度(NN); 4)背景CO2和背景N沉降(CK) 4种处理对南亚热带主要乡土树种木荷(Schima superba)、红锥(Castanopsis hystrix)、肖蒲桃(Acmena acuminatissima)、红鳞蒲桃(Syzygium hancei)、海南红豆(Ormosia pinnata)叶片元素含量的影响。研究结果表明, 大气CO2浓度升高对5种乡土树种叶片元素含量有较大的影响, 除海南红豆叶片的Ca含量外, 其他树种的叶片元素含量在高CO2浓度处理下都显著升高(p < 0.05); 而在N沉降处理下, 5个树种的叶片K和Ca含量都降低。大气CO2浓度升高与N沉降处理对5种乡土树种植物叶片元素含量影响的交互作用不是很明显, 仅仅木荷和红鳞蒲桃的叶片Ca和Mn以及海南红豆的叶片Mn含量在大气CO2浓度上升和N沉降交互处理下显著下降, 而肖蒲桃的叶片P含量在大气CO2浓度上升和N沉降交互处理下显著上升。  相似文献   

7.
氮素对高大气CO2浓度下小麦叶片光合作用的影响   总被引:2,自引:0,他引:2  
通过测定小麦拔节期叶片的光合气体交换参数和光强-光合速率(Pn)响应曲线,研究了氮素对长期高大气CO2浓度(760 μmol·mol-1)下小麦叶片光合作用的影响.结果表明:在长期高大气CO2浓度下,增施氮肥能提高小麦叶片Pn、蒸腾速率(Tr)和瞬时水分利用效率(WUEi);与正常大气CO2浓度相比,高大气CO2浓度下小麦叶片的Pn和WUEi增加,气孔导度(Gs)和胞间CO2浓度(Ci)降低.随光合有效辐射的增强,高大气CO2浓度下小麦叶片的Pn和WUEi均高于正常大气CO2浓度处理,Gs则较低,而Ci和Tr无显著变化.高氮水平下小麦叶片Gs与Pn、Tr、WUEi呈线性正相关,Gs与Ci在正常大气CO2浓度下呈线性负相关,但高大气CO2浓度下二者无相关性;低氮水平下小麦叶片的Gs与Pn、WUEi无相关性,而与Ci和Tr呈线性正相关,表明高大气CO2浓度下低氮水平的小麦叶片Pn由非气孔因素限制.  相似文献   

8.
大气CO2浓度升高对植物的影响是目前植物生态学研究中普遍关注的问题。以往的研究主要关注植物地上部分叶解剖结构及生理功能的改变, 而对根解剖结构和生理功能变化以及根与叶变化之间潜在联系的研究较少。该文以三年生红松(Pinus koraiensis)幼苗为研究对象, 通过CO2浓度倍增(从350 µmol·mol-1增加到700 µmol·mol-1)试验, 研究当年生针叶和根尖解剖结构及生理功能的变化。结果表明: (1) CO2浓度倍增处理的红松幼苗, 气孔密度显著降低, 叶肉组织面积、木质部及韧皮部面积明显增加; (2) CO2浓度倍增导致红松幼苗根尖直径增粗, 皮层厚度和层数显著增加, 管胞直径变小; (3)高CO2浓度处理下, 叶气孔导度和蒸腾速率降低, 光合速率和水分利用效率提高, 同时根尖的导水率显著下降, 但管胞的抗栓塞能力显著提高。这些结果显示, 叶和根解剖结构及生理功能在CO2浓度升高条件下具有一致的响应。未来研究中应该同时关注全球气候变化对植物地上和地下器官结构与功能的影响。  相似文献   

