首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Question: Are trees sensitive to climatic variability, and do tree species differ in their responses to climatic variability? Does sensitivity of forest communities to climatic variability depend on stand composition? Location: Mixed young forest at Walker Branch Watershed near Oak Ridge, East Tennessee, USA. Methods: Using a long‐term dataset (1967–2006), we analyzed temporal forest dynamics at the tree and species level, and community dynamics for forest stands that differed in initial species composition (i.e., chestnut oak, oak–hickory, pine, and yellow poplar stands). Using summer drought and growing season temperature as defined climate drivers, we evaluated relationships between forest dynamics and climate across levels of organization. Results: Over the four‐decade study period, forest communities underwent successional change and substantially increased in biomass. Variation in summer drought and growing season temperature contributed to temporal biomass dynamics for some tree species, but not for others. Stand‐level responses to climatic variability were related to the responses of component species, except in pine stands. Pinus echinata, the dominant species in pine stands, decreased over time due to periodic outbreaks of pine bark beetle (Dendroctonus frontalis). These outbreaks at Walker Branch could not be directly related to climatic conditions. Conclusions: The results indicate that sensitivity of developing forests to climatic variability is stand type‐dependent, and hence is a function of species composition. However, in the long term, direct effects of climatic variability on forest dynamics may be small relative to autogenic successional processes or climate‐related insect outbreaks. Empirical studies testing for interactions between forest succession and climatic variability are needed.  相似文献   

2.
The age dynamics of the main taxation characteristics (height, diameter, stand basal area, average and current increment of stock, and total stand productivity) have been analyzed in stands of different types. The influence of admixed species on the formation of the stands is assessed. The expediency of planting pure stands on heavy textured soils of floodplains in the forest steppe has been proven.  相似文献   

3.
《Ecological Complexity》2005,2(3):232-239
Because mountain pine beetle attack mature pine stands, an understanding of forest age class dynamics is important to managing forests within the distribution of the beetle. The assumed theoretical negative exponential forest age distribution provides an estimate when ecosystem dynamics are in equilibrium. This study investigates the dynamics of forest age distribution for non-equilibrium ecosystem dynamics, which result primarily from large and irregular stand-replacement fire disturbances that alter the forest age distribution. A model experiment using the SEM-LAND model on a 1 million ha lodgepole pine forest landscape was conducted to estimate how the proportion of susceptible area could be influenced by different fire regimes. The results of the simulation suggest that the temporal dynamics of the area susceptible to mountain pine beetle attack are complex and depend on the fire history of the study area, if the area is experiencing large and irregular stand-replacement fires. The age range of the lodgepole pine forest stands susceptible to mountain pine beetle attack might significantly affect the estimate of the area susceptible to attack.  相似文献   

4.
蒙古栎红松林物种组成和结构动态的研究   总被引:7,自引:0,他引:7       下载免费PDF全文
 通过对蒙古栎红松林3个年龄阶段物种和结构动态的研究,结果表明,该类型森林的更新状况良好,早期阶段红松(Pinus koraiensis)和阔叶树的更新数量相同,后期更新树种以红松为主;在森林发育早期阶段蒙古栎(Quercus mongolica)等阳性树种占优势,中期为红松和阔叶树占优势的混交林,后期形成红松占优势的林分;随着森林的发育,灌木和草本层动态呈现复杂的变化。通过对该类型森林直径分布变化的研究得出,在林分发育的早期,阔叶树中大径级木较多,针叶树中小径级木多,在林分发育的后期呈相反的规律。用理论概率模型拟合直径分布表明,韦布尔概率分布模型是描述蒙古栎红松林直径分布的最适模型。  相似文献   

5.
Ecosystem-based forest management strives to develop silvicultural practices that best emulate natural disturbances such as wildfire to conserve biodiversity representative of natural forest ecosystems. Yet, current logging practices alter forest structure and reduce the proportion of old-growth forest and, consequently, can exert long-term effects on the dynamics of forest biota. The stand- and landscape-scale factors driving bird community dynamics in post-disturbance environment remain poorly understood. In this study, we examined bird community dynamics along successional gradients in boreal ecosystems originating from fire and logging in landscapes dominated by old-growth forest. We tested if bird species richness and community compositions in clear-cutting stands became comparable to those in natural stands after 70 years, and identified the relative contributions of stand- and landscape-scale forest attributes in bird community dynamics. Based on records of bird occurrences at 185 field sites in natural and clearcutting stands, we demonstrate that (1) both forest structures and bird communities underwent evident changes along successional gradients in post-clearcutting environment; (2) bird species richness and community composition in 60- to 70-years-old clearcutting stands still differed from those in 50- to 79-years-old natural stands, in spite of the fact that most forest attributes of clearcutting stands became comparable to those of natural stands after 40 years; and (3) landscape disturbances contributed more than stand characteristics in explaining the lack of convergence of mature forest species, residents, and short-distance migrants in post-clearcutting environment. Our study points out that more regards should be paid to improve the landscape configuration of the managed forests, and implies that old-growth forest retention within logged areas, combined with selection cutting and prolonged logging rotations, can better emulate fire and alleviate forest harvesting effects on bird community assemblages typical of natural boreal ecosystem.  相似文献   

