首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The two sponge classes, Hexactinellida and Demospongiae, comprise a skeleton that is composed of siliceous skeletal elements (spicules). Spicule growth proceeds by appositional layering of lamellae that consist of silica nanoparticles, which are synthesized via the sponge-specific enzyme silicatein. While in demosponges during maturation the lamellae consolidate to a solid rod, the lamellar organization of hexactinellid spicules largely persists. However, the innermost lamellae, near the spicule core, can also fuse to a solid axial cylinder. Similar to the fusion of siliceous nanoparticles and lamella, in several hexactinellid species individual spicules unify during sintering-like processes. Here, we study the different stages of a process that we termed bio-sintering, within the giant basal spicule (GBS) of Monorhaphis chuni. During this study, a major GBS protein component (27 kDa) was isolated and analyzed by MALDI-TOF-MS. The sequences were used to isolate and clone the encoding cDNA via degenerate primer PCR. Bioinformatic analyses revealed a significant sequence homology to silicatein. In addition, the native GBS protein was able to mediate bio-silica synthesis in vitro. We conclude that the syntheses of bio-silica in M. chuni, and the subsequent fusion of nanoparticles to lamellae, and finally to spicules, are enzymatically-driven by a silicatein-like protein. In addition, evidence is now presented that in hexactinellids those fusions involve sintering-like processes.  相似文献   

2.
The siliceous sponge Monorhaphis chuni (Hexactinellida) synthesizes the largest biosilica structures on earth (3 m). Scanning electron microscopy has shown that these spicules are regularly composed of concentrically arranged lamellae (width: 3–10 μm). Between 400 and 600 lamellae have been counted in one giant basal spicule. An axial canal (diameter: ~2 μm) is located in the center of the spicules; it harbors the axial filament and is surrounded by an axial cylinder (100–150 μm) of electron-dense homogeneous silica. During dissolution of the spicules with hydrofluoric acid, the axial filament is first released followed by the release of a proteinaceous tubule. Two major proteins (150 kDa and 35 kDa) have been visualized, together with a 24-kDa protein that cross-reacts with antibodies against silicatein. The spicules are surrounded by a collagen net, and the existence of a hexactinellidan collagen gene has been demonstrated by cloning it from Aphrocallistes vastus. During the axial growth of the spicules, silicatein or the silicatein-related protein is proposed to become associated with the surface of the spicules and to be finally internalized through the apical opening to associate with the axial filament. Based on the data gathered here, we suggest that, in the Hexactinellida, the growth of the spicules is mediated by silicatein or by a silicatein-related protein, with the orientation of biosilica deposition being controlled by lectin and collagen. Carsten Eckert was previously with the Museum für Naturkunde, Invalidenstrasse 43, 10115 Berlin, Germany. The collagen sequence from Aphrocallistes vastus reported here, viz., [COL_APHRO] APHVACOL (accession number AM411124), has been deposited in the EMBL/GenBank data base. This work was supported by grants from the European Commission, the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin), the National Natural Science Foundation of China (grant no. 50402023), and the International Human Frontier Science Program.  相似文献   

3.
Biomineralization processes are characterized by controlled deposition of inorganic polymers/minerals mediated by functional groups linked to organic templates. One metazoan taxon, the siliceous sponges, has utilized these principles and even gained the ability to form these polymers/minerals by an enzymatic mechanism using silicateins. Silicateins are the dominant protein species present in the axial canal of the skeletal elements of the siliceous sponges, the spicules, where they form the axial filament. Silicateins also represent a major part of the organic components of the silica lamellae, which are cylindrically arranged around the axial canal. With the demosponge Suberites domuncula as a model, quantitative enzymatic studies revealed that both the native and the recombinant enzyme display in vitro the same biosilica-forming activity as the enzyme involved in spicule formation in vivo. Monomeric silicatein molecules assemble into filaments via fractal intermediates, which are stabilized by the silicatein-interacting protein silintaphin-1. Besides the silicateins, a silica-degrading enzyme silicase acting as a catabolic enzyme has been identified. Growth of spicules proceeds in vivo in two directions: first, by axial growth, a process that is controlled by evagination of cell protrusions and mediated by the axial filament-associated silicateins; and second, by appositional growth, which is driven by the extraspicular silicateins, a process that provides the spicules with their final size and morphology. This radial layer-by-layer accretion is directed by organic cylinders that are formed around the growing spicule and consist of galectin and silicatein. The cellular interplay that controls the morphogenetic processes during spiculogenesis is outlined.  相似文献   

