首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
灵芝孢子粉中核苷类成分分析   总被引:4,自引:3,他引:1  
本文利用高效液相色谱方法(HPLC)同时对灵芝孢子粉中的15种核苷类成分的含量进行测定。采用Ultimate AQ-C18(4.6mm×250mm,5μm)色谱柱,以甲醇和水为流动相进行梯度洗脱,流速1.0mL/min,检测波长259nm,柱温30℃,进样量10μL。方法学考察结果表明,该方法准确度高,稳定性、精密度、重现性好,适用于灵芝孢子粉中核苷类成分的测定分析。运用建立的方法对不同破壁时间、不同采收时期龙泉、奉化、大别山、黄山4个产区的灵芝孢子粉中的15种核苷类成分的含量进行测定。结果表明破壁处理对灵芝孢子粉中核苷类成分提取率的影响不大,不同产地的灵芝孢子粉中核苷类成分的组成和含量具有显著差异,且孢子粉中的核苷含量随着产粉时间的延长有所增加。各待测样品中均含有胞嘧啶、尿苷、腺嘌呤、鸟苷、腺苷等成分,其中尿苷、鸟苷、腺苷3种核苷的含量占总量的比例在待测样品中均达到70%以上,为灵芝孢子粉中的主要核苷类成分。  相似文献   

2.
为获得冬虫夏草菌固体发酵产分生孢子的最优工艺,以野生分离的冬虫夏草菌为材料,对其固体发酵产分生孢子的培养基及培养条件进行了研究。试验结果表明:泥炭土为最佳基础培养基,该培养基中冬虫夏草菌气生菌丝生长一般,但产分生孢子最多,可达4.2×103个/g;泥炭土培养基中添加0.1‰ IAA(吲哚乙酸)、0.1‰ IBA(吲哚丁酸)和0.1‰ NAA(萘乙酸)能促进冬虫夏草菌气生菌丝的生长和分生孢子的产生,其分生孢子达8.1×103个/g;该基础培养基中,冬虫夏草菌于18℃培养30d后,在10℃、相对湿度45%、蓝光照射进行诱导,分生孢子可达1.0×104个/g。本研究建立了一种大量获取冬虫夏草菌分生孢子的方法,为冬虫夏草繁育奠定了基础。  相似文献   

3.
本研究采用酿酒酵母发酵的方法对灵芝胞外多糖进行了降解,并对其产物在表观粘度、分子量、多糖得率和含量及单糖组成和生物活性等方面进行了系统比较和分析。结果表明,灵芝发酵胞外液经酿酒酵母培养后,所得胞外液的表观粘度明显降低,其中多糖的分子量也随酵母培养时间的延长出现下降趋势,大分子多糖的分子量从3.55×10 6g/mol下降到1.93×10 6g/mol,低分子多糖的分子量从6.18×10 4g/mol下降到3.11×10 4g/mol。多糖得率和含量测定结果显示,经酵母培养后,灵芝胞外液中20%乙醇沉淀所得20E组分得率明显降低,从2.43g/L下降到0.98g/L,但该组分多糖含量均较高,达到70%以上;而70%乙醇沉淀所得70E组分得率明显增加,达到1.87g/L。单糖组成分析表明,20E组分主要由葡萄糖组成,70E组分主要由甘露糖组成。各组分均表现出较好的与Dectin-1受体结合激活NF-κB增强免疫的活性,且经酿酒酵母发酵24h所得70E组分的活性最好。  相似文献   