9.
《植物生态学报》2018,42(10):1000
准确估算光合电子流对CO2响应的变化趋势对深入了解光合过程具有重要意义。该研究在植物光合作用对CO2响应新模型(模型I)的基础上构建了电子传递速率(J)对CO2的响应模型(模型II), 并对用LI-6400-40便携式光合仪测量的玉米(Zea mays)和千穗谷(Amaranthus hypochondriacus)的数据进行了拟合。结果表明, 模型II可以很好地拟合玉米和千穗谷叶片J对CO2浓度的响应曲线(J-Ca曲线), 得到玉米和千穗谷的最大电子传递速率分别为262.41和393.07 mmol·m -2·s -1, 与估算值相符合。在此基础上, 对光合电子流分配到其他路径进行了探讨。结果显示, 380 mmol·mol -1 CO2浓度下玉米和千穗谷碳同化所需的电子流为247.92和285.16 mmol·m -2·s -1, 分配到其他途径的光合电子流为14.49和107.91 mmol·m -2·s -1(考虑植物CO2的回收利用)。比较两种植物的其他途径光合电子流分配值发现, 两者相差6倍之多。分析认为这与千穗谷和玉米的催化脱羧反应酶种类以及脱羧反应发生的部位不同密切相关。该发现为人们研究C4植物中烟酰胺腺嘌呤二核苷磷酸苹果酸酶型和烟酰胺腺嘌呤二核苷酸苹果酸酶型两种亚型之间的差异提供了一个新的视角。此外, 构建的电子传递速率对CO2的响应模型为人们研究C4植物的光合电子流的变化规律提供了一个可供选择的数学工具。  相似文献   

10.
生长在高CO2浓度(700±5μl·L-1)1周的香蕉叶片,其光合速率(Pn,μmol·m-2·s-1)为5.14±0.32,较生长在大气CO2浓度(356±301μl·L-1)的高22.1%,而生长在较高CO2浓度下8周,叶片Pn较生长在大气CO2浓度的低18.1%,表现香蕉叶片对较长期高CO2浓度的驯化和光合作用抑制.生长在高CO2浓度的香蕉叶片有较低光下呼吸速率(Rd),而不包括光下呼吸的CO2补偿点则变幅较小.最大羧化速率(Vcmax)和电子传递速率(J)分别较生长在大气CO2浓度的低30.5%和14.8%,根据气体交换速率计算的表观量子产率(α,mol CO2·mol-1光量子),生长在较高CO2浓度下8周的叶片为0.014±0.01,而生长在大气CO2浓度下的为0.025±0.005.较高CO2浓度下叶片的表观量子产率降低44%.光能转换效率electrons·quanta-1)亦从0.203降低至0.136.生长在较高CO2浓度下香蕉叶片的叶氮在Rubicos分配系数(PR)、叶氮在生物力能学组分分配系数(PB)和叶氮在光捕组分的分配系数(PL)均较生长在大气CO2浓度低,表明在高CO2浓度下较长期生长(8周)的香蕉叶片多个光合过程受抑制,光合活性明显降低.  相似文献   

11.
Gas exchange and abscisic acid content of Digitalis lanata EHRH. have been examined at different levels of plant water stress. Net photosynthesis, transpiration and conductance of attached leaves declined rapidly at first, then more slowly following the withholding of irrigation. The intercellular partial pressure of CO2 decreased slightly. The concentration of 2-cis(S)ABA increased about eight-fold in the leaves of non-irrigated plants as compared with well-watered controls. A close linear correlation was found between the ABA content of the leaves and their conductance on a leaf area basis. In contrast, the plot of net assimilation versus ABA concentration was curvilinear, leading to an increased efficiency of water use during stress. After rewatering, photosynthesis reached control values earlier than transpiration, leaf conductance and ABA content. From these data it is concluded that transpiration through the stomata is directly controlled by the ABA content, whereas net photosynthesis is influenced additionally by other factors.Possible reasons for the responses of photosynthesis and water use efficiency to different stress and ABA levels are discussed.Abbreviations A net CO2 assimilation - ABA abscisic acid - Ci intercellular CO2 concentration - g stomatal conductance - T transpiration - WUE water use efficiency  相似文献   

12.
李小涵  武建军  吕爱锋  刘明 《生态学报》2013,33(9):2936-2943
叶面积指数是作物生长状况的一个重要表征参数,也是研究陆地生态系统的一个重要的参数.当今世界温室气体排放逐年上升,气候变暖趋势明显,对气候变化敏感的农业将受到影响.在全球变化的背景下,采用农业技术转移决策支持系统(DSSAT)系统,通过在黄淮海平原典型站点模拟3种CO2浓度条件下冬小麦在水分充足和水分亏缺2种情境下的生长过程,分析不同CO2浓度下水分亏缺对冬小麦叶面积指数的影响差异.研究发现,CO2浓度升高对叶面积指数增长有促进作用,且在干旱情况下对叶面积指数的正效应比湿润情况下更为明显,在CO2浓度倍增条件下,发生水分亏缺的作物叶面积指数数倍增长.研究结论有助于分析CO2浓度变化对农作物生长过程的影响,为农田水分管理提供依据,又为估算叶面积指数提出了一种模型的方法.  相似文献   