4.
Recently it has been discovered that the formation of the siliceous spicules of Demospongiae proceeds enzymatically (via silicatein) and occurs matrix guided (on galectin strings). In addition, it could be demonstrated that silicatein, if immobilized onto inorganic surfaces, provides the template for the synthesis of biosilica. In order to understand the formation of spicules in the intact organism, detailed studies with primmorphs from Suberites domuncula have been performed. The demosponge spicules are formed from several silica lamellae which are concentrically arranged around the axial canal, harboring the axial filament composed of silicatein. Now we show that the appositional growth of the spicules in radial and longitudinal direction proceeds in the extracellular space along hollow cylinders; their surfaces are formed by silicatein. The extracellularly located spicules are surrounded by sclerocytes which are filled with both electron-dense and electron-poor vesicles; energy dispersive X-ray analysis/scanning electron microscopical studies revealed that the electron-dense vesicles are filled of silicon/silica and therefore termed silicasomes. The release of the content of the silicasomes into the hollow cylinder suggests that the newly formed silica lamella originate there; in addition the data are compatible with the view that the silicatein molecules, attached at the centripetal and centrifugal surfaces, mediate biosilica formation. In a chemical/biomimetical approach silicatein is linked onto the organic material-free spicules after their functionalization with aminopropyltriethoxysilane [amino groups]-poly(acetoxime methacrylate) [reactive ester polymer]-N(epsilon)-benzyloxycarbonyl L-lysine tert-butyl ester-Ni(II); finally His-tagged silicatein is immobilized. The matrix-bound enzyme synthesized a new biosilica lamella. These bioinspired findings are considered as the basis for a technical use/application/utilization of hollow cylinders formed by matrix-guided silicatein molecules for the biocatalytic synthesis of nanostructured tubes.  相似文献   

5.
6.
The siliceous spicules of sponges (Porifera) are synthesized by the enzyme silicatein. This protein and its gene have been identified so far in the Demospongiae, e.g., Tethya aurantium and Suberites domuncula. In the Hexactinellida, the second class of siliceous sponges, the mechanism of synthesis of the largest bio-silica structures on Earth remains obscure. Here, we describe the morphology of the spicules (diactines and stauractines) of the hexactinellid Crateromorpha meyeri. These spicules are composed of silica lamellae concentrically arranged around a central axial canal and contain proteinaceous sheaths (within the siliceous mantel) and proteinaceous axial filaments (within the axial canal). The major protein in the spicules is a 24-kDa protein that strongly reacts with anti-silicatein antibodies in Western blots. Its cDNA has been successfully cloned; the deduced hexactinellid silicatein comprises, in addition to the characteristic catalytic triad amino acids Ser-His-Asn and the "conventional" serine cluster, a "hexactinellid C. meyeri-specific" Ser cluster. We show that anti-silicatein antibodies react specifically with the proteinaceous matrix of the C. meyeri spicules. The characterization of silicatein at the genetic level should contribute to an understanding of the molecular/biochemical mechanism of spiculogenesis in Hexactinellida. These data also indicate that silicatein is an autapomorphic molecule common to both classes of siliceous sponges.  相似文献   

7.
The siliceous skeleton of demosponges is constructed of spicules. We have studied the formation of spicules in primmorphs from Suberites domuncula. Scanning electron microscopy and transmission electron-microscopical (TEM) analyses have revealed, in the center of the spicules, an axial canal that is 0.3–1.6 m wide and filled with an axial filament. This filament is composed of the enzyme silicatein, which synthesizes the spicules. TEM analysis has shown that spicule formation starts intracellularly and ends extracellularly in the mesohyl. At the initial stage, the axial canal is composed only of silicatein, whereas membranous structures and fibrils (10–15 nm in width) can later also be identified, suggesting that intracellular components protrude into the axial canal. Antibodies against silicatein have been applied for Western blotting; intracellularly, silicatein is processed to the mature form (24 kDa), whereas the pro-enzyme with the propeptide (33 kDa) is detected extracellularly. Silicatein undergoes phosphorylation at five sites. Immunohistological analysis has shown that silicatein exists in the axial canal (axial filament) and on the surface of the spicules, suggesting that they grow by apposition. Finally, we have demonstrated that the enzymic reaction of silicatein is inhibited by anti-silicatein antibodies. These data provide, for the first time, a comprehensive outline of spicule formation.This work was supported by grants from the European Commission (SILIBIOTEC), the Deutsche Forschungsgemeinschaft, the Bundesministerium für Bildung und Forschung Germany (project: Center of Excellence BIOTECmarin) and the International Human Frontier Science Program.  相似文献   