4.
茶多糖是一种从茶叶中提取的酸性糖蛋白, 具有良好的抗氧化活性。以自由基清除率为指标, 分析皖西南地区夏秋茶多糖的抗氧化活性, 基于H2O2和EDTA-Fe2+建立的外源性羟基自由基(·OH)损伤细胞模型和PMA诱导内源性羟基自由基损伤模型, 进一步探讨茶多糖对自由基损伤的修复作用机制。结果表明, 茶多糖具有良好的体外抗氧化活性, 对DPPH·和·OH均具有较强的清除效果, EC50值分别为209.5和535.2 µg∙mL-1, 最大清除效率与Vc相当。细胞增殖实验表明, 外源性和内源性自由基氧化损伤模型中细胞存活率均随着茶多糖浓度的增加而升高, 在茶多糖浓度为800 µg∙mL-1时细胞存活率分别高达87.41%和85.84%, 且显著高于模型组(47.67%和48.03%)。在修复机制上, 利用激光共聚焦显微镜显影细胞内活性氧(ROS)分布以及荧光强度, 分析结果显示, 与模型组相比, 茶多糖对于细胞模型中外源和内源性ROS均具有明显的清除效果, 与体外抗氧化实验结果一致。茶多糖在体外表现出良好的自由基清除效率, 可在细胞水平上改善自由基损伤。该研究在细胞水平上揭示了茶多糖清除自由基的抗氧化损伤机制, 为后续进一步阐明茶多糖抗衰老作用奠定了基础。  相似文献   

5.
大庆新华湖藻类植物群落结构与环境因子的相关性   总被引:1,自引:0,他引:1  
肖智顺  林聪  杨双  刘妍  范亚文 《植物学报》2016,51(3):353-362
2014年5-10月对大庆新华湖藻类植物群落结构与环境因子的关系进行了初步研究, 为湖泊状况的动态监测提供基本数据。调查期间, 共发现藻类植物135种, 隶属5门63属, 其中硅藻门56种, 绿藻门49种, 蓝藻门15种, 裸藻门12种, 甲藻门3种。新华湖优势种共24种, 包括绿藻门14种, 蓝藻门6种, 硅藻门3种, 裸藻门1种, 且季节更替明显, 可以初步推断新华湖藻类植物群落组成为绿藻-硅藻型。新华湖藻类植物细胞丰度变化范围为37.57×106-72.37×106 cells·L-1, 平均值为52.13×106 cells·L-1。多样性指数变化为: Simpson生态优势度指数(D)在0.642-0.928之间, Shannon-Weaver多样性指数(H')在1.698-3.1之间, Pielou均匀度指数(J)在0.324-0.561之间, 3种指数变化趋势一致, 均在秋季最高, 春季最低。研究表明, 水温、pH值、总磷、生化需氧量、溶解氧和水动力是影响新华湖藻类植物群落结构的主要因子。  相似文献   

6.
已有研究报道灵芝栽培生长的最适pH在中性偏酸环境,在碱性范围的生长及代谢情况鲜见报道。本研究主要探究广泛pH对灵芝液态发酵代谢物及其抗氧化活性的影响。采用摇瓶液态培养后分析代谢物中灵芝三萜、胞内外多糖、菌丝体蛋白及抗氧化活性等指标,系统比较灵芝菌丝体在pH值2-11的生长和代谢情况。研究结果表明,灵芝菌丝体生长、合成灵芝三萜、胞内多糖、30E胞外多糖、菌丝体蛋白和菌丝体水解氨基酸的最适pH值分别为10、3、2、7、2和2。对应结果分别为17.13 g/L、33.86 mg/g、72.73 mg/g、7.86 g/L、71.42 mg/g和107.10 mg/g。比对照分别提高28.5%、77.3%、22.4%、96.5%、97.1%和70.8%。胞内多糖组分1和组分2最高分子量均在初始pH 4,分别为1.016×108 g/mol和9.280×104 g/mol,胞外多糖组分1最高分子量在初始pH 10,为4.946×106 g/mol;对菌丝体的总抗氧化能力、1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2- picrylhydrazyl,DPPH)自由基清除能力、羟自由基清除能力分析结果表明最佳的初始pH分别为3、7、9。本研究为液态发酵方式下灵芝生长及其代谢物定向调控发酵的工艺优化提供参考依据,同时发现灵芝菌丝体中优质蛋白及抗氧化活性可在功能性食品和化妆品领域推广应用。  相似文献   