6.
Abstract

To investigate the differences in understorey composition and diversity between old-growth and managed forests, we analyzed an old-growth and a managed beech stand in the same area displaying similar abiotic features. We considered variations in understorey species composition and richness. The sampled understorey species were characterized in terms of functional traits, Ellenberg's indicator values and taxonomic distinctness; next, we calculated four different pairwise plot-to-plot dissimilarity matrices based on species composition, functional traits, Ellenberg's indices and taxonomic distances. We applied a permutational multivariate extension of ANOVA to test whether the forest stands significantly differ in the considered features. Indicator values of all plant species in managed and old-growth stands were evaluated.

The old-growth forest had a higher species richness; permutational analysis of variance showed significant differences between the two stands in plant species composition, functional traits, Ellenberg indices and taxonomic distances. Indicator species analysis highlighted 14 indicator species for the unmanaged stand, while only 3 indicators were found for the managed one.

The results suggest that forest management determines ecological differences that strongly affect plant species composition.

The knowledge of natural stands dynamics could allow development of new approaches and practices in forest management focusing on biodiversity conservation.  相似文献   

7.
温带针阔混交林林分碳贮量动态的模拟模型Ⅰ.乔木层的碳贮量动态延晓冬,赵士洞(中国科学院沈阳应用生态研究所110015)SimulationModelofCarbonStorageDynamicsinTemperateBroadleaved-Conif...  相似文献   

8.
Abstract The reduction and fragmentation of forest habitats is expected to have profound effects on plant species diversity as a consequence of the decreased area and increased isolation of the remnant patches. To stop the ongoing process of forest fragmentation, much attention has been given recently to the restoration of forest habitat. The present study investigates restoration possibilities of recently established patches with respect to their geographical isolation. Because seed dispersal events over 100 m are considered to be of long distance, a threshold value of 100 m between recent and old woodland was chosen to define isolation. Total species richness, individual patch species richness, frequency distributions in species occurrences, and patch occupancy patterns of individual species were significantly different among isolated and nonisolated stands. In the short term no high species richness is to be expected in isolated stands. Establishing new forests adjacent to existing woodland ensures higher survival probabilities of existing populations. In the long term, however, the importance of long‐distance seed dispersal should not be underestimated because most species showed occasional long‐distance seed dispersal. A clear distinction should be made between populations colonizing adjacent patches and patches isolated from old woodland. The colonization of isolated stands may have important effects on the dynamics and diversity of forest networks, and more attention should be directed toward the genetic traits and viability of founding populations in isolated stands.  相似文献   

9.
The juvenile life stage is a crucial determinant of forest dynamics and a first indicator of changes to species' ranges under climate change. However, paucity of detailed re-measurement data of seedlings, saplings and small trees means that their demography is not well understood at large scales, and rarely represented in forest models in detail. In this study we quantify the effects of climate and density dependence on recruitment and juvenile growth and mortality rates of thirteen species measured in the Spanish Forest Inventory. Single-census sapling count data is used to constrain demographic parameters of a simple forest juvenile dynamics model based on the perfect plasticity approximation model (PPA) within a likelihood-free parameterisation method, Approximate Bayesian Computation. Our results highlight marked differences between species, and the important role of climate and stand structure, in controlling juvenile dynamics. Recruitment had a hump-shaped relationship with conspecific density, and for most species conspecific competition had a stronger negative effect than heterospecific competition. Mediterranean species showed on average higher mortality and lower growth rates than temperate species, and in low density stands recruitment and mortality rates were positively correlated. Under climate change our model predicted declines in recruitment rates for almost all species. Reliable predictive models of forest dynamics should include realistic representation of critical early life-stage processes and our approach demonstrates that existing coarse count data can be used to parameterise such models. Approximate Bayesian Computation may have wide application in many fields of ecology to unlock information about past processes from single survey observations.  相似文献   