13.
Wong  Suan-Chin 《Plant Ecology》1993,(1):211-221
Cotton plants (Gossypium hirsutum L. var Deltapine 90) and radish plants (Raphanus sativus L var Round Red) were grown under full sunlight using a factorial combination of atmospheric CO2 concentrations (350 µmol mol-1 and 700 µmol mol-1) and humidities (35% and 90% RH at 32 °C during the day). Cotton plants showed large responses to increased humidity and to doubled CO2. In cotton plants, the enhanced dry matter yield due to doubled CO2 concentration was 1.6-fold greater at low humidity than at high humidity. Apart from the direct effect of elevated CO2 level on photosynthesis, the greater effect of doubled CO2 concentration on dry matter yield at low humidity was probably due to: (1) increased leaf water potential caused by reduction of transpiration resulting from the negative CO2 response of stomata to increased CO2 concentration the consequence being greater leaf area expansion; (2) reduction of CO2 assimilation rate at low humidity and normal CO2 concentration as a result of humidity response of stomata causing reduction of intercellular CO2 concentration. In contrast, apart from the very early stage of development, radish plants do not respond to increased humidity but had a relatively large response to doubled CO2 concentration. Furthermore, due to the determinate growth pattern as well as having a prominent storage root, the extra photoassimilate derived at doubled CO2 level is allocated to the storage root.Abbreviatios DAE day after emergence - LAD leaf areal density (leaf dry weight/leaf area) - LAR leaf area ratio (leaf area/plant dry weight) - NAR net assimilation rate - ci internal CO2 concentration - PPFD photosynthetic photon flux density - RGR relative growth rate - RLAGR relative leaf area growth rate - VPD vapour pressure deficit  相似文献   

14.
Three species, wheat, maize and cotton, were grown in pots and subjected to high (85–100% field capacity, F), medium (65–85% F) and low (45–65% F) soil moisture treatments and high (700 l l–1) and low (350 l l–1) CO2 concentrations. Biomass production, photosynthesis, evapotranspiration and crop water use efficiency were investigated. Results showed that the daily photosynthesis rate was increased more in wheat and cotton at high [CO2] than in maize. In addition, differences were more substantial at low soil water treatment than at high soil water treatment. The daily leaf transpiration was reduced significantly in the three crops at the high CO2 concentration. The decrease at low soil water was smaller than at high soil water. Crop biomass production responses showed a pattern similar to photosynthesis, but the CO2-induced increase was more pronounced in root production than shoot production under all soil water treatments. Low soil water treatment led to more root biomass under high [CO2] than high soil water treatment. CO2 enrichment caused a higher leaf water use efficiency (WUE) of three crops and the increase was more significant in low than in high soil water treatment. Crop community WUE was also increased by CO2 enrichment, but the increase in wheat and cotton was much greater than in maize. We conclude that at least in the short-term, C3 plants such as wheat and cotton may benefit from CO2 enrichment especially under water shortage condition.  相似文献   

15.
Wang J L  Yu G R  Fang Q X  Jiang D F  Qi H  Wang Q F 《农业工程》2008,28(2):525-533
Photosynthesis coupled with transpiration determines water use efficiency (WUE) at leaf level, and the responses of WUE controlled by gas exchanges through stomata to environment are the basis of carbon and water cycles in the ecosystem. In this paper, by using Li-6400 Portable Photosynthesis System (LI-COR), WUE at leaf level was analyzed under controlled photosynthetic photons flux density (PPFD) and CO2 concentration conditions across 9 plant species including maize (Zea mays), sorghum (Sorghum vulgare), millet (Setaria italica), soybean (Glycine max), peanut (Arachis phyogaea), sweet potato (Ipomoea batatas), rice (Oryza sativa), Masson pine (Pinus massoniana) and Schima superba. We had developed a new model to estimate the water use efficiency in response to the combined effects of light and CO2 concentration. Our measured data validated that this model could simulate the changes of water use efficiency very well under combined effect of light and CO2 concentration. It could be used to estimate contribution of photosynthesis increase and transpiration decline on water use efficiency with the rising of CO2 concentration. Great differences in water use efficiency occurred in these different plant species under various CO2 concentration levels. Based on water use efficiency at regional scale, we concluded that plants should be separated into C3 plants and C4 plants, and furthermore, C3 plants should be separated into herbaceous plants and woody plants. Our separation criteria would do a great favor in modeling the evapotranspiration of terrestrial ecosystem with carbon and water balance.  相似文献   

