首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Oxygen consumption was measured in five Dermophis mexicanus and averaged (±SEM) 0.047 ± 0.004 ml O2 g−1 h−1. Carbon dioxide production averaged 0.053 ± 0.005 ml CO2 g−1 h−1 in the same five animals 1 week later. This metabolic rate is similar to metabolic rates of other Gymnophionans but lower than metabolic rates reported for Anurans and Urodeles. Total nitrogen excretion averaged 1.37 μmol N g−1 h−1 which is higher than that found for other amphibians. Of this, 82.5% (1.13 μmol N g−1 h−1) was in the form of urea while 17.5% (0.24 μmol N g−1 h−1) was in the form of NH3 + NH+ 4. Such ureotelism is typical of terrestrial amphibians like D. mexicanus. Osmotic water flux averaged 0.0193 ml g−1 h−1 in control (sham injected) animals and was not significantly altered by injection of either arginine vasotocin or mesotocin. This osmotic flux is similar to osmotic fluxes found for other terrestrial amphibians. The combined data suggest that metabolism in D. mexicanus is, like most other Gymnophionans, lower than other amphibians. The high rates of nitrogen (especially urea) excretion suggests that this fossorial animal accumulates urea like other burrowing amphibians. Accepted: 27 June 2000  相似文献   

2.
Stangoulis JC  Reid RJ  Brown PH  Graham RD 《Planta》2001,213(1):142-146
The permeability of biological membranes to boric acid was investigated using the giant internodal cells of the charophyte alga Chara corallina (Klein ex Will. Esk. R.D. Wood). The advantage of this system is that it is possible to distinguish between membrane transport of boron (B) and complexing of B by plant cell walls. Influx of B was found to be rapid, with equilibrium between the intracellular and extracellular phases being established after approximately 24 h when the external concentration was 50 μM. The intracellular concentration at equilibrium was 55 μM, which is consistent with passive distribution of B across the membrane along with a small amount of internal complexation. Efflux of B occurred with a similar half-time to influx, approximately 3 h, which indicates that the intracellular B was not tightly complexed. The concentration dependence of short-term influx measured with 10B-enriched boric acid was biphasic. This was tentatively attributed to the operation of two separate transport systems, a facilitated system that saturates at 5 μM, and a linear component due to simple diffusion of B through the membrane. V max and K m for the facilitated transport system were 135 pmol m−2 s−1 and 2 μM, respectively. The permeability coefficient for boric acid in the Chara plasmalemma estimated from the slope of the linear influx component was 4.4 × 10−7 cm s−1 which is an order of magnitude lower than computed from the ether:water partition coefficient for B. Received: 14 August 2000 / Accepted: 16 September 2000  相似文献   

3.
Claudia Grimmer  Ewald Komor 《Planta》1999,209(3):275-281
Castor bean (Ricinus communis L.) plants were grown for 5–7 weeks in a controlled environment at 350 μl l−1 or 700 μl l−1 CO2. Carbon assimilation, assimilate deposition, dark respiration and assimilate mobilization were measured in leaves 2, 3 and 4 (counted from the base of the plant), and a balance sheet of carbon input and export was elaborated for both CO2 concentrations. Carbon dioxide assimilation was nearly constant over the illumination period, with only a slight depression occurring at the end of the day in mature source leaves, not in young source leaves. Assimilation was ca. 40% higher at 700 μl l−1 than at 350 μl l−1 CO2. The source leaves increased steadily in weight per unit area during the first 3 weeks, more at 700 μl l−1 than at 350 μl l−1 CO2. On top of an irreversible weight increase, there was a large gain in dry weight during the day, which was reversed during the night. This reversible weight gain was constant over the life time of the leaf and ca. 80% higher at 700 μl l−1 than at 350 μl l−1. Most of it was due to carbohydrates. The carbon content (as a percentage) was not altered by the CO2 treatment. Respiration was 25% higher in high-CO2 plants when based on leaf area, but the same when based on dry weight. The rate of carbon export via the phloem was the same during the daytime in plants grown at 350 μl l−1 and 700 μl l−1 CO2. During the night the low-CO2 plants had only 50% of the daytime export rate, in contrast to the high-CO2 plants which maintained the high export rate. It was concluded that the phloem loading system is saturated during the daytime in both CO2 regimes, whereas during the night the assimilate supply is reduced in plants in the normal CO2 concentration. Two-thirds of the carbon exported from the leaves was permanently incorporated as plant dry matter in the residual plant parts. This “assimilation efficiency” was the same for both CO2 regimes. It is speculated that under 350 μl l−1 CO2 the growing Ricinus plant operates at sink limitation during the day and at source limitation during the night. Received: 2 February 1999 / Accepted: 19 April 1999  相似文献   

