首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 461 毫秒
1.
川西亚高山粗枝云杉人工林地上凋落物对土壤呼吸的贡献   总被引:3,自引:0,他引:3  
采用Li-8100土壤碳通量分析仪对川西亚高山典型的粗枝云杉(Picea asperata)人工林土壤呼吸(凋落物去除和对照)及其环境因子进行为期1年的连续观测。结果表明:凋落物去除处理和对照土壤呼吸速率均具有显著的季节动态变化,并呈现一致的动态特征,变动范围分别为0.35—4.39μmol m-2s-1和0.40—5.15μmol m-2s-1。整个观测期间,凋落物去除对土壤温度、水分以及土壤呼吸速率产生的差异均不显著。与对照相比,凋落物去除分别使土壤呼吸速率和土壤水分平均下降了14.21%和4.95%。两种处理的土壤呼吸速率和土壤温度均呈显著指数相关,与土壤水分呈显著线性相关。凋落物去除和对照的土壤温度敏感性(Q10)分别为3.84和4.09。凋落物对土壤呼吸速率的年均贡献率为14.93%,且存在明显季节动态。可见,地表凋落物是亚高山森林土壤呼吸的重要组成部分。  相似文献   

2.
2007年1月至12月,采用LI-COR-6400-09气室连接到LI-COR-6400便携式CO2/H2O分析系统测定枫香(Liquidambar formosana)和樟树(Cinnamomum camphora)人工林的土壤呼吸,并分析了土壤水热因子及其根生物量对土壤呼吸的影响.研究结果表明:枫香和樟树人工林中土壤呼吸的季节动态存在明显的季节性变化,都呈现不规则的曲线格局.全年土壤呼吸速率平均值分别为1.501 ìmol 和2.800 ìmol s-1.枫香和樟树林土壤呼吸的季节变化与土壤温度呈显著的指数相关,土壤温度可以分别解释土壤呼吸变化的92.7%和77.4%,与土壤含水量呈二次方程关系,土壤含水量可以解释土壤呼吸变化的10.6%和18%.在P=0.05水平上多元回归分析,分别得出枫香和樟树土壤呼吸与土壤温度和含水量方程:y=0.4728e0.122tw0.002;y=0.061e0.235tw0.086,土壤温度和含水量共同可以解释土壤呼吸变化的94.5%和88.5%.枫香和樟树林中全年土壤呼吸的Q10值分别为2.62和3.26,Q10值在随着季节温度升高,而逐渐减小.两种人工林群落土壤呼吸季节变化表现出受非生物因子温度和水分变化的调控,同时也受森林植被的根生物量、凋落物量的影响.  相似文献   

3.
万木林保护区毛竹林土壤呼吸特征及影响因素   总被引:6,自引:0,他引:6  
Wang C  Yang ZJ  Chen GS  Fan YX  Liu Q  Tian H 《应用生态学报》2011,22(5):1212-1218
2009年1-12月,利用Li-Cor 8100开路式土壤碳通量系统测定福建省万木林自然保护区毛竹林土壤呼吸速率,分析毛竹林土壤呼吸动态变化及其与凋落物量的关系.结果表明:毛竹林土壤呼吸月变化呈明显的双峰型曲线,峰值分别出现在6月(6.83 μmol·m-2·s-1)和9月(5.59μmol·m-2·s-1).土壤呼吸速率的季节变化较明显,最大值出现在夏季,最小值出现在冬季;土壤呼吸速率与土壤5 cm温度呈显著正相关关系(P<0.05),与土壤含水量无显著相关性(P>0.05);毛竹林凋落物量月变化呈单峰型曲线.毛竹林土壤呼吸速率与当月凋落物归还量呈显著正相关(P<0.05).土壤温度和凋落物量的双因素模型可以解释土壤呼吸速率变化的93.2%.  相似文献   

4.
去除和添加凋落物对木荷林土壤呼吸的短期影响   总被引:1,自引:0,他引:1  
凋落物作为土壤呼吸的重要碳源,其输入的数量和质量将对土壤呼吸产生重要影响。自2011年2月—2012年5月,在浙江天童森林生态系统设置对照、去除和加倍凋落物处理,研究不同凋落物处理对木荷(Schima superba)林土壤呼吸速率、土壤温度和土壤含水量的影响。结果表明:去除和加倍凋落物对土壤温度的影响不显著,对土壤含水量的影响显著,相比对照的土壤呼吸速率2.52±0.29μmol·m-2·s-1,去除凋落物使土壤呼吸速率显著降低了25.32%;而加倍凋落物处理与对照之间的土壤呼吸速率无显著差异。不同凋落物处理下土壤呼吸均表现出明显的季节变化,凋落物处理在湿季对土壤呼吸速率的影响接近显著(P=0.065),在干季不显著,并且湿季的土壤呼吸速率显著高于干季。不同凋落物处理的土壤呼吸速率与土壤温度均呈显著相关,土壤温度解释了土壤呼吸速率变异程度的80.1%~90.3%,Q10值分别为2.42、2.48和2.24;而土壤呼吸速率与土壤含水量之间的相关性不显著。研究结果表明,短期凋落物处理对土壤呼吸产生了影响,并且这种影响因季节差异而不同,证明了凋落物对于改变森林生态系统土壤呼吸和碳循环具有重要作用。  相似文献   