16.
不同植物叶片水分利用效率对光和CO2的响应与模拟   总被引:2,自引:0,他引:2  
植物叶片水分利用效率的高低取决于气孔控制的光合作用和蒸腾作用两个相互耦合的过程,模拟水分利用效率对环境变化的响应特征和机制是理解生态系统碳循环和水循环及其耦合关系的基础.研究通过人工控制光强和CO2浓度,对叶片水分利用效率进行了研究.提出了植物水分利用效率在光强和CO2浓度共同作用下的估算模型.数据分析表明,该模型在包括C3和C4植物、草本和木本植物在内的9种植物上能很好地模拟水分利用效率对光强和CO2浓度共同作用的响应.该模型可以用于估算CO2浓度升高条件下光合速率的提高和蒸腾速率的降低对水分利用效率提高的贡献量.CO2浓度变化条件下,水分利用效率在不同植物之间有巨大差异,研究区域尺度植物的水分利用效率时至少需要将植物区分为C4植物和C3植物,其中C3植物区分为草本和木本植物3种生态功能型才能较为准确地估算植物的整体水分利用效率.应用本研究提出的水分利用效率估算模型和植物水分利用效率生态功能型分类标准,可以为建立以植物的水分利用效率为基本参数的陆地生态系统水循环模型和陆地生态系统生产力模型提供重要依据.  相似文献   

17.
Leaf photosynthesis rate of the C4 species Paspalum plicatulum Michx was virtually CO2-saturated at normal atmospheric CO2 concentration but transpiration decreased as CO2 was increased above normal concentrations thereby increasing transpiration efficiency. To test whether this leaf response led growth to be CO2-sensitive when water supply was restricted, plants were grown in sealed pots of soil as miniature swards. Water was supplied either daily to maintain a constant water table, or at three growth restricting levels on a 5-day drying cycle. Plants were either in a cabinet with normal air (340 mol (CO2) mol-1 (air)) or with 250 mol mol-1 enrichment. Harvesting was by several cycles of defoliation.With abundant water supply high CO2 concentration did not cause increased growth, but it did not cause an increase in growth over a wide range of growth-limiting water supplies either. Only when water supply was less than 30–50% of the amount used by the stand with a water-table was there evidence that dry weight growth was enhanced by high CO2. In addition, with successive regrowth, the enhancing effect under a regime of minimal water allocations, became attenuated. Examination of leaf gas exchange, growth and water use data showed that in the long term stomatal conductance responses were of little significance in matching plant water use to low water allocation; regulation of leaf area was the mechanism through which consumption matched supply. Since high CO2 effects operate principally via stomatal conductance in C4 species, we postulate that for this species higher CO2 concentrations expected globally in future will not have much effect on long term growth.  相似文献   

18.
Physiological processes that modulate photosynthetic acclimation to rising atmospheric CO2 concentration are subjects of intense discussion recently. Apparently, the down-regulation of photosynthesis under elevated CO2 is not understood clearly. In the present study, the response of soybean (Glycine max L.) to CO2 enrichment was examined in terms of nitrogen partitioning and water relation. The plants grown under potted conditions without combined N application were exposed to either ambient air (38 Pa CO2) or CO2 enrichment (100 Pa CO2) for short (6 days) and long (27 days). Plant biomass, apparent photosynthetic rate, transpiration rate and 15N uptake and partitioning were measured consecutively after elevated CO2 treatment. Long-term exposure reduced photosynthetic rate, stomatal conductance and transpiration rate. In contrast, short-term exposure increased biomass production of soybean due to increase in dry weight of leaves. Leaf N concentration tended to decrease with CO2 enrichment, however such difference was not true for stem and roots.A close correlation was observed between transpiration rate and 15N partitioned into leaves, suggesting that transpiration plays an important role on nitrogen partitioning to leaves. In conclusion existence of a feed back mechanism for photosynthetic acclimation has been proposed. Down-regulation of photosynthetic activity under CO2 enrichment is caused by decreasing leaf N concentration, and reduced rate of transpiration owing to decreased stomatal conductance is partially responsible for poor N translocation.  相似文献   