10.
对宝天曼地区不同恢复阶段栓皮栎林的高等植物物种多样性特征进行了初步分析。结果表明,各层物种丰富度和多样性指数在不同恢复阶段栓皮栎林表现出草本层>灌木层>乔木层的趋势。乔木层物种丰富度和多样性指数基本上随恢复时间的增加而增加;灌木层在未破坏的栓皮栎林内较低,而在其他恢复阶段的栓皮栎林内基本相同;草本层在恢复5年、15年和25年的栓皮栎林中较高,而在恢复45年和未破坏的栓皮栎林内较低。乔木层物种均匀度指数在未破坏的栓皮栎林中较高,在恢复25年的栓皮栎林中较低;灌木层在恢复45年的栓皮栎林中较高,在恢复15年的栓皮栎林较低;草本层在恢复5年的栓皮栎林中较高,在恢复15年的栓皮栎林中较低。不同恢复阶段栓皮栎林各层次间的物种多样性差异大多不显著,只有乔木层和草本层及灌木层和草本层之间的物种丰富度指数有显著差异。不同恢复阶段栓皮栎林在乔木层物种多样性特征上的差异最大,在灌木层物种多样性特征上有一定差异,在草本层物种多样性特征上没有明显的差异。  相似文献   

11.
焦向丽  朱教君  闫巧玲 《生态学报》2009,29(5):2631-2638
土壤动物是次生林生态系统的重要组成成分.为探讨次生林生态系统不同林型对大、中型土壤动物群落结构特征的影响,于2007年对东部山区次生林生态系统中5个主要林型的土壤动物群落进行了观测和分析.共获取土壤动物36210只,分别隶属于2门8纲32目.优势类群为真螨目(Acariformes)和弹尾目(Collembola).分析结果表明:(1)人工林大、中型土壤动物类群数和个体数波动大于次生林;(2)除落叶松人工林外,其他林型大、中型土壤动物生物量在7月份达到最大值;(3)除胡桃楸林外,其他林型大、中型土壤动物多样性在9月份达到最大值.结果表明,次生林较人工林土壤动物群落在生长季中波动范围小、多样性高.  相似文献   

12.
以陕西纸房沟流域为研究单元,于2006-2008年,对该流域恢复区8种林分进行系统调查,运用不同模型分析了各林分节肢动物群落种-面积、多度关系.不同林分节肢动物群落种-面积关系符合S=CAm,种类数随着面积增加接近一个常数,并得出相应最小调查面积,其大小排序为:自然灌木林>自然乔木林>杨树 刺槐混交林>柠条-沙棘混交林>柠条林>沙棘林>刺槐林>柳树林,说明林分类型越复杂,需要调查节肢动物群落的最小面积越大.在抽样调查基础上建立了不同林分节肢动物种-多度模型,天然恢复林地节肢动物以对数正态模型(LN)的拟合效果最佳,表明群落中个体数量居中的节肢动物种类较多,稀有种和富有种种类较少,优势种不明显;在混交林和纯林中,节肢动物群落以对数柯西模型(LC)的拟合效果最佳,与天然恢复林相比,其节肢动物群落中稀有种和富有种种类较多,优势种比较突出.  相似文献   

13.
A simulation program that runs on a geographic information system (GIS) was developed to predict the multi-species size-structure dynamics of forest stands. Because important characteristics of a forest stand, including woody biomass accumulation, carbon storage, commercial value of timber, and functions for environmental conservation, can be inferred from the size structures of the component populations, management plans can be made from the predictions of the size-structure dynamics. For example, the simulation can incorporate various forms of thinning; forest managers can then try several thinning plans in simulated forest stands and choose the appropriate plan that achieves the best results. Using GIS to predict the size-structure dynamics of forest stands is of practical importance, because GIS has been used widely in forest management and can easily handle spatial distributions of environmental information (e.g., climate, geology, soils) that may influence tree performance. To predict size-structure dynamics, the program numerically solves a continuum equation that describes size-structure dynamics based on growth and mortality rates of individual trees. When predicting size-structure dynamics of a forest stand, the program obtains the environmental information of the stand from a database stored in the GIS and calculates environmental factors such as warmth index and potential evapotranspiration/precipitation ratio that influence growth and mortality rates. The simulation program calculates growth and mortality rates using published growth and mortality models that incorporate the effects of size of the individual, competition between trees, and abiotic environmental factors. To demonstrate the effects of abiotic environmental factors on the multi-species size-structure dynamics, sensitivity analyses were conducted. The size-structure dynamics varied in a way that was predictable from the responses of the growth and mortality rates to variations in the abiotic environmental factors. To demonstrate the size-structure dynamics in different locations, five test runs of the simulation program were also performed using the same initial size-structure and five different sets of abiotic environmental conditions from five locations. At the end of the simulation, the predicted size structures differed because the growth and mortality rates differed among the five locations. Finally, the response of the size structure to thinning was clarified. The result showed how the size structure of a component species in a forest stand is dependent on the presence of other species.  相似文献   