4.
Studies on the chemical and biological properties of annual pack ice at a coastal station in Terra Nova Bay (74°41.72′S, 164°11.63′E) were carried out during austral spring at 3-day intervals from 5 November to 1 December 1997. Temporal changes of nutrient concentrations, algal biomasses, taxonomic composition, photosynthetic pigment spectra and P–E relationships were studied. Quantity, composition and degradation rates of organic matter in the intact sea ice were also investigated. In addition, microcosm experiments were carried out to evaluate photosynthetic and photo-acclimation processes of the sympagic flora in relation to different light regimes. High concentrations of ammonia were measured in four ice-cores (weighted mean values of the cores ranged from 4.3 ± 1.9 μM to 7.2 ± 3.4 μM), whereas nitrate and phosphate displayed high concentrations (up to 35.9 μM and 7.6 μM, respectively) only in the bottom layer (135–145 cm depth). Particulate carbohydrate and protein concentrations in the intact sea ice ranged from 0.5 to 2.3 mg l−1 and 0.2 to 2.0 mg l−1, respectively, displaying a notable accumulation of organic matter in the bottom colored layer, where bacterial enzymatic activities also reached the highest values. Aminopeptidase activity was extremely high (up to 19.7 μM l−1 h−1 ± 0.05 in the bottom layer), suggesting a rapid turnover rate of nitrogen–enriched organic compounds (e.g. proteins). By contrast, bacterial secondary production was low, suggesting that only a very small fraction of mobilized organic matter was converted into bacterial biomass (<0.01‰). The sympagic autotrophic biomass (in terms of chlorophaeopigments) of the bottom layer was high, increasing during the sampling period from 680 to 2480 μg l−1. Analyses of pigments performed by HPLC, as well as microscope observations, indicated that diatoms dominated bottom communities. The most important species were Amphiprora sp. and Nitschia cfr. stellata. Bottom sympagic communities showed an average P B max of 0.12 mgC mg Chl−1 and low photoadaptation index (E k=18 μE m−2 s−1, E m=65 μE m−2 s−1). Results of the microcosm experiment also indicated that communities were photo-oxidized when irradiance exceeded 100 μE m−2 s−1. This result suggests that micro- autotrophs inhabiting sea ice might have a minor role in the pelagic algal blooms. Accepted: 4 August 1999  相似文献   

5.
M. Tretiach  A. Geletti 《Oecologia》1997,111(4):515-522
CO2 exchange of the endolithic lichen Verrucaria baldensis was measured in the laboratory under different conditions of water content, temperature, light, and CO2 concentration. The species had low CO2 exchange rates (maximum net photosynthesis: c. 0.45 μmol CO2 m−2 s−1; maximum dark respiration: c. 0.3 μmol CO2 m−2 s−1) and a very low light compensation point (7 μmol photons m−2 s−1 at 8°C). The net photosynthesis/respiration quotient reached a maximum at 9–15°C. Photosynthetic activity was affected only after very severe desiccation, when high resaturation respiratory rates were measured. Microclimatic data were recorded under different weather conditions in an abyss of the Trieste Karst (northeast Italy), where the species was particularly abundant. Low photosynthetically active radiation (normally below 40 μmol photons m−2 s−1), very high humidities (over 80%), and low, constant temperatures were measured. Thallus water contents sufficient for CO2 assimilation were often measured in the absence of condensation phenomena. Received: 22 September 1996 / Accepted: 26 April 1997  相似文献   

