首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The composition and dynamics of the propionate degrading community in a propionate-fed upflow anaerobic sludge bed (UASB) reactor with sludge originating from an alcohol distillery wastewater treating UASB reactor was studied. The rather stable propionate degrading microbial community comprised relatives of propionate degrading Syntrophobacter spp., the hydrogen and formate consuming Methanospirillum hungatei and the acetate consuming Methanosaeta concilii. The effect of the long-term absence of molybdenum, tungsten and selenium from the feed to the UASB reactor on microbial community dynamics and activity was examined. Measurements for metal concentrations of the sludge and specific methanogenic activity tests with supplied molybdenum, tungsten and selenium were found to be unsuitable to detect the potential limitation of the microbial activity of the UASB sludge by these trace metals. During a long-term absence of molybdenum, tungsten and selenium from the feed to the UASB reactor, the methanogenic activity decreased while relatives of Smithella propionica and Pelotomaculum spp. competed with Syntrophobacter spp. for propionate consumption.  相似文献   

2.
Five methods for preparation of hydrogen-producing seeds (base, acid, 2-bromoethanesulfonic acid (BESA), load-shock and heat shock treatments) as well as an untreated anaerobic digested sludge were compared for their hydrogen production performance and responsible microbial community structures under thermophilic condition (60 degrees C). The results showed that the load-shock treatment method was the best for enriching thermophilic hydrogen-producing seeds from mixed anaerobic cultures as it completely repressed methanogenic activity and gave the a maximum hydrogen production yield of 1.96 mol H(2) mol(-1) hexose with an hydrogen production rate of 11.2 mmol H(2) l(-1)h(-1). Load-shock and heat-shock treatments resulted in a dominance of Thermoanaerobacterium thermosaccharolyticum with acetic acid and butyric acid type of fermentation while base- and acid-treated seeds were dominated by Clostridium sp. and BESA-treated seeds were dominated by Bacillus sp. The comparative experimental results from hydrogen production performance and microbial community analysis showed that the load-shock treatment method was better than the other four methods for enriching thermophilic hydrogen-producing seeds from anaerobic digested sludge. Load-shock treated sludge was implemented in palm oil mill effluent (POME) fermentation and was found to give maximum hydrogen production rates of 13.34 mmol H(2) l(-1)h(-1) and resulted in a dominance of Thermoanaerobacterium spp. Load-shock treatment is an easy and practical method for enriching thermophilic hydrogen-producing bacteria from anaerobic digested sludge.  相似文献   

3.
4.
It is widely accepted that cellulose is the rate-limiting substrate in the anaerobic digestion of organic solid wastes and that cellulose solubilisation is largely mediated by surface attached bacteria. However, little is known about the identity or the ecophysiology of cellulolytic microorganisms from landfills and anaerobic digesters. The aim of this study was to investigate an enriched cellulolytic microbial community from an anaerobic batch reactor. Chemical oxygen demand balancing was used to calculate the cellulose solubilisation rate and the degree of cellulose solubilisation. Fluorescence in situ hybridisation (FISH) was used to assess the relative abundance and physical location of three groups of bacteria belonging to the Clostridium lineage of the Firmicutes that have been implicated as the dominant cellulose degraders in this system. Quantitation of the relative abundance using FISH showed that there were changes in the microbial community structure throughout the digestion. However, comparison of these results to the process data reveals that these changes had no impact on the cellulose solubilisation in the reactor. The rate of cellulose solubilisation was approximately stable for much of the digestion despite changes in the cellulolytic population. The solubilisation rate appears to be most strongly affected by the rate of surface area colonisation and the biofilm architecture with the accepted model of first order kinetics due to surface area limitation applying only when the cellulose particles are fully covered with a thin layer of cells.  相似文献   