8.
The giant basal spicules of the siliceous sponges Monorhaphis chuni and Monorhaphis intermedia (Hexactinellida) represent the largest biosilica structures on earth (up to 3m long). Here we describe the construction (lamellar organization) of these spicules and of the comitalia and highlight their organic matrix in order to understand their mechanical properties. The spicules display three distinct regions built of biosilica: (i) the outer lamellar zone (radius: >300 microm), (ii) the bulky axial cylinder (radius: <75 microm), and (iii) the central axial canal (diameter: <2 microm) with its organic axial filament. The spicules are loosely covered with a collagen net which is regularly perforated by 7-10 microm large holes; the net can be silicified. The silica layers forming the lamellar zone are approximately 5 microm thick; the central axial cylinder appears to be composed of almost solid silica which becomes porous after etching with hydrofluoric acid (HF). Dissolution of a complete spicule discloses its complex structure with distinct lamellae in the outer zone (lamellar coating) and a more resistant central part (axial barrel). Rapidly after the release of the organic coating from the lamellar zone the protein layers disintegrate to form irregular clumps/aggregates. In contrast, the proteinaceous axial barrel, hidden in the siliceous axial cylinder, is set up by rope-like filaments. Biochemical analysis revealed that the (dominant) molecule of the lamellar coating is a 27-kDa protein which displays catalytic, proteolytic activity. High resolution electron microscopic analysis showed that this protein is arranged within the lamellae and stabilizes these surfaces by palisade-like pillars. The mechanical behavior of the spicules was analyzed by a 3-point bending assay, coupled with scanning electron microscopy. The load-extension curve of the spicule shows a biphasic breakage/cracking pattern. The outer lamellar zone cracks in several distinct steps showing high resistance in concert with comparably low elasticity, while the axial cylinder breaks with high elasticity and lower stiffness. The complex bioorganic/inorganic hybrid composition and structure of the Monorhaphis spicules might provide the blueprint for the synthesis of bio-inspired material, with unusual mechanical properties (strength, stiffness) without losing the exceptional properties of optical transmission.  相似文献   

9.
The skeleton of the siliceous sponges (Porifera: Hexactinellida and Demospongiae) is supported by spicules composed of bio-silica. In the axial canals of megascleres, harboring the axial filaments, three isoforms of the enzyme silicatein (-alpha, -beta and -gamma) have been identified until now, using the demosponges Tethya aurantium and Suberites domuncula. Here we describe the composition of the proteinaceous components of the axial filament from small spicules, the microscleres, in the demosponge Geodia cydonium that possesses megascleres and microscleres. The morphology of the different spicule types is described. Also in G. cydonium the synthesis of the spicules starts intracellularly and they are subsequently extruded to the extracellular space. In contrast to the composition of the silicateins in the megascleres (isoforms: -alpha, -beta and -gamma), the axial filaments of the microscleres contain only one form of silicatein, termed silicatein-alpha/beta, with a size of 25kDa. Silicatein-alpha/beta undergoes three phosphorylation steps. The gene encoding silicatein-alpha/beta was identified and found to comprise the same characteristic sites, described previously for silicateins-alpha or -beta. It is hypothesized, that the different composition of the axial filaments, with respect to silicateins, contributes to the morphology of the different types of spicules.  相似文献   