6.
The photosynthetic rates and various components of photosynthesis including ribulose-1,5-bisphosphate carboxylase (Rubisco; EC 4.1.1.39), chlorophyll (Chl), cytochrome (Cyt) f, and coupling factor 1 (CF1) contents, and sucrose-phosphate synthase (SPS; EC 2.4.1.14) activity were examined in young, fully expanded leaves of rice (Oryza sativa L.) grown hydroponically under two irradiances, namely, 1000 and 350 μmol quanta · m−2 · s−1, at three N concentrations. The light-saturated rate of photosynthesis measured at 1800 μmol · m−2 · s−1 was almost the same for a given leaf N content irrespective of growth irradiance. Similarly, Rubisco content and SPS activity were not different for the same leaf N content between irradiance treatments. In contrast, Chl content was significantly greater in the plants grown at 350 μmol · m−2 · s−1, whereas Cyt f and CF1 contents tended to be slightly smaller. However, these changes were not substantial, as shown by the fact that the light-limited rate of photosynthesis measured at 350 μmol · m−2 · s−1 was the same or only a little higher in the plants grown at 350 μmol · m−2 · s−1 and that CO2-saturated photosynthesis did not differ between irradiance treatments. These results indicate that growth-irradiance-dependent changes in N partitioning in a leaf were far from optimal with respect to N-use efficiency of photosynthesis. In spite of the difference in growth irradiance, the relative growth rate of the whole plant did not differ between the treatments because there was an increase in the leaf area ratio in the low-irradiance-grown plants. This increase was associated with the preferential N-investment in leaf blades and the extremely low accumulation of starch and sucrose in leaf blades and sheaths, allowing a more efficient use of the fixed carbon. Thus, morphogenic responses at the whole-plant level may be more important for plants as an adaptation strategy to light environments than a response of N partitioning at the level of a single leaf. Received: 23 February 1997 / Accepted: 8 May 1997  相似文献   

7.
C. Ledüc  I. Birgel  R. Müller  E. Leistner 《Planta》1997,202(2):206-210
Isochorismate hydroxymutase (i.e. isochorismate synthase, EC 5.4.99.6) was purified from an anthraquinone-producing cell-suspension culture of Galium mollugo L. Although attempts to stabilize the labile enzyme met with little success, a substantial increase in enzyme activity was observed in the presence of glycine betaine (500 mM). Column chromatography on solid supports other than diethylaminoethyl (DEAE)-Sephacel, Phenylsepharose Cl-4B or Cibacron Blue 3G-A did not give active enzyme preparations. In spite of these drawbacks the enzyme was purified 573-fold. Enzyme activity depended strictly on the presence of Mg2+. Kinetic data for chorismate in the forward reaction (K m = 807 μM, V max = 6.2 pkat · mg−1) and for isochorismate in the reverse reaction (K m = 675 μM, V max = 5.9 pkat · mg−1) were determined. Received: 18 November 1996 / Accepted: 28 December 1996  相似文献   

8.
The effects of temperature on photosynthesis of a rosette plant growing at ground level, Acaena cylindrostachya R. et P., and an herb that grows 20–50 cm above ground level, Senecio formosus H.B.K., were studied along an altitudinal gradient in the Venezuelan Andes. These species were chosen in order to determine – in the field and in the laboratory – how differences in leaf temperature, determined by plant form and microenvironmental conditions, affect their photosynthetic capacity. CO2 assimilation rates (A) for both species decreased with increasing altitude. For Acaena leaves at 2900 m, A reached maximum values above 9 μmol m−2 s−1, nearly twice as high as maximum A found at 3550 m (5.2) or at 4200 m (3.9). For Senecio leaves, maximum rates of CO2 uptake were 7.5, 5.8 and 3.6 μmol m−2 s−1 for plants at 2900, 3550 and 4200 m, respectively. Net photosynthesis-leaf temperature relations showed differences in optimum temperature for photosynthesis (A o.t.) for both species along the altitudinal gradient. Acaena showed similar A o.t. for the two lower altitudes, with 19.1°C at 2900 m and 19.6°C at 3550 m, while it increased to 21.7°C at 4200 m. Maximum A for this species at each altitude was similar, between 5.5 and 6.0 μmol m−2 s−1. For the taller Senecio, A o.t. was more closely related to air temperatures and decreased from 21.7°C at 2900 m, to 19.7°C at 3550 m and 15.5°C at 4200 m. In this species, maximum A was lower with increasing altitude (from 6.0 at 2900 m to 3.5 μmol m−2 s−1 at 4200 m). High temperature compensation points for Acaena were similar at the three altitudes, c. 35°C, but varied in Senecio from 37°C at 2900 m, to 39°C at 3550 m and 28°C at 4200 m. Our results show how photosynthetic characteristics change along the altitudinal gradient for two morphologically contrasting species influenced by soil or air temperatures. Received: 5 July 1997 / Accepted: 25 October 1997  相似文献   