5.
An industrial wastewater treatment plant (WWTP) in Australia has long suffered from bulking problems associated with the proliferation of Thiothrix spp. The WWTP consists of a covered anaerobic lagoon (CAL) followed by a sequencing batch reactor (SBR). The CAL functions as both an anaerobic digester and surge lagoon for the irregular flow of wastewater generated from the production of seasonal products. Chemical analysis of the raw influent showed it was composed of a mixture of organic acids, phenols and alcohols. The CAL effluent was characterised by high acetic acid and phenolic concentrations. An attempt was made to manipulate the SBR microbial community to improve settling by direct feeding small volumes of raw influent into the SBR. After raw feeding, the plant ceased bulking as the settled sludge volume reduced from 930 to 200 mL L?1. 16S rRNA gene profiling and biovolumes of SBR samples revealed major changes in the microbial community. The Thiothrix spp. population decreased from 36.8% to 0.2%, and Zoogloea spp. dominated all samples after raw feeding. Therefore, direct feeding is proposed as a control method for industrial plants with surge/anaerobic lagoons in order to manage the bulking problems caused by Thiothrix spp. in downstream SBRs.  相似文献   

6.
Li J  Ren N  Li B  Qin Z  He J 《Bioresource technology》2008,99(14):6528-6537
Monosaccharides (e.g. glucose and fructose) are produced from the hydrolyzation of macromolecules, such as starch, cellulose, hemicellulose and lignin, which are abundant in various industrial wastewaters. The elucidation of anaerobic activated sludge microbial community utilizing monosaccharides will lay an important foundation for the industrialization of biohydrogen production. In this study, the hydrogen production by a mixed microbial culture on four monosaccharides (glucose, fructose, galactose and arabinose) was investigated in a batch cultures. The mixed microbial culture was obtained from anaerobic activated sludge in a continuous stirred-tank reactor (CSTR) after 29 days of acclimatization. The results indicated that glucose had the highest specific hydrogen production rate of 358 mL/g.g mixed liquid volatile suspended solid (MLVSS), while arabinose had the lowest hydrogen production rate of 28 mL/g.gMLVSS. Glucose also possessed the highest specific conversion rate to hydrogen of 82 mL/g glucose, while fructose had the highest specific conversion rate to liquid product of 443 mg/g fructose. Arabinose had the lowest conversion rates to both liquid products and hydrogen. Metabolic pathways and fermentation products were the major reasons for the difference in hydrogen production from these four monosaccharides. The complex fermentation pathways of arabinose reduced its hydrogen production efficiency and a long acclimation period (over 68 h) was required before the anaerobic activated sludge could effectively utilize arabinose in batch cultures.  相似文献   

7.
Agricultural biogas plants were operated in most cases below their optimal performance. An increase in the fermentation temperature and a spatial separation of hydrolysis/acetogenesis and methanogenesis are known strategies in improving and stabilizing biogas production. In this study, the dynamic variability of the bacterial and archaeal community was monitored within a two-phase leach bed biogas reactor supplied with rye silage and straw during a stepwise temperature increase from 55 to 75 °C within the leach bed reactor (LBR), using TRFLP analyses. To identify the terminal restriction fragments that were obtained, bacterial and archaeal 16S rRNA gene libraries were constructed. Above 65 °C, the bacterial community structure changed from being Clostridiales-dominated toward being dominated by members of the Bacteroidales, Clostridiales, and Thermotogales orders. Simultaneously, several changes occurred, including a decrease in the total cell count, degradation rate, and biogas yield along with alterations in the intermediate production. A bioaugmentation with compost at 70 °C led to slight improvements in the reactor performance; these did not persist at 75 °C. However, the archaeal community within the downstream anaerobic filter reactor (AF), operated constantly at 55 °C, altered by the temperature increase in the LBR. At an LBR temperature of 55 °C, members of the Methanobacteriales order were prevalent in the AF, whereas at higher LBR temperatures Methanosarcinales prevailed. Altogether, the best performance of this two-phase reactor was achieved at an LBR temperature of below 65 °C, which indicates that this temperature range has a favorable effect on the microbial community responsible for the production of biogas.  相似文献   

8.
Anaerobic conversion of carbohydrates can generate various end‐products. Besides physical parameters such as pH and temperature, the types of carbohydrate being fermented influences the fermentation pattern. Under uncontrolled pH, microbial mixed cultures from activated sludge and anaerobic digester sludge anaerobically produced ethanol from glucose while producing lactic acid from starch conversion. This trend was not only observed in batch trials. Also, continuous chemostat operation of anaerobic digester sludge resulted in the reproducible predominance of ethanol fermentation from glucose solution and lactic acid production from starch. Different feeding regimes and substrate availability (shock load versus continuous feeding) in glucose fermentation under non‐controlled pH did not affect the ethanol production as the major end product. Shifts in feed composition from glucose to starch and vice versa result in an immediate change of fermentation end products formation.  相似文献   