10.
Germanium (Ge), in the form of germanic acid, at a Ge/Si molar ratio of 1.0 inhibits gemmule development and silica deposition in the marine demosponge Suberites domuncula. Lower Ge/Si ratios inhibit the growth in length of the silica spicules (tylostyles) producing short structures, but with relatively normal morphology and close to normal width; spherical protuberances occasionally occur on these spicules. A few of the short spicules possess completely round rather than pointed tips. Many of the latter develop when Ge is added (pulsed) to growing animals, thus inducing a change in spicule type. These results indicate that the growth in length of the axial filament is more sensitive to Ge inhibition than is silica deposition and that pointed spicule tips normally develop because the growth of the axial filament at the spicule tip is more rapid than silica deposition. Newly formed spicules initiate silica deposition at the spicule head but the absence of Ge-induced bulbs as in freshwater spicules (oxeas) leaves open the question of whether there is a silicification center(s) present in Suberites tylostyles. The morphogenesis of freshwater oxeas and of marine tyolstyles appears fundamentally different-bidirectional growth in the former and unidirectional growth in the latter. X-ray analysis demonstrate relatively uniform Ge incorporation into the silica spicules with considerable variation from spicule to spicule in the incorporated level. Increased silicic acid concentration induces the formation of siliceous spheres, suggesting that the axial filament becomes prematurely encased in silica.  相似文献   

11.
Primmorphs (a three-dimensional sponge primary cell culture system) have been revealed to be a cell/tissue nano-factory for the production of tailor-made hybrid nanostructures. Growth of primmorphs is stimulated by the presence of a titanium alkoxide precursor tolerating titania (TiO2) concentrations up to 250 μM. The presence and activity of silicatein in primmorphs has been analyzed by gel electrophoresis and Western blotting. Results of studies by scanning transmission electron microscopy with energy-dispersive X-ray spectroscopy have revealed silica and titania to be co-localized on nanosized spicules. Our findings suggest that the incorporation of titania into the nanosized spicule is enzymatically mediated via active silicatein in an orchestrated mechanism.  相似文献   

12.
Cao X  Fu W  Yu X  Zhang W 《Cell and tissue research》2007,329(3):595-608
To characterize the formation of silica spicules, the dynamics of spiculogenesis of an intertidal marine sponge Hymeniacidon perlevis (Montagu 1818) (Porifera: Demospongiae) were investigated by measuring the gene expression of silicatein (the enzyme responsible for spicule silicification) and the dimensional changes of spicules during the developmental process of individual sponges and in cell cultures of primmorphs of archaeocyte-dominant cell populations. The different developmental stages of spicules were documented by time-lapse microscopy and observed by transmission electron microscopy during a 1-month culture period. During its annual life cycle, H. perlevis has four different developmental stages: dormancy, resuscitation, bloom, and decline. Field-grown individual sponge samples at different stages were collected over 7 months (March to September 2005). The dimensions of the silica spicules from these samples were microscopically measured and statistically analyzed. This analysis and the material properties of the spicules allowed them to be classified into four groups representing the different developmental stages of spiculogenesis. Silicatein expression in the bloom stage was more than 100 times higher than that in the other stages and was correlated with the spicule developmental stage. The trend of spicule formation in field-grown sponges was consistent with the trend in cell culture. A new parameter, the maturation degree (MD) of spicules (defined as the ratio of actual to theoretical silica deposition of mature spicules), was introduced to quantify spicule development. Silica spiculogenesis during H. perlevis development was delineated by comparing MD and silicatein expression.  相似文献   

13.
The formation of spicules is a complicated morphogenetic process in sponges (phylum Porifera). The primmorph system was used to demonstrate that in the demosponge Suberites domuncula the synthesis of the siliceous spicules starts intracellularly and is dependent on the concentration of silicic acid. To understand spicule formation, a cluster of genes was isolated. In the center of this cluster is the silicatein gene, which codes for the enzyme that synthesizes spicules. This gene is flanked by an ankyrin repeat gene at one side and by a tumor necrosis factor receptor-associated factor and a protein kinase gene at the other side. All genes are strongly expressed in primmorphs and intact animals after exposure to silicic acid, and this expression is restricted to those areas where the spicule formation starts or where spicules are maintained in the animals. Our observations suggest that in S. domuncula a coordinated expression of physically linked genes is essential for the synthesis of the major skeletal elements.  相似文献   