9.
Bifidobacterium longum grew at 65 L pilot scale of the membrane bioreactor (MBR), externally fitted with ceramic membrane (0.7 m2). Cell mass at the MBR reached 22.18 g L−1 as dry cell weight in 12 h, which is 8.44 times higher than cell mass attained at the vial culture. The growth rate in the vial culture was μ = 0.385 h and at the batch culture was μ = 1.13 h in the exponential period and μ = 0.31 h−1 in the stationary period. In the fed-batch mode was μ = 1.102 h−1 for 6 h with inoculation and declined to μ = 0.456 h−1 with feeding of feed medium. The growth rate at the MBR was μ = 0.134 h−1. The number of viable cells was 6.01 × 1012 cfu L−1 at the batch culture, but increased to 1.15 × 1014 cfu L−1 at the MBR culture. The specific growth rate of viable cell number (colony-forming units per liter, per hour) improved by 6.01 times from the batch to the MBR culture. The wall shear stress mainly generated by the pump, and the membrane incorporated into the MBR was controlled during the cultivation at the MBR. The viability of B. longum declined to under 10% in the first 2 weeks of the 4-week stability test (40°C) as B. longum was exposed to over wall shear stress 713 Pa, but the viability improved to 30–40% in wall shear stress of 260 Pa or STR culture. The loss in the cell viability can be saved by managing with wall shear stress during the cultivation at the MBR.  相似文献   

10.
The role of gibberellins (GAs) in the regulation of shoot elongation is well established but the phytohormonal control of dry-matter production is poorly understood. In the present study, shoot elongation and dry-matter production were resolved by growing Brassica napus L. seedlings under five light intensities (photon flux densities) ranging from 25 to 500 μmol m−2 s−1. Under low light, plants were tall but produced little dry weight; as light intensity was increased, plants were progressively shorter but had increasing dry weights. Endogenous GAs in stems of 16- and 17-d-old plants were analyzed by gas chromatography-selected ion monitoring with [2H2] internal standards. The contents of GAs increased dramatically with decreasing light intensity: GA1, GA3, GA8 and GA20 were 62, 15, 16 and 32 times higher, respectively, under the lowest versus highest light intensities. Gibberellin A19 was not measured at 25 μmol m−2 s−1 but was 9␣times greater in the 75 compared to 500 μmol m−2 s−1 treatment. Shoot and hypocotyl lengths were closely positively correlated with (log) GA concentration (for example: r 2 = 0.93 for GA1 and hypocotyl length) but shoot dry matter was negatively correlated with GA concentration. The application of gibberellic acid (GA3) produced elongation of plants grown under high light, indication that their low level of endogenous GA was limiting shoot elongation. Although endogenous GA20 showed the greatest influence of light treatment, metabolism of [3H]GA20 and of [3H]GA1 was only slightly influenced by light intensity, suggesting that neither 2β- nor 3β-hydroxylation were points of metabolic regulation. The results of this study indicate that GAs control shoot elongation but are not directly involved in the regulation of shoot dry weight in Brassica. The study also suggests a role of GAs in photomorphogenesis, serving as an intermediate between light condition and shoot elongation response. Received: 18 June 1998 / Accepted: 29 July 1998  相似文献   