14.
Questions: How to evaluate the mixture effect on basal area increment in two‐species forest stands? Is a mixed Norway spruce–silver fir stand more productive than pure adjacent stands of either species? How to develop generic modelling approaches to assess mixture effects in forest stands? Location: In addition to a case study on Norway spruce–silver fir stands in French mountain forests, the generic approach used goes beyond local applications. Methods: We took advantage of National Forest Inventory data to develop a unique stand basal‐area‐increment model for pure and mixed stands of Norway spruce and silver fir that responds to ecological site conditions. The database was made up of 284 pure Norway spruce stands, 196 pure silver fir stands, and 323 mixed stands of these species. Results: Pure silver fir basal area increment is strongly influenced by spring climatic conditions, whereas pure Norway spruce is more influenced by soil conditions. The mixture of these species has a positive effect on silver fir, which decreases as the proportion of fir increases. In contrast, the mixture has no noticeable effect on Norway spruce. Conclusion: We developed a stand basal‐area‐increment model evidencing an advantage of the mixture on silver fir basal area increment, but not on Norway spruce. The mathematical formulation of the model developed is generic and can be used in all two‐species mixture situations. It also makes it possible to compare different mixture situations with each other.  相似文献   

15.
Model assessment of succession rates according to forestry data   总被引:1,自引:0,他引:1  
Several simple models of succession processes in forest ecosystems, namely, models of the dynamics of the species composition of tree stands and succession of dominant species, are elaborated. Numerical application of these models is given by the example of the forest management data on the species and age structure of forests in Vologda Oblast for 1988.  相似文献   

16.
择伐对吉林蛟河阔叶红松林群落结构及动态的影响   总被引:1,自引:0,他引:1  
范春雨  张春雨  赵秀海 《生态学报》2017,37(20):6668-6678
科学的森林经营能够优化林分结构,是调控森林生产力和生物多样性的有效手段。择伐作为森林经营的重要方式之一,其对森林结构以及群落动态的影响一直未有定论,因此迫切需要利用更加全面的数据对择伐及伐后林分特征的变化进行长期监测。根据森林大样地建立规范,2010年在吉林蛟河建立了42hm~2阔叶红松林动态监测样地,2011年冬季截取部分面积进行择伐经营,以经营样地为研究对象,运用数值变量描述采伐活动并分析择伐前后群落结构的变化;同时结合2015年的二次调查数据,以立地条件基本一致的对照样地为参照,比较林分水平和物种水平上死亡率、更新率的差异,并利用线性混合效应模型探究择伐活动对个体径向生长的影响。研究结果显示:经营样地的择伐强度为5.4%,受采伐干扰影响较大的物种主要包括色木槭、白牛槭、裂叶榆、胡桃楸、千金榆、水曲柳以及紫椴,采伐主要集中于林冠层树种,亚林层和灌木层个体很少涉及。择伐前后物种组成、径级结构等并未发生明显改变。5年间,经营样地和对照样地的林分密度都降低,对比对照样地,经营样地的死亡率较低,但其更新状况并未优于对照样地。从胸高断面积来看,经营样地整体的年平均生长量高于对照样地,表明择伐导致的稀疏对个体生长和存活起到了一定的促进作用。将采伐强度纳入线性混合效应模型中分析发现,胸径始终是影响个体生长的最重要因素,其次是树木个体之间的非对称竞争;采伐所涉及到的7个主要树种的年平均生长量均高于对照样地,但仅有紫椴的径向生长表现出对采伐干扰的显著响应。综合来看,低强度择伐对群落结构和动态的影响较小,不同物种的径向生长对择伐的响应存在一定差异。  相似文献   