7.
腾海艳 《菌物学报》2020,39(1):120-127
本文采用水提醇沉法从灵芝孢子粉中提取其粗多糖,经Sepharose CL-6B凝胶柱层析分离得两种主要成分LBPI和LBPII,经高效液相色谱鉴定,均为高均一性成分,分子量分别为9.17×10 4和1.86×10 4;经酸水解、乙酰化和气相色谱分析,确定LBPI的单糖组成为甘露糖、半乳糖和葡萄糖,LBPII的单糖组成为鼠李糖、甘露糖、半乳糖和葡萄糖;通过高碘酸氧化、甲基化和GC-MS进行结构分析,确定LBPI中葡萄糖残基连接方式为1→、1→4,6和1→3,6连接,半乳糖残基为1→6连接,甘露糖残基为1→3,6连接,LBPII中鼠李糖残基连接方式为1→连接,葡萄糖残基为1→、1→4、1→6、1→4,6和1→3,6连接,半乳糖残基为1→6连接,甘露糖残基为1→2,3,6连接。综上,两种多糖LBPI和LBPII均为多分支的中型杂多糖,但两者的单糖组成和连接方式存在差异,这两种多糖成分均为首次报道,可望为灵芝孢子粉的成分、活性研究和资源开发提供理论依据。  相似文献   

8.
猴头菌不同发育阶段产生的多糖结构特征及免疫活性   总被引:1,自引:0,他引:1  
采收猴头菌Hericium erinaceus 7个不同发育阶段的子实体,经热水浸提后分别采用20%、50%、70%的乙醇终浓度进行分级沉淀,获得21个多糖组分,对它们的结构特征及体外免疫活性进行了研究。结果表明,在猴头菌发育过程中,多糖总得率呈现先增大后减小的趋势,在第5阶段达到最大值0.92%。20%醇沉的多糖含量也呈先增大后减小的趋势,在第5阶段达到最大值42.87%,其大分子量多糖(1 000-5 000kDa)所占比例最高。50%、70%醇沉多糖均为小分子量多糖,约为10-40kDa。获得的猴头菌多糖组分中,单糖组成多以岩藻糖、半乳糖、葡萄糖和甘露糖为主(相对比例存在一定差异);另外,第1阶段20%、70%醇沉多糖还含有少量的核糖,第7阶段20%醇沉多糖含有一定量的鼠李糖;7个时期50%醇沉多糖均含有一定量的葡萄糖醛酸。所得多糖样品均具有刺激巨噬细胞释放NO的活性,其中20%醇沉多糖的活性优于50% 和70% 醇沉多糖,在50μg/mL时就表现出显著的体外免疫活性。此外,在第5阶段即中菌刺期产生的多糖活性最优,说明在此阶段采摘可以获得最佳的猴头菌多糖原材料。本研究为猴头菌生长发育过程中活性多糖的动态形成研究提供了一定的理论基础。  相似文献   

9.
灵芝子实体、菌丝体及孢子粉中多糖成分差异比较研究   总被引:5,自引:0,他引:5  
为探讨灵芝子实体、菌丝体和孢子粉3种材料中多糖成分的差异,分别运用苯酚硫酸法进行多糖含量测定,运用离子色谱分析其酸水解后单糖组成,并运用HPLC分析各多糖图谱及经α-淀粉酶和β-1,3-葡聚糖酶处理后HPLC图谱的变化,结果发现,灵芝菌丝体中多糖含量最高,达到3.81%,孢子粉多糖含量为1.8%,灵芝子实体中多糖含量最低,仅为0.59%;水解后的单糖组成及摩尔比也有差异,子实体的单糖主要为葡萄糖和半乳糖,菌丝体和孢子粉的单糖主要为葡萄糖;HPLC图谱显示3种多糖出峰位置和分子量也不同,酶解效果表明多糖结构也相差较大。各样品多糖对小鼠巨噬细胞RAW264.7释放NO的产量的影响上,菌丝体与子实体多糖都表现出了很好的活性,而孢子粉多糖却呈现出较低活性。实验结果表明灵芝子实体、菌丝体和孢子粉3种材料的多糖成分差异大,在医药保健品使用中应区分使用。  相似文献   