9.
Non‐axenic operation of a 400 L trickle bed reactor inoculated with the thermophile Caldicellulosiruptor saccharolyticus, yielded 2.8 mol H2/mol hexose converted. The reactor was fed with a complex medium with sucrose as the main substrate, continuously flushed with nitrogen gas, and operated at 73°C. The volumetric productivity was 22 mmol H2/(L filterbed h). Acetic acid and lactic acid were the main by‐products in the liquid phase. Production of lactic acid occurred when hydrogen partial pressure was elevated above 2% and during suboptimal fermentation conditions that also resulted in the presence of mono‐ and disaccharides in the effluent. Methane production was negligible. The microbial community was analyzed at two different time points during operation. Initially, other species related to members of the genera Thermoanaerobacterium and Caldicellulosiruptor were present in the reactor. However, these were out‐competed by C. saccharolyticus during a period when sucrose was completely used and no saccharides were discharged with the effluent. In general, the use of pure cultures in non‐sterile industrial applications is known to be less useful because of contamination. However, our results show that the applied fermentation conditions resulted in a culture of a single dominant organism with excellent hydrogen production characteristics. Biotechnol. Bioeng. 2009;102: 1361–1367. © 2008 Wiley Periodicals, Inc.  相似文献   

10.
The reproducibility of low-temperature anaerobic biological wastewater treatment trials was evaluated. Two identical anaerobic expanded granular sludge bed bioreactors were used to treat synthetic volatile fatty acid-based industrial wastewater under ambient conditions (18-20 degrees C) and to investigate the effect of various environmental perturbations on reactor performance and microbial community dynamics, which were assessed by chemical oxygen demand removal or effluent volatile fatty acid determination and terminal restriction fragment length polymorphism analysis, respectively. Methanogenic activity was monitored using specific methanogenic activity assays. Reactor performance and microbial community dynamics were each well replicated between Reactor 1 and Reactor 2. Archaeal dynamics, in particular, were associated with reactor operating parameters. Terminal restriction fragment length polymorphism data suggested dynamic acetoclastic and hydrogenophilic methanogenic populations and were in agreement with temporal specific methanogenic activity data. Putative psychrophilic populations were observed in anaerobic bioreactor sludge for the first time.  相似文献   

11.
In a recirculation aquaculture system the drumfilter effluent can be used as substrate for heterotrophic bacterial production, which can be recycled as feed. Because the bacteria might contain pathogens, which could reduce its suitability as feed, it is important to characterize these communities. Bacteria were produced in growth reactors under different conditions: 7 h hydraulic retention time (HRT) vs. 2 h, sodium acetate vs. molasses, and ammonia vs. nitrate. The community of the drumfilter effluent was different from those found in the reactors. However, all major community components were present in the effluent and reactor broths. HRT influenced the bacteria community, resulting in a DGGE profile dominated by a band corresponding to an Acinetobacter sp.-related population at 2 h HRT compared to 7 h HRT, where bands indicative of alpha-proteobacterial populations most closely related to Rhizobium and Shinella spp. were most abundant. Molasses influenced the bacterial community. It was dominated by an Aquaspirillum serpens-related population. Providing total ammonia nitrogen (TAN) in addition to nitrate led to the occurrence of bacteria close to Sphaerotilus spp., Flavobacterium mizutaii and Jonesia spp. It was concluded from these results that a 6-7 h HRT is recommended, and that the type of substrate is less important, and results in communities with a comparably low pathogenic risk.  相似文献   

12.
A rapid enrichment approach based on a pentachlorophenol (PCP) feeding strategy which linked the PCP loading rate to methane production was applied to an upflow anaerobic sludge bed reactor inoculated with anaerobic sludge. Due to this strategy, over a 140-day experimental period the PCP volumetric load increased from 2 to 65 mg L(R)(-1) day(-1) with a near zero effluent concentration of PCP. Dechlorination dynamics featured sequential appearance of 3,4,5-chlorophenol, 3,5-chloro- phenol, and 3-chlorophenol in the reactor effluent. Profiling of the reactor population by denaturing gradient gel electrophoresis (DGGE) revealed a correlation between the appearance of dechlorination intermediates and bands on the DGGE profile. Nucleotide sequencing of newly detected 16S rDNA fragments suggested the proliferation of Clostridium and Syntrophobacter/Syntrophomonas spp. in the reactor during PCP degradation. Published by John Wiley & Sons, Inc.  相似文献   