17.
Abstract

The diversity of saproxylic bryophyte species in beech forest stands from the wide region of the central Balkans (i.e. Serbia and Montenegro) was studied, and this study is the first of such a type in SE Europe. Comparison of preserved old‐growth and managed forests were made. Bryophyte species diversity is higher in primeval forest stands where the spectra of dead wood in various decaying stages of its dynamics are present. The ecological group of epixylic specialists is predominant among the bryophytes recorded. Threatened bryophyte species occur in old‐growth beech stands. The dead wood as habitat together with some other factors are extremely important for the surviving of epixylic bryophyte; so these species can be used as bioindicator bryophyte species of old‐growth or managed and structured forest ecosystems.  相似文献   

18.
The silvicultural management of coppicing has been very common in deciduous forests in many European countries. After decades of decline of this practice, socio-economic changes might induce a revival valuing the biomass as a resource. New insights in the ecological processes that regulate plant diversity are relevant for a sustainable forest management. While studies on long-term changes are available, the short-term dynamics of the coppice forest understorey has not yet been explored. In this context, it is interesting to evaluate the species compositional changes, including the processes of species turnover and species impoverishment (nestedness) and to investigate the role of plant functional traits. For this purpose, we resampled a chronosequence of complex coppice beech forests of the Central Apennines (Italy) monitoring the short-time species dynamics of five years (i.e. from 2006 to 2011) in three age classes, i.e. post-logged, recovering and old coppice stands (0–16, 17–31 and > 32 years, respectively). In contrast to our expectation, declining species richness appeared only in the recovering stands, while the landscape scale (between-stand) heterogeneity, except for post-logged and recovering stands in 2011, did not change over five years. Significant temporal nestedness was found in each stage of succession. However, the rate of species turnover and species impoverishment do not significantly differ among the three age classes, indicating their constant importance along the forest regeneration after disturbance. Only in the early stage of forest regeneration after coppicing, species compositional changes are reflected by functional changes with surviving understorey species having clonal regeneration traits. Our results suggest an overall landscape-scale stability (and sustainability) of this coppice forest system. We conclude with management indications, highlighting the importance of maintaining the traditional local approach (coppicing with standards in small 0.5–1.0 ha sized management units with a ca 30-year rotation cycle) where active coppice parcels are interspersed by abandoned stands.  相似文献   

19.
在对永久样地连续5 年定位观测的基础上,应用Shannon 物种多样性和均匀度指数,研究了雾灵山落叶阔叶林采伐前后更新苗木、草本植物和灌木群落的物种多样性、群落均匀度和种群动态变化.结果表明,在林分采伐后的4 年内,迹地上苗木的物种多样性和群落均匀度指数均高于伐前林分.从无到有并迅速繁衍的树种为山杨,伐前林分中有林木存在,但迹地上缺乏幼苗的树种为油松.灌木的物种多样性和均匀度指数呈增加趋势.始终处于优势的树种为锦带花和胡枝子,后期迅速繁衍的树种为山楂叶悬钩子.草本植物的物种多样性和群落均匀度指数均是在林分采伐后第3 年达到最大值,第4 年开始下降.主要草本植物种群的动态变化可归纳为8 种类型.阳性植物充分发育,阴性或耐荫植物逐渐衰退,是草本植物种群最明显的表现.  相似文献   

20.
Land-use history and large-scale disturbances interact to shape secondary forest structure and composition. How introduced species respond to disturbances such as hurricanes in post-agriculture forest recovery is of particular interest. To examine the effects of hurricane disturbance and previous land use on forest dynamics and composition, we revisited 37 secondary forest stands in former cattle pastures across Puerto Rico representing a range of exposure to the winds of Hurricane Georges in 1998. Stands ranged from 21 to>80 yr since agricultural abandonment and were measured 9 yr posthurricane. Stem density decreased as stands aged, while basal area and species richness tended to increase. Hurricane disturbance exerted contrasting effects on stand structure, contingent on stand age. In older stands, the basal area of large trees fell, shifting to a stand structure characteristic of younger stands, while the basal area of large trees tended to rise in younger stands with increasing hurricane disturbance. These results demonstrate that large-scale natural disturbances can alter the successional trajectory of secondary forest stands recovering from human land use, but stand age, precipitation and soil series were better predictors of changes in stand structure across all study sites. Species composition changed substantially between census intervals, but neither age nor hurricane disturbance consistently predicted species composition change. However, exposure to hurricane winds tended to decrease the abundance of the introduced tree Spathodea campanulata, particularly in smaller size classes. In all sites the abundance of the introduced tree Syzygium jambos showed a declining trend, again most strongly in smaller size classes, suggesting natural thinning through succession.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号