5.
模拟氮沉降下去除凋落物对太岳山油松林土壤呼吸的影响   总被引:4,自引:0,他引:4  
凋落物是土壤呼吸的重要碳源,氮沉降将改变其输入数量和质量,进而影响土壤呼吸。为揭示氮沉降和去除凋落物对土壤呼吸的影响,以太岳山油松林为研究对象,对林地分别作2种凋落物处理:去除凋落物(LR)、对照(CK1),设计4个施氮水平:不施氮(CK2,0 kg N·hm-2·a-1),低氮(LN,50 kg N·hm-2·a-1),中氮(MN,100 kg N·hm-2·a-1)和高氮(HN,150 kg N·hm-2·a-1),于2010—2012年生长季测定土壤呼吸速率的动态变化,并分析土壤呼吸速率与土壤温度、土壤湿度、土壤微生物生物量C、N的关系。结果表明:随着观测年限的推移,模拟氮沉降对对照处理的土壤呼吸速率、去凋处理的土壤呼吸速率、凋落物层呼吸速率的促进作用逐渐减弱。去除凋落物使土壤呼吸速率降低了29.0%,施氮减小了去除凋落物后土壤呼吸速率的变化幅度。土壤呼吸速率与土壤温度均呈显著指数相关(P0.05),土壤温度解释了土壤呼吸速率变异的37.3%~62.2%,去除凋落物降低了模型决定系数R2;以土壤温度和土壤水分构建的复合关系方程拟合效果均好于单因子模型,土壤温度和水分共同解释了土壤呼吸季节变化的67.6%~85.6%,并且施氮降低了去凋处理的复合模型决定系数R2,而对对照处理没有显著影响。施氮提高了土壤微生物生物量C、N,并且土壤微生物生物量C、N与土壤呼吸速率呈显著正相关(P0.05)。说明氮沉降、凋落物是影响油松林土壤CO2通量的两个重要因子。  相似文献   

6.
湖南会同林区毛竹林地的土壤呼吸   总被引:5,自引:0,他引:5  
采用CID-301PS光合分析仪(配带土壤呼吸室),对湖南会同林区毛竹林地土壤呼吸进行测定,结果表明,毛竹林地土壤总呼吸速率、异养呼吸速率、自养呼吸速率及凋落物呼吸速率的年平均值分别为2.13、1.44、0.69μmolCO2·m-2·s-1和0.31μmolCO2·m-2·s-1,并呈现明显的季节变化规律和日变化规律,季节变化曲线呈单峰型,表现为1~7月份随着气温、地温的升高呈上升的趋势,在8月达年呼吸速率的最大值,分别达4.95、3.01、1.94μmolCO2·m-2·s-1和0.80 μmolCO2·m-2·s-1,此后随温度的降低而呈逐渐递减的趋势,直到翌年的1月份或2月份,分别为0.76、0.70、 0.06μmolCO2·m-2·s-1 和 0.05μmolCO2·m-2·s-1.日变化曲线图表现为单峰形态,一般也是随着温度的升高而加大,随着温度的降低而减小.6:00~14:00,随着土壤温度的升高而增加,一般在16:00~18:00出现最高峰,此后,一直递减,直到次日4:00~8:00.由此计算出毛竹林地土壤年释放CO2量为33.94 t·hm-2·a-1,其中,林地异养呼吸、自养呼吸和凋落物呼吸分别占总呼吸的59.5%、28.3%和12.2%.  相似文献   

7.
模拟氮沉降对华西雨屏区慈竹林土壤呼吸的影响   总被引:9,自引:3,他引:6  
Li RH  Tu LH  Hu TX  Zhang J  Lu Y  Liu WT  Luo SH  Xiang YB 《应用生态学报》2010,21(7):1649-1655
2007年12月至2008年11月,在华西雨屏区采用0(对照)、50、150、300kg.hm-2.a-1施氮处理和红外CO2分析法,研究了模拟N沉降对慈竹林土壤呼吸特征的影响.结果表明:慈竹林土壤呼吸速率年内季节变化呈明显的单峰型曲线,7月末最高,为(3.36±0.20)μmol.m-2.s-1,2月末最低,为(0.33±0.07)μmol.m-2.s-1.土壤呼吸速率与土壤温度之间呈极显著指数相关(P0.001),10cm深的土壤温度解释了土壤呼吸速率季节变化的91.6%;而土壤含水量与土壤呼吸之间相关性不显著(R2=0.0758).2008年6—11月根呼吸对土壤总呼吸的贡献率在46%~59%.50、150和300kg.hm-2.a-1施氮处理的年CO2释放量分别比对照低23.6%、46.7%和50.5%.0、50、150和300kg.hm-2.a-1施氮处理的土壤呼吸速率Q10值分别为3.72、3.51、2.95和2.71.  相似文献   