13.
AIMS: Changes in fermentation pattern during the treatment of organic wastes containing solid materials by thermophilic anaerobic microflora were investigated with respect to product formation and bacterial community structure during hydrogen production. METHODS AND RESULTS: Anaerobic microflora enriched from sludge compost was cultivated using artificial garbage slurry in a continuous flow-stirred tank reactor. Product formation varied depending on pH and hydraulic retention time (HRT) applied. Community analysis by terminal restriction fragment length polymorphism and clone library analysis of polymerase chain reaction-amplified bacterial 16S rDNA indicated that difference in the fermentative product distribution could be caused by different populations of micro-organisms in the microflora. CONCLUSION: Hydrogen fermentation with acetate/butyrate formation was optimized at <1.0 d HRT at pH 5.0 and 6.0. Thermoanaerobacterium thermosaccharolyticum was the dominant hydrogen-producing micro-organism. Conversely, unidentified organisms became dominant after 4.0 d HRT at pH 7.0 and 8.0, where relatively high-solubilization efficiency of solid materials was observed with no production of hydrogen. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report describing product formation in the fermentation of solid organic wastes by a mixed population of micro-organisms. Various fermentation patterns including hydrogen fermentation were characterized and evaluated from engineering and microbial aspects.  相似文献   

14.
The present study focused on the anaerobic biohydrogen production from olive pulp (two phase olive mill wastes, TPOMW) and the subsequent anaerobic treatment of the effluent for methane production under mesophilic conditions in a two-stage process. Biohydrogen production from water-diluted (1:4) olive pulp was investigated at hydraulic retention times (HRT) of 30 h, 14.5 h and 7.5 h while methane production from the effluent of hydrogenogenic reactor was studied at 20 d, 15 d, 10 d and 5 d HRT. In comparison with previous studies, it has been shown that the thermophilic hydrogen production process was more efficient than the mesophilic one in both hydrogen production rate and yield. The methanogenic reactor was successfully operated at 20, 15 and 10 days HRT while it failed when an HRT of 5 days was applied. Methane productivity reached the maximum value of 1.13 ± 0.08 L/L/d at 10 days HRT whereas the methane yield increased with the HRT. The Anaerobic Digestion Model no. 1 (ADM1) was applied to the obtained experimental data from the methanogenic reactor to simulate the digester response at all HRT tested. The ability of the model to predict the experimental results was evident even in the case of the process failure, thus implying that the ADM1 could be a valuable tool for process design even in the case of a complex feedstock. In general, the two-stage anaerobic digestion proved to be a stable, reliable and effective process for energy recovery and stabilization treatment of olive pulp.  相似文献   

15.

Upflow anaerobic sludge blanket (UASB) reactor is one of the most applied technologies for various high-strength wastewater treatments. The present study analysed the microbial community changes in UASB granules during the transition from mesophilic to thermophilic conditions. Dynamicity of microbial community in granules was analysed using high-throughput sequencing of 16S ribosomal RNA gene amplicons, and the results showed that the temperature strictly determines the diversity of the microbial consortium. It was demonstrated that most of the microbes which were present in the initial mesophilic community were not found in the granules after the transition to thermophilic conditions. More specifically, only members from family Anaerolinaceae managed to tolerate the temperature change and contributed in maintaining the physical integrity of granular structure. On the contrary, new hydrolytic and fermentative bacteria were quickly replacing the old members in the community. A direct result from this abrupt change in the microbial diversity was the accumulation of volatile fatty acids and the concomitant pH drop in the reactor inhibiting the overall anaerobic digestion process. Nevertheless, by maintaining deliberately the pH levels at values higher than 6.5, a methanogen belonging to Methanoculleus genus emerged in the community enhancing the methane production.