14.
Early fossil sponges offer a direct window onto the evolutionary emergence of animals, but insights are limited by the paucity of characters preserved in the conventional fossil record. Here, a new preservational mode for sponge spicules is reported from the lower Cambrian Forteau Formation (Newfoundland, Canada), prompting a re-examination of proposed homologies and sponge inter-relationships. The spicules occur as wholly carbonaceous films, and are interpreted as the remains of robust organic spicule sheaths. Comparable sheaths are restricted among living taxa to calcarean sponges, although the symmetries of the fossil spicules are characteristic of hexactinellid sponges. A similar extinct character combination has been documented in the Burgess Shale fossil Eiffelia. Interpreting the shared characters as homologous implies complex patterns of spicule evolution, but an alternative interpretation as convergent autapomorphies is more parsimonious. In light of the mutually exclusive distributions of these same characters among the crown groups, this result suggests that sponges exhibited an early episode of disparity expansion followed by comparatively constrained evolution, a pattern shared with many other metazoans but obscured by the conventional fossil record of sponges.  相似文献   

15.
Summary In all cases an organic axial filament within the silica spicules of Stelletta grubii forms the core of the major axes of the glass. In the small, star-shaped silica spicules (asters) the filament is shown for the first time to be radial with an enlarged center; in the large four-rayed spicules (triaenes) it is four-rayed; and in the large single-rayed spicules (oxeas) the filament is single-rayed. In situ, the filament is not dissolved by boiling nitric acid and thus is apparently protected by encasement within the glass which can also be stratified. The small silica asters are formed by single cells which resemble the so-called spherulous cells of other sponges. The very large size of triaenes and oxeas suggests that they may possibly be formed by more than one cell. The diameter of the filament in the much smaller asters is much narrower than the filament in the larger spicules, indicating a possible relationship between filament diameter and spicule diameter. While the axial filament in larger spicules frequently has a triangular cross-section it can also be hexaognal. Some aster filaments also retain a close to hexagonal cross-section. Filaments freed from large spicules by hydrofluoric acid display a complex morphology; possibly there is an internal silicified core. Some reported aspects of filament morphology are, however, probably artefacts of desilicification with hydrofluoric acid. Offprint requests to: T.L. Simpson, Department of Biology, University of Hartford, West Harford, Connecticut 06117, USA (Permanent affiliation)  相似文献   

16.
Lake Baikal harbors the largest diversity of sponge species [phylum Porifera] among all freshwater biotopes. The abundantly occurring species Lubomirskia baicalensis was used to study the seasonal silicatein metabolism; the spicules of this species have an unusually thick axial filament, consisting of silicatein, which remains constant in diameter during their growth. In the course of maturation, the size of the silicic acid shell grows, until the final diameter of the spicules of about 8 microm is reached. The seasonal content of silicatein was assessed by use of antibodies raised against silicatein; they stained specifically the axial filaments. In addition we determined, by application of the enzyme-linked immunosorbent assay system, that the proteinaceous content of the spicules, the silicatein, increases from spring to late summer by 8-fold. As molecular markers to quantify the seasonal changes in expression levels of genes coding for proteins/enzymes, the genes for the calumenin-like protein and the kinesin-related protein, were selected. The expression of calumenin-like gene, involved in the intracellular signaling, is highest during September, whereas the expression of the kinesin-related protein does not change during the annual course. These results suggest that the highest metabolic activity of L. baicalensis occurs in late summer (September), in parallel with the highest accumulation of silicatein, a structural protein/enzyme of the spicules.  相似文献   

17.
Siliceous sponges can synthesize poly(silicate) for their spicules enzymatically using silicatein. We found that silicatein exists in silica-filled cell organelles (silicasomes) that transport the enzyme to the spicules. We show for the first time that recombinant silicatein acts as a silica polymerase and also as a silica esterase. The enzymatic polymerization/polycondensation of silicic acid follows a distinct course. In addition, we show that silicatein cleaves the ester-like bond in bis(p-aminophenoxy)-dimethylsilane. Enzymatic parameters for silica esterase activity are given. The reaction is completely blocked by sodium hexafluorosilicate and E-64. We consider that the dual function of silicatein (silica polymerase and silica esterase) will be useful for the rational synthesis of structured new silica biomaterials.  相似文献   