11.
A fluidized-bed reactor (FBR) was used to enrich an aerobic chlorophenol-degrading microbial culture. Long-term continuous-flow operation with low effluent concentrations selected oligotrophic microorganisms producing good-quality effluent for pentachlorophenol(PCP)-contaminated water. PCP biodegradation kinetics was studied using this FBR enrichment culture. The results from FBR batch experiments were modeled using a modified Haldane equation, which resulted in the following kinetic constants: q max = 0.41 mg PCP mg protein−1 day−1, K S = 16 μg l−1, K i = 5.3 mg l−1, and n = 3.5. These results show that the culture has a high affinity for PCP but is also inhibited by relatively low PCP concentrations (above 1.1 mg PCP l−1). This enrichment culture was maintained over 1 year of continuous-flow operation with PCP as the sole source of carbon and energy. During continuous-flow operation, effluent concentrations below 2 μg l−1 were achieved at 268 min hydraulic retention time (t HR) and 2.5 mg PCP l−1 feed concentration. An increase in loading rate by decreasing t HR did not significantly deteriorate the effluent quality until a t HR decrease from 30 min to 21 min resulted in process failure. Recovery from process failure was slow. Decreasing the feed PCP concentration and increasing t HR resulted in an improved process recovery. Received: 10 October 1996 / Received revision: 21 January 1997 / Accepted: 24 January 1997  相似文献   

12.
The participation of cyclic nucleotide-dependent intracellular signalling pathways in the pigment translocation induced by pigment-dispersing hormone (α -PDH) or pigment-concentrating hormone (PCH) was investigated in the erythrophores of the freshwater shrimp, Macrobrachium potiuna. Cholera toxin, forskolin and dibutyryl cyclic adenosine 3′5′ monophosphate (dbcAMP) were able to induce pigment dispersion with effective agonist concentrations for half maximal response (EC50 s) of 2.8 · 10−11 mol · l−1, 7.0 · 10−7 mol · l−1 and 3.3 · 10−7 mol · l−1, respectively. KT5720 (10−7 mol · l−1 and 10−6 mol · l−1) significantly shifted the dose response curve to α -PDH to the right. Dibutyryl cyclic guanosine 3′5′ monophosphate (dbcGMP) was ineffective in inducing either pigment aggregation or dispersion. 2′5′ dideoxyadenosine (DDA) and SQ22,536 essentially elicit a pigment-aggregating response in a dose-dependent manner. These effects were not due to the activation of purinergic receptors, since concentrations up to 10−4 mol · l−1 of adenosine and adenosine triphosphate (ATP), and up to 10−3 mol · l−1 of uracil triphosphate (UTP) did not elicit pigment aggregation. In order to verify if PCH decreased cyclic adenosine 3′5′ monophosphate (cAMP) levels, cumulative dose-response curves to PCH in the absence and presence of pertussis toxin and 8-MOM-IBMX were determined. However, neither drug significantly affected PCH activity. The levels of cAMP in the integument cells of M. potiuna were significantly increased (P < 0.05) by α -PDH (10−7 mol · l−1) and forskolin (10−6 mol · l−1), but were not affected by PCH (10−7 or 10−10 mol · l−1). In conclusion, α -PDH seems to elicit pigment dispersion through the activation of a Gs-protein coupled receptor resulting in cAMP increase and cAMP-dependent protein kinase (PKA) activation. Furthermore, although a decrease in cAMP was assumed to be responsible in turn for the action of PCH, such a decrease could not be directly demonstrated. Accepted: 11 August 1998  相似文献   