10.
碳(C)、氮(N)、磷(P)生态化学计量比是生态系统过程与功能的重要特征, 开展种群生态化学计量学研究可以细化植物种群化学计量学内容, 确定限制植物生长的元素类型, 同时为大尺度模型的发展提供数据基础。为阐明我国毛竹(Phyllostachys edulis)林C、N、P化学计量学特征, 通过对毛竹主要产区文献数据的搜集整理与分析, 探索我国毛竹林“植物-土壤-凋落物”系统C、N、P及C:N、C:P、N:P生态化学计量特征, 以及不同组分生态化学计量特征与经纬度之间的关系。结果表明: 1)我国毛竹林叶片C含量为478.30 mg·g-1, N含量为22.20 mg·g-1, P含量为1.90 mg·g-1, C:N为26.80, C:P为299.60, N:P为14.40; 毛竹林0-20 cm土层C含量为21.53 mg·g-1, N含量为1.66 mg·g-1, P含量0.41 mg·g-1, C:N为14.20, C:P为66.74, N:P为4.28; 毛竹凋落物C含量为438.49 mg·g-1, N含量为13.39 mg·g-1, P含量为0.86 mg·g-1, C:N为22.53, C:P为665.67, N:P为22.55。2)毛竹林“植物-土壤-凋落物”系统中, C:N表现为: 叶片>凋落物>土壤, C:P和N:P均表现为: 凋落物>叶片>土壤, 叶片N、P再吸收率分别为39.68%和54.74%, 我国毛竹林生长发育总体上可能受到P限制或者N和P两种元素的双重限制。3)纬度梯度: 叶片N含量、N:P随纬度增加而增加, C:N随纬度增加而降低。经度梯度: 叶片N:P随经度增加而增加, P含量、C:N随经度增加而降低; 土壤C:N随经度增加而增加, N含量随经度增加而降低; 凋落物N含量随经度增加而降低。4)叶片N含量与年平均气温和年降水量均存在明显负相关关系, 但对温度的响应比降水更敏感, 叶片N含量与纬度呈正相关关系, 支持“温度-植物生理假说”, 反映了植物对自然环境的适应。  相似文献   

11.
以粉美人萱草(Hemerocallis fulva cv. ‘Fenmeiren’)的花茎为外植体进行离体培养, 该研究成功建立了粉美人萱草组培快繁技术。结果表明, 6月获得的外植体用浓度为15% (v/v)的次氯酸钠溶液消毒8分钟, 外植体存活率达95%; 最佳增殖培养基为MS+1.0 mg·L-1 6-BA+0.004 mg·L-1 TDZ+0.1 mg·L-1 NAA, 培养30天后, 月增殖系数达2.9; 壮苗培养基为MS+0.1 mg·L-1 6-BA+0.1 mg·L-1 IBA, 在该培养基中, 组培苗不再分化, 长势健壮; 最佳生根培养基为1/2MS+0.4 mg·L-1 IBA+20 g·L-1蔗糖, 生根率达95%; 移栽基质采用珍珠岩:草炭=1:2 (v/v), 通过精细化管理, 成活率可达85%, 出圃合格率为75%。目前已实现规模化繁殖, 并生产组培苗2.0×105株, 大田种植表现良好。  相似文献   