18.
深海六放海绵大骨针的结构与特性   总被引:4,自引:0,他引:4  
在海绵动物(多孔动物)中,六放海绵和寻常海绵为硅质骨骼.生活在深海(1 000 m)中的六放海绵是最古老的海绵动物,其中间单根海绵和春氏单根海绵有长达3 m的骨针,是地球上最长的生物硅结构.利用电子显微技术观测, 这些直径达8 mm的巨大根须骨针具有同心层状结构,其横截面显示明显的构造分界:中间为含有轴丝的轴管,外围是一50-150 μm厚的轴筒,最外面为区状区(300-500层,每层厚度3-5 μm).生物化学研究显示其主要的蛋白质为35 kD大分子,另外,还检测到23-24 kD 多肽,可能是硅蛋白相关蛋白.依据现有的红血球凝聚活性,从骨针提取物中也检测到了凝集素.由电子探针获得其化学成分主要为Si,K和Na.此外,骨针的光传输实验表明,该巨大根须骨针用作光纤可传输600 nm至1 400 nm范围的光,而滤掉小于600 nm的光(类似高通滤波器)和大于1 400 nm 的红外光(类似低通滤波器).另外,从六放海绵的空囊泡沫海绵中分离出一个基因并确证了其推导的编码蛋白序列,该蛋白编码一个光裂合酶相关蛋白,蛋白相似性比较结果显示属于光裂合酶相关蛋白中多细胞动物隐色素一类.基于以上数据给出了六放海绵硅质骨针形成的示意图.另外,由单根海绵骨针可作为波导传输光/电和/或化学信号,推断在海绵动物中有类似神经系统的网络系统[动物学报 53(3):557-569,2007].  相似文献   

19.
Attempts to understand the intricacies of biosilicification in sponges are hampered by difficulties in isolating and culturing their sclerocytes, which are specialized cells that wander at low density within the sponge body, and which are considered as being solely responsible for the secretion of siliceous skeletal structures (spicules). By investigating the homosclerophorid Corticium candelabrum, traditionally included in the class Demospongiae, we show that two abundant cell types of the epithelia (pinacocytes), in addition to sclerocytes, contain spicules intracellularly. The small size of these intracellular spicules, together with the ultrastructure of their silica layers, indicates that their silicification is unfinished and supports the idea that they are produced "in situ" by the epithelial cells rather than being incorporated from the intercellular mesohyl. The origin of small spicules that also occur (though rarely) within the nucleus of sclerocytes and the cytoplasm of choanocytes is more uncertain. Not only the location, but also the structure of spicules are unconventional in this sponge. Cross-sectioned spicules show a subcircular axial filament externally enveloped by a silica layer, followed by two concentric extra-axial organic layers, each being in turn surrounded by a silica ring. We interpret this structural pattern as the result of a distinctive three-step process, consisting of an initial (axial) silicification wave around the axial filament and two subsequent (extra-axial) silicification waves. These findings indicate that the cellular mechanisms of spicule production vary across sponges and reveal the need for a careful re-examination of the hitherto monophyletic state attributed to biosilicification within the phylum Porifera.  相似文献   

20.
The enzymatic-silicatein mediated formation of the skeletal elements, the spicules of siliceous sponges starts intracellularly and is completed extracellularly. With Suberites domuncula we show that the axial growth of the spicules proceeds in three phases: (I) formation of an axial canal; (II) evagination of a cell process into the axial canal, and (III) assembly of the axial filament composed of silicatein. During these phases the core part of the spicule is synthesized. Silicatein and its substrate silicate are stored in silicasomes, found both inside and outside of the cellular extension within the axial canal, as well as all around the spicule. The membranes of the silicasomes are interspersed by pores of ≈ 2 nm that are likely associated with aquaporin channels which are implicated in the hardening of the initial bio-silica products formed by silicatein. We can summarize the sequence of events that govern spicule formation as follows: differential GENETIC READOUT (of silicatein) → FRACTAL ASSOCIATION of the silicateins → EVAGINATION of cells by hydro-mechanical forces into the axial canal → and finally PROCESSIVE BIO-SILICA POLYCONDENSATION around the axial canal. We termed this process, occurring sequentially or in parallel, BIO-INORGANIC SELF-ORGANIZATION.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号