13.
Lolium temulentum L. Ba 3081 was grown hydroponically in air (350 μmol mol−1 CO2) and elevated CO2 (700 μmol mol−1 CO2) at two irradiances (150 and 500 μmol m−2 s−1) for 35 days at which point the plants were harvested. Elevated CO2 did not modify relative growth rate or biomass at either irradiance. Foliar carbon-to-nitrogen ratios were decreased at elevated CO2 and plants had a greater number of shorter tillers, particularly at the lower growth irradiance. Both light-limited and light-saturated rates of photosynthesis were stimulated. The amount of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) protein was increased at elevated CO2, but maximum extractable Rubisco activities were not significantly increased. A pronounced decrease in the Rubisco activation state was found with CO2 enrichment, particularly at the higher growth irradiance. Elevated-CO2-induced changes in leaf carbohydrate composition were small in comparison to those caused by changes in irradiance. No CO2-dependent effects on fructan biosynthesis were observed. Leaf respiration rates were increased by 68% in plants grown with CO2 enrichment and low light. We conclude that high CO2 will only result in increased biomass if total light input favourably increases the photosynthesis-to-respiration ratio. At low irradiances, biomass is more limited by increased rates of respiration than by CO2-induced enhancement of photosynthesis. Received: 23 February 1999 / Accepted: 15 June 1999  相似文献   

14.
Sitbon F  Astot C  Edlund A  Crozier A  Sandberg G 《Planta》2000,211(5):715-721
A quantitative study of indole-3-acetic acid (IAA) turnover, and the contribution of tryptophan-dependent and tryptophan-independent IAA-biosynthesis pathways, was carried out using protoplast preparations and shoot apices obtained from wild-type and transgenic, IAA-overproducing tobacco (Nicotiana tabacum L.) plants, during a phase of growth when the level of endogenous IAA was stable. Based on the rate of disappearance of [13C6]IAA, the half-life of the IAA pool was calculated to be 1.1 h in wild-type protoplasts and 0.8 h in protoplasts from the IAA-overproducing line, corresponding to metabolic rates of 59 and 160 pg IAA (μg Chl)−1 h−1, respectively. The rate of conversion of tryptophan to IAA was 15 pg IAA (μg Chl)−1 h−1 in wild-type protoplasts and 101 pg IAA (μg Chl)−1 h−1 in protoplasts from IAA-overproducing plants. In both instances, IAA was metabolised more rapidly than it was synthesised from tryptophan. As the endogenous IAA pools were in a steady state, these findings indicate that IAA biosynthesis via the tryptophan-independent pathway was 44 pg IAA (μg Chl)−1 h−1 and 59 pg IAA (μg Chl)−1 h−1, respectively, in the wild-type and transformed protoplast preparations. In a parallel study with apical shoot tissue, the presumed site of IAA biosynthesis, the rate of tryptophan-dependent IAA biosynthesis exceeded the rate of metabolism of [13C6]IAA despite the steady state of the endogenous IAA pool. The most likely explanation for this anomaly is that, unlike the protoplast system, injection of substrates into the apical tissues did not result in uniform distribution of label, and that at least some of the [2H5]tryptophan was metabolised in compartments not normally active in IAA biosynthesis. This demonstrates the importance of using experimental systems where labelling of the precursor pool can be strictly controlled. Received: 18 January 2000 / Accepted 24 February 2000  相似文献   

15.
 To test the hypothesis that the contribution of phosphoribulokinase (PRK) to the control of photosynthesis changes depending on the light environment of the plant, the response of transgenic tobacco (Nicotiana tabacum L.) transformed with antisense PRK constructs to irradiance was determined. In plants grown under low irradiance (330 μmol m−2 s−1) steady-state photosynthesis was limited in plants with decreased PRK activity upon exposure to higher irradiance, with a control coefficient of PRK for CO2 assimilation of 0.25 at and above 800 μmol m−2 s−1. The flux control coefficient of PRK for steady-state CO2 assimilation was zero, however, at all irradiances in plant material grown at 800 μmol m−2 s−1 and in plants grown in a glasshouse during mid-summer (alternating shade and sun 300–1600 μmol m−2 s−1). To explain these differences between plants grown under low and high irradiances, Calvin cycle enzyme activities and metabolite content were determined. Activities of PRK and other non-equilibrium Calvin cycle enzymes fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase and ribulose-1,5-bisphosphate carboxylase-oxygenase were twofold higher in plants grown at 800 μmol m−2 s−1 or in the glasshouse than in plants grown at 330 μmol m−2 s−1. Activities of equilibrium enzymes transketolase, aldolase, ribulose-5-phosphate epimerase and isomerase were very similar under all growth irradiances. The flux control coefficient of 0.25 in plants grown at 330 μmol m−2 s−1 can be explained because low ribulose-5-phosphate content in combination with low PRK activity limits the synthesis of ribulose-1,5-bisphosphate. This limitation is overcome in high-light-grown plants because of the large relative increase in activities of sedoheptulose-1,7-bisphosphatase and fructose-1,6-bisphosphatase under these conditions, which facilitates the synthesis of larger amounts of ribulose-5-phosphate. This potential limitation will have maintained evolutionary selection pressure for high concentrations of PRK within the chloroplast. Received: 15 November 1999 / Accepted: 27 January 2000  相似文献   