  相似文献   

16.
In view of the realization that fossil fuels reserves are limited, various options of generating energy are being explored. Biological methods for producing fuels such as ethanol, diesel, hydrogen (H2), methane, etc. have the potential to provide a sustainable energy system for the society. Biological H2 production appears to be the most promising as it is non-polluting and can be produced from water and biological wastes. The major limiting factors are low yields, lack of industrially robust organisms, and high cost of feed. Actually, H2 yields are lower than theoretically possible yields of 4 mol/mol of glucose because of the associated fermentation products such as lactic acid, propionic acid and ethanol. The efficiency of energy production can be improved by screening microbial diversity and easily fermentable feed materials. Biowastes can serve as feed for H2 production through a set of microbial consortia: (1) hydrolytic bacteria, (2) H2 producers (dark fermentative and photosynthetic). The efficiency of the bioconversion process may be enhanced further by the production of value added chemicals such as polydroxyalkanoate and anaerobic digestion. Discovery of enormous microbial diversity and sequencing of a wide range of organisms may enable us to realize genetic variability, identify organisms with natural ability to acquire and transmit genes. Such organisms can be exploited through genome shuffling for transgenic expression and efficient generation of clean fuel and other diverse biotechnological applications. JIMB 2008: BioEnergy-Special issue  相似文献   

17.
A mathematical model was formulated to simulate the long-term performance of an anaerobic bioreactor designed to digest Korean food wastes. The system variables of various decomposition steps were built into the model, which predicts the temporal characters of solid waste, and volatile fatty acid (VFA) in the reactor, and gas production in response to various input loadings and temperatures. The predicted values of VFA and gas production were found to be in good agreement with experimental observations in batch and repeated-input systems. Finally, long-term reactor performance was simulated with respect to the seasonal temperature changes from 5°C in winter to 25°C in summer at different food waste input loadings. The simulation results provided us with information concerning the success or failure of a process during long-term operation.  相似文献   

18.
The use of municipal solid waste as feedstock for biogas production offers an interesting possibility for waste treatment with the beneficial effect of gaining a green energy source. The involved processes are very complex, and many different organisms connected via a dynamic food web are associated with them. These complex interactions within these microbial communities are still not clearly understood. Therefore, a phospholipid fatty acid (PLFA) profile analysis method, well established in aerobic but still not as common in anaerobic systems, was used to throw some light on this matter. In the present investigation, a 750 m3 biogas reactor (Roppen, Austria) was monitored over a half-year period. During this period, four different phases in terms of gas production could be determined: low (I), increasing (II), high (III), and decreasing (IV) gas production. In combination with the PLFA profiles, we were able to identify changes in the microbial community associated with these phases.  相似文献   

19.
A coupled reactor system, consisting of one aerated stirred reactor and one anaerobic plug flow reactor was constructed. Circulation of microbial cells in this system, is chosen to represent the insufficient mixing conditions, present in a large scale vessel. Hereby it is shown, that oscillating oxygen concentrations, give effects on E.coli metabolism. The hydrogen production, resulting from mixed acid fermentation of anaerobically grown cells, is used to indicate the metabolic changes. These changes are measured as hydrogen concentration in the gas outlet of the aerated fermenter, with a Pd-MOS sensor. The dependency of the hydrogen evolution on the anaerobic residence time is shown, and the relevance of this model system for studies on the bioreactor performance, are discussed.  相似文献   

20.
Gao WJ  Leung KT  Qin WS  Liao BQ 《Bioresource technology》2011,102(19):8733-8740
Effects of temperature and temperature shock on the performance and microbial community structure of a submerged anaerobic membrane bioreactor (SAnMBR) treating thermomechanical pulping pressate were studied for 416 days. The results showed that the SAnMBR system were highly resilient to temperature variations in terms of chemical oxygen demand (COD) removal. The residual COD in treated effluent was slightly higher at 55 °C than that at 37 and 45 °C. There were no significant changes in biogas production rate and biogas composition. However, temperature shocks resulted in an increase in biogas production temporarily. The SAnMBR could tolerate the 5 and 10 °C temperature shocks at 37 °C and the temperature variations from 37 to 45 °C. The temperature shock of 5 and 10 °C at 45 °C led to slight and significant disturbance of the performance, respectively. Temperature affected the richness and diversity of microbial populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号