19.
A C3 monocot, Hordeum vulgare and C3 dicot, Vicia faba, were studied to evaluate the mechanism of inhibition of photosynthesis due to water stress. The net rate of CO2 fixation (A) and transpiration (E) were measured by gas exchange, while the true rate of O2 evolution (J O2) was calculated from chlorophyll fluorescence analysis through the stress cycle (10 to 11 days). With the development of water stress, the decrease in A was more pronounced than the decrease in J O2 resulting in an increased ratio of Photosystem II activity per CO2 fixed which is indicative of an increase in photorespiration due to a decrease in supply of CO2 to Rubisco. Analyses of changes in the J O2 A ratios versus that of CO2 limited photosynthesis in well watered plants, and RuBP pool/RuBP binding sites on Rubisco and RuBP activity, indicate a decreased supply of CO2 to Rubisco under both mild and severe stress is primarily responsible for the decrease in CO2 fixation. In the early stages of stress, the decrease in C i (intercellular CO2) due to stomatal closure can account for the decrease in photosynthesis. Under more severe stress, CO2 supply to Rubisco, calculated from analysis of electron flow and CO2 exchange, continued to decrease. However, C i, calculated from analysis of transpiration and CO2 exchange, either remained constant or increased which may be due to either a decrease in mesophyll conductance or an overestimation of C i by this method due to patchiness in conductance of CO2 to the intercellular space. When plants were rewatered after photosynthesis had dropped to 10–30% of the original rate, both species showed near full recovery within two to four days.Abbreviations A- net CO2 assimilation rate - A *- net CO2 assimilation rate plus dark respiration - ATP- adenosine triphosphate - CABP- carboxyarabinitol 1,5-bisphosphate - C a- ambient CO2 concentration - C c- CO2 concentration in the chloroplast - C i- intercellular CO2 concentration - E- transpiration rate - g m- mesophyll conductance - g s- stomatal conductance - J O2 true rate of O2 evolution - LSD- least significant difference - PPFD- photosynthetic photon flux density - PS II- Photosystem II - R n- dark respiration rate - Rubisco- ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP- ribulose 1,5-bisphosphate - RWC- relative water content - c- rate of carboxylation - o- rate of oxygenation - PSII- quantum yield of Photosystem II - - CO2 compensation point in the absence of R n - - water potential  相似文献   

20.
With the changing climate, plants will be facing increasingly harsh environmental conditions marked by elevated salinity in the soils and elevated concentrations of CO2 in the atmosphere. These two factors have opposite effects on water status in plants. Therefore, our objective was to determine the interaction between these two factors and to determine whether elevated [CO2] might alleviate the adverse effects of salt stress on water status in two barley cultivars, Alpha and Iranis, by studying their relative water content and their water potential and its components, transpiration rate, hydraulic conductance, and water use efficiency. Both cultivars maintained their water status under salt stress, increasing water use efficiency and conserving a high relative water content by (1) reducing water potential via passive dehydration and active osmotic adjustment and (2) decreasing transpiration through stomatal closure and reducing hydraulic conductance. Iranis showed a greater capacity to achieve osmotic adjustment than Alpha. Under the combined conditions of salt-stress and elevated [CO2], both cultivars (1) achieved osmotic adjustment to a greater extent than at ambient [CO2], likely due to elevated rates of photosynthesis, and (2) decreased passive dehydration by stomatal closure, thereby maintaining a greater turgor potential, relative water content, and water use efficiency. Therefore, we found an interaction between salt stress and elevated [CO2] with regard to water status in plants and found that elevated [CO2] is associated with improved water status of salt-stressed barley plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号