16.
The kinetics of biomass formation, D-xylose utilization, and mixed substrate utilization were determined in a chemostat using the yeast Candida shehatae. The maximum growth rate of C. shehatae grown aerobically on D-xylose was 0.42 h−1 and the Monod constant, K s, was 0.06 g L−1. The biomass yield, Y {X/S}, ranged from 0.40 to 0.50 g g−1 over a dilution rate range of 0.2–0.3 h−1, when C. shehatae was grown on pure D-xylose. Mixtures of D-xylose and glucose (∼1 : 1) were simultaneously utilized over a dilution rate from 0.15 to 0.35 h−1 at pH 3.5 and 4.5, but pH 3.5 reduced μmax and reduced the dilution rate range over which D-xylose was utilized in the presence of glucose. At pH 4.5, μmax was not reduced with the mixed sugar feed and the overall or lumped K s value was not significantly increased (0.058 g L−1 vs 0.06 g L−1), when compared to a pure D-xylose feed. Kinetic data indicate that C. shehatae is an excellent candidate for chemostat production of value added products from renewable carbon sources, since simultaneous mixed substrate utilization was observed over a wide range of growth rates on a 1 : 1 mixture of glucose and D-xylose. Received 21 August 1997/ Accepted in revised form 28 May 1998  相似文献   

17.
 During the isolation of mutations in the heat-inducible hsp70-1 gene of Neurospora crassa by RIP (repeat-induced point mutations), several transformants were generated by electroporation of conidia with a plasmid harboring an incomplete copy of this gene. One isolate, designated E-45, containing ectopically integrated hsp70-1 DNA, exhibited a slow growth rate, low-temperature sensitivity, constitutive thermotolerance (without prior heat shock), and high constitutive peroxidase activity. The constitutive form of peroxidase (CP) was distinguishable from the heat-inducible form (HIP) by immunoinactivation employing polyclonal antiserum against the latter enzyme and by electrophoretic resolution in nondenaturing polyacrylamide gels. This enzyme was purified to near homogeneity and some of its properties examined. The relative molecular mass of native CP was in the range of 118–136 kDa, as estimated by gel filtration analysis on size exclusion matrices, whereas SDS-PAGE analysis yielded a size of ∼37 kDa for the polypeptide. Substrate saturation kinetics studies were conducted using ABTS [2,2′-azino-bis (3-ethylbenzthiazole-6-sulfonic acid)] and H2O2 as substrates: K m, V max, and K cat values for H2O2 were ∼22 μM, ∼447 nmol mg−1, and 0.33 s−1, respectively, and those for ABTS were ∼55 μM, ∼453 nmol mg−1, and 0.3 s−1, respectively. Guaiacol was not used as a substrate by this enzyme. CP peroxidase was shown to be a heme-containing enzyme, stable at temperatures up to 58°C. Received: August 5, 2002 / Accepted: January 22, 2003 Acknowledgments This work was supported by an operating grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (to M.K.). The financial support provided to A. M. in the form of a graduate studentship award by the AHFMR (Alberta Heritage Foundation for Medical Research) and of a graduate teaching assistantship to A. S. by the Department of Biological Sciences, University of Calgary, is gratefully acknowledged. Correspondence to:M. Kapoor  相似文献   