12.
张倩倩  黄青 《菌物学报》2021,40(1):252-260
灵芝具有多种药理活性,多糖是其主要活性成分之一。目前灵芝多糖的定量常采用的比色法,使用比较繁琐,也缺乏一定的安全环保性。应用近红外光谱对灵芝进行多糖定量分析,发现对子实体直接分析存在定量不准的问题。为了快速准确地评估灵芝子实体多糖含量,本研究采用对灵芝子实体水提物进行近红外光谱检测与分析,由此建立了较好的定量模型。该模型优选谱段为5 461.7-4 235.1cm-1,预处理方式为一阶导数+矢量归一化,校正集的维数=7,R2=0.9007,RMSECV=2.54,RPD=3.17;预测集的RMSEP=3.45,RPD=2.42,Corr. Coeff.=0.9181。这项工作为灵芝有效成分快速定量分析提供了新的方法与依据。  相似文献   

13.
目的: 建立动脉逐搏取血血气分析法,在人体实验中验证呼吸调控核心信号——PaO2,PaCO2和[H+]a是受呼吸影响的周期性、波浪式变化信号,而不是传统理念上误认的稳定水平信号。方法: 选择心功能正常、Allen试验阴性需要监测动脉血流动力学变化的患者6例。在左侧桡动脉穿刺,连接肝素化塑化管(3 mm×1 000 mm),注满血液并计数血液注满所需心跳次数。用止血钳将塑化管钳闭成与心跳次数相对应的分段后,迅速置于冰水中,立即进行血气分析。选取每位患者的2个典型波浪式周期,用于分析2对最高-最低和最低-最高共4个测定值,取平均值。对相邻最高和最低值作统计学配对t检验。结果: 血液注满塑化管需要16±2次心跳,均覆盖超过2个呼吸周期。每个呼吸周期是5±0.6次心跳。PaO2、PaCO2、[H+]a和SaO2都呈现出明显的波浪式变化(相邻高点与低点比较,P<0.05),PaO2、PaCO2、[H+]a和SaO2的波浪幅度分别是(11.28±1.13)mmHg,(1.77±0.89)mmHg,(1.14±0.35)nmol/L和(0.52±0.44)%;波浪幅度分别是其平均值的(7.7±1.1)%,(5.1±2.5)%,(3.1±1.0)%和(0.5±0.4)%。结论: 动脉延长管连续取血,按心跳次数分隔血样,血气分析法简单易行,为验证动脉血气受呼吸影响的周期性波浪式信号提供了可靠证据。本方法为原创,技术操作层面仍需提高熟练程度,增加志愿者和试验样本的数量进一步探索此类信号的临床检测可靠性及其与临床疾病的关系。  相似文献   

14.
通过优化最佳的鲜切香菇加工技术,延长鲜切香菇产品的货架期,为扩大工厂化生产提供依据。本研究设计了3种香菇清洗工艺以及3种气调保鲜方法,利用感官、气味和理化指标的变化来评价清洗保鲜效果。经过无菌水、次氯酸钠溶液以及未经清洗3种处理方式加工的鲜切香菇产品在低温储藏120h时,其表面微生物数量发生较大的变化,无菌水清洗处理组微生物总量达到4.68×103CFU/g,而次氯酸钠溶液处理组和未经清洗的处理组的微生物含量分别为4.15×103CFU/g和3.05×103CFU/g。对3种气调比例保鲜效果研究结果表明,未清洗+T1(15% CO2、5% O2、80% N2)处理组的香菇切片品质保存最好,在第12天时其多糖、蛋白质含量、抗坏血酸含量、类黄酮含量以及抗氧化活性达到最高,分别为70.32mg/g、131.19mg/g、16.46mg/100g、1 272.57μg/g和73.02mmol/g;其总酚含量最低,为2 133.88μg/g。通过电子鼻检测以及主成分分析(PCA)发现多种工艺组合中,未清洗+T1处理组的香菇切片在储藏期12d内气味变化最小,显著优于其他处理组合。综上所述,未清洗+T1气体比例处理组是适宜鲜切香菇加工以及保鲜的优势工艺,通过此方法可使鲜切香菇的货架期从6d延长至12d,对工厂化生产具有指导意义。  相似文献   