18.
Biodegradation of propanol and isopropanol by a mixed microbial consortium   总被引:1,自引:0,他引:1  
The aerobic biodegradation of high concentrations of 1-propanol and 2-propanol (IPA) by a mixed microbial consortium was investigated. Solvent concentrations were one order of magnitude greater than any previously reported in the literature. The consortium utilized these solvents as their sole carbon source to a maximum cell density of 2.4 × 109 cells ml−1. Enrichment experiments with propanol or IPA as carbon sources were carried out in batch culture and maximum specific growth rates (μmax) calculated. At 20 °C, μ max values were calculated to be 0.0305 h−1 and 0.1093 h−1 on 1% (v/v) IPA and 1-propanol, respectively. Growth on propanol and IPA was carried out between temperatures of 10 °C and 45 °C. Temperature shock responses by the microbial consortium at temperatures above 45 °C were demonstrated by considerable cell flocculation. An increase in propanol substrate concentration from 1% (v/v) to 2% (v/v) decreased the μ max from 0.1093 h−1 to 0.0715 h−1. Maximum achievable biodegradation rates of propanol and IPA were 6.11 × 10−3% (v/v) h−1 and 2.72 × 10−3% (v/v) h−1, respectively. Generation of acetone during IPA biodegradation commenced at 264 h and reached a maximum concentration of 0.4% (v/v). The results demonstrate the potential of mixed microbial consortia in the bioremediation of solvent-containing waste streams. Received: 14 December 1999 / Received revision: 3 April 2000 / Accepted: 7 April 2000  相似文献   

19.
A thermostable β-galactosidase was produced extracellularly by a thermophilic Rhizomucor sp, with maximum enzyme activity (0.21 U mg−1) after 4 days under submerged fermentation condition (SmF). Solid state fermentation (SSF) resulted in a nine-fold increase in enzyme activity (2.04 U mg−1). The temperature range for production of the enzyme was 38–55°C with maximum activity at 45°C. The optimum pH and temperature for the partially purified enzyme was 4.5 and 60°C, respectively. The enzyme retained its original activity on incubation at 60°C up to 1 h. Divalent cations like Co2+, Mn2+, Fe2+ and Zn2+ had strong inhibitory effects on the enzyme activity. The K m and V max for p-nitrophenyl-β- D-galactopyranoside and o-nitrophenyl-β - D-galactopyranoside were 0.39 mM, 0.785 mM and 232.1 mmol min−1 mg−1 respectively. The K m and V max for the natural substrate lactose were 66.66 μM and 0.20 μ mol min−1 mg−1. Received 10 March 1997/ Accepted in revised form 17 July 1997  相似文献   

20.
A mixed culture of microorganisms able to utilize 4,6-dinitro-ortho-cresol (DNOC) as the sole source of carbon, nitrogen and energy was isolated from soil contaminated with pesticides and from activated sludge. DNOC was decomposed aerobically in batch cultures as well as in fixed-bed column reactors. Between 65% and 84% of the substrate nitrogen was released as nitrate into the medium, and 61% of the carbon from uniformly 14C-labelled DNOC was recovered as 14CO2. The mixed microbial culture also decomposed 4-nitrophenol and 2,4-dinitrophenol but not 2,3-dinitrophenol, 2,6-dinitrophenol, 2,4-dinitrotoluene, 2,4-dinitrobenzoic acid or 2-sec-butyl-4,6-dinitrophenol (Dinoseb). Maximal degradation rates for DNOC by the bacterial biofilm immobilized on glass beads in fixed-bed column reactors were 30 mmol day−1 (l reactor volume)−1, leaving an effluent concentration of less than 5 μg l−1 DNOC in the outflowing medium. The apparent K s value of the immobilized mixed culture for DNOC was 17 μM. Degradation was inhibited at DNOC concentrations above 30 μM and it ceased at 340 μM, possibly because of the uncoupling action of the nitroaromatic compound on the cellular energy-transducing mechanism. Received: 27 March 1997 / Received revision: 5 June 1997 / Accepted: 7 June 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号