15.
灵芝多糖的抗癌构效关系及其抗癌作用机制   总被引:14,自引:0,他引:14  
刘高强  王晓玲 《菌物学报》2006,25(3):430-438
灵芝多糖是灵芝的主要抗癌活性成分,但灵芝多糖的抗癌构效关系和抗癌机制仍不明了。现有的研究表明,具有抗癌活性的灵芝多糖大多是β-(1→3)-D-葡聚糖。β-葡聚糖中分支度高的有较高的活性,分子量高的也较分子量小的活性大。但新近的一些研究发现,含有其它结构的灵芝多糖和某些小分子量的灵芝多糖也具有免疫调节和抗癌活性。因此,这些灵芝多糖在灵芝抗癌中的作用不可忽视。灵芝多糖的抗癌作用机制目前尚不明了。现已知通过免疫介导作用发挥抗癌作用是灵芝多糖抗癌的主要机制之一。新近的研究发现,膜Ig和TLR-4为灵芝多糖激活机体B细胞的免疫受体,TLR-4也与灵芝多糖激活机体巨噬细胞有关。此外,灵芝多糖抗癌的可能机制还包括活化促分裂原活化蛋白(MAP)激酶,以及抑制肿瘤血管新生等。  相似文献   

16.
目的: 原核表达盐穗木(Halostachys caspica C. A. Mey.)金属硫蛋白HcMT并探究其抗氧化活性。方法: 构建原核表达载体pET-32a-HcMT,转化至大肠杆菌Escherichia coli BL21,加入Zn2+胁迫培养(终浓度为200 μmol/L),分离纯化得到Zn-HcMT,测定Zn-HcMT自由基清除活性和总抗氧化能力,制备复合物Zn-HcMT/TiO2并做FTIR表征。结果: 通过原核表达获得融合蛋白Zn-HcMT,对·OH、O2·-、DPPH自由基具有较强的清除活性,对·OH、O2·-的IC50分别为0.386 mg/mL、0.038 mg/mL。融合蛋白浓度为0.01 mg/mL时,对DPPH清除率达(37.43 ± 0.006 8)%,浓度为0.3mg/mL时TEAC(trolox-equivalent antioxidant capacity)值为(1.023 ± 0.01)mmol/L,融合蛋白还原力A700为0.142 ± 0.055,FTIR图谱同时表现了Zn-HcMT和TiO2吸收特性。结论: Zn-HcMT具有良好的清除ROS活性及较强的抗氧化能力,在化妆品领域有潜在应用前景。  相似文献   

17.
徐勇亮  徐军伟 《菌物学报》2022,41(5):792-801
灵芝多糖是药用真菌灵芝的主要活性成分之一。早期研究发现不同灵芝子实体多糖的单糖组成和活性存在差异,但不同灵芝菌株胞外多糖的单糖组成和活性是否有区别仍不清楚。本研究通过液体发酵获得灵芝菌株5.26和5.616的胞外多糖,使用DEAE-cellulose和Sephadex G-200柱色谱分离纯化得到了两种多糖(5.26-2-1和5.616-2-1),并对5.26-2-1,5.616-2-1的单糖组成和抗氧化活性进行了分析。结果表明,5.26-2-1主要由甘露糖、半乳糖醛酸、半乳糖和葡萄糖组成,而5.616-2-1主要由甘露糖、半乳糖和葡萄糖组成。5.26-2-1中葡萄糖的摩尔百分比为63.97%,显著高于5.616-2-1 (29.3%),但半乳糖的摩尔百分比为9.34%,显著低于5.616-2-1 (42.78%)。当多糖质量浓度为2 mg/mL时,5.26-2-1的Fe2+螯合能力、对1,1-二苯基-2-三硝基苯肼(DPPH)和羟自由基(·OH)的最大清除率分别为71.9%、71.3%和60.8%,显著高于5.616-2-1的值(63.5%、60.4%和51.8%)。本研究有助于灵芝多糖的开发与利用,为进一步探究灵芝多糖的构效关系提供了重要信息。  相似文献   

18.
海三棱藨草的组织培养与快繁体系   总被引:1,自引:0,他引:1  
以海三棱藨草(Scirpus × mariqueter)成熟种子为外植体, 通过无菌萌发、丛生芽诱导、增殖、壮苗、生根和移栽等过程, 建立了海三棱藨草的无菌快繁体系。结果表明: 丛生芽诱导和增殖的最适培养基为MS+2.0 mg·L-1 6-BA+0.002 mg·L-1 TDZ+0.2 mg·L-1 IBA; 壮苗最适培养基为1/2MS+0.05 mg·L-1 6-BA+0.01 mg·L-1 IBA; 生根最适培养基为1/2 MS+0.2 mg·L-1 IBA; 最适培养温度为30°C; 再生苗移入珍珠岩:草炭:蛭石=1:1:1 (体积比)的混合基质中, 移栽成活率可达85%以上。生根培养阶段选用容积较大的塑料容器育苗, 可以降低生产成本和提高生产效率。  相似文献   

19.
灵芝深层发酵优良菌株的筛选   总被引:5,自引:0,他引:5  
灵芝种类多,种间与品种间的不同均可能引起有效成分在产量表达上的差异,为了能筛选适宜深层发酵法生产的灵芝菌株,以8个灵芝菌株为研究对象,比较不同菌株在固体培养基上的菌丝体及液体发酵的菌球萌发菌丝生长速度、液体发酵产物、子实体多糖等指标。结果表明:8个菌株菌丝体生长速度有一定差异,以灵芝G9、红芝早萌发且生长速度快,甜芝、紫芝、灵芝G8、血芝其次,灵芝5760、黑芝最慢。8个菌株深层发酵产物由于生物学特性不同而有差别,同时菌株菌丝体生物量与次生代谢产物多糖之间无必然的联系,甜芝菌丝体生物量最大但自溶速度最快,灵芝5760菌球细小,速度最慢,血芝次生代谢产物多糖最高。菌丝体多糖与子实体多糖比较,各个菌株的菌丝体多糖含量均高于子实体多糖含量。提取多糖工艺以超声波辅助破壁处理后,再以热水浸提法提取多糖的得率明显提高,紫芝、黑芝提高了2倍以上。  相似文献   

20.
【背景】层迭灵芝Ganoderma lobatum是灵芝属中的一个种,在民间有药用历史,但缺乏对其化学成分和药理活性的科学研究。【目的】以赤芝Ganoderma lingzhi子实体为参照,研究对比层迭灵芝子实体的抗肿瘤及免疫活性的强弱,探讨层迭灵芝的药用价值。【方法】采用化学分析及仪器分析的方法,比较2种灵芝子实体中三萜及多糖含量差异,并进行体外抗肿瘤及免疫活性研究。【结果】层迭灵芝和赤芝的子实体中三萜含量差异不大,分别为1.14%和1.21%,但2种灵芝中三萜化合物的种类差异较大。层迭灵芝子实体中的多糖含量较赤芝稍高,分别为3.60%和2.67%,2种子实体中多糖的重均分子量分布特征有所差别。2种灵芝醇提物对肿瘤细胞K562及SW620的增殖均具有一定的抑制活性,其中,层迭灵芝对SW620细胞具有较强的抑制活性,其IC50值达到了52.5μg/mL。2种灵芝水提物可以促进RAW 264.7细胞释放NO,说明两者均具有一定的免疫活性。【结论】层迭灵芝具有较好的抗肿瘤及免疫活性,可以作为药用开发的原料来源。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号