8.
通过在华西雨屏区苦竹(Pleioblastus amarus)人工林内建立固定样地、定期监测等方法,研究该人工林生态系统土壤呼吸各组分特征及其温度敏感性.结果表明:2010年2月-2011年1月,苦竹林平均土壤呼吸速率为1.13 μmol·m-2·s-1,仲夏最高,深冬最低;凋落物层、无根土壤和植物根系对苦竹林土壤呼吸的贡献率分别为30.9%、20.8%和48.3%,各呼吸组分的季节动态均与土壤总呼吸类似,并与温度和凋落量等因素相关;苦竹林土壤总呼吸(RST)、凋落物层CO2排放(RSL)、无根土壤CO2排放(RSS)和植物根系呼吸(RSR)的年碳排放量分别为4.27、1.32、0.87和2.08 MgC· hm-2 ·a-1;土壤总呼吸及其各组分与凋落量呈显著正线性相关,与土壤10 cm温度和气温均呈显著正指数相关;基于土壤温度计算的RST、RSL、RSS和RSR的Q10值分别为2.90、2.28、3.09和3.19,凋落物层CO2排放的温度敏感性显著低于总呼吸和其他各组分.  相似文献   

9.
万木林保护区柑橘和锥栗园土壤呼吸的比较   总被引:5,自引:0,他引:5  
采用Li-8100开路式土壤碳通量系统,对福建省万木林保护区内柑橘和锥栗两果园土壤呼吸进行1年的定位观测,分析了土壤水热因子及人为管理措施对土壤呼吸的影响.结果表明:柑橘和锥栗园样地土壤的呼吸速率月变化均呈单峰型曲线,峰值分别出现在7月(3.76 μmol·m-2·s-1)和8月(2.69 μmol·m-2·s-1);柑橘和锥栗园样地土壤呼吸速率的年均值分别为2.68和1.55 μmol·m-2·s-1,且柑橘园土壤呼吸速率极显著高于锥栗园;土壤温度是影响土壤呼吸的主要因素,可以解释土壤呼吸速率月动态变化的73%~86%;锥栗园土壤含水量与土壤呼吸速率呈显著正相关,但柑橘园两者关系不显著;指数方程计算的柑橘和锥栗园土壤呼吸的Q10值分别为1.58和1.75;柑橘和锥栗园土壤呼吸年通量值分别为10.01和5.77tC·hm-2 ·a-1.  相似文献   

10.
模拟酸雨胁迫对马尾松和杉木幼苗土壤呼吸的影响   总被引:5,自引:0,他引:5  
利用LI-8100测定模拟酸雨不同处理下(pH2.5、4.0和5.6)盆栽马尾松(Pinus Massoniana)和杉木幼苗(Cunninghamia lanceolata)的土壤呼吸速率及土壤温度、含水量,研究酸雨对其土壤呼吸的影响.结果表明:模拟酸雨喷淋下马尾松和杉木土壤pH值呈现下降的趋势且下降幅度同酸雨酸度呈现正相关性;马尾松和杉木各个处理下土壤呼吸速率季节变化显著,且同地下10cm土壤温度季节变化趋势一致,pH2.5处理下的土壤呼吸速率平均值分别为1.79μmol · m-2 · s-1和1.12μmol · m-2 · s-1,比对照组(pH5.6)土壤呼吸速率平均值1.57μmol · m-2 · s-1和1.54μmol · m-2 · s-1分别高14%和低39%;马尾松和杉木各个处理下土壤呼吸速率同10cm土壤温度之间均呈现显著的指数关系(P<0.001),与5cm土壤含水量之间相关性不明确;在P=0.05水平上进行多元回归分析,可以得到土壤呼吸速率同土壤温度和含水量的综合拟合方程,和单因素(温度、含水量)拟合相比能够更好地解释土壤呼吸的变化情况;马尾松和杉木在pH2.5和4.0处理下的土壤呼吸温度系数Q10值分别为1.36、2.01和1.51、2 25,同对照组1.14和1.58相比,均有明显差异,且两者Q10值的变化呈先增大后减小的趋势.这证明酸雨是影响马尾松和杉木土壤CO2通量的一个重要因素.  相似文献   

11.
改变凋落物输入对杉木人工林土壤呼吸的短期影响   总被引:9,自引:0,他引:9       下载免费PDF全文
从2007年1月至12月, 在长沙天际岭国家森林公园, 通过改变杉木林凋落物输入, 研究杉木(Cunninghamia lanceolata)人工林群落去除凋落物、加倍凋落物土壤呼吸速率及5 cm土壤温、湿度的季节变化。结果表明: 去除和加倍凋落物对土壤温度和湿度产生的差异不显著(p>0.05), 对土壤呼吸全年产生的差异接近显著(Marginal significant)(p=0.058)。按植物生长期分别分析, 去除和加倍凋落物对土壤呼吸产生的差异, 在生长旺盛期差异显著(p=0.003), 在生长非旺盛期差异性不显著(p=0.098)。去除凋落物年均土壤呼吸速率为159.2 mg CO2·m-2·h-1, 比对照处理土壤呼吸速率(180.9 mg CO2·m-2·h-1)低15.0%, 加倍凋落物的土壤呼吸为216.8 mg CO2·m-2·h-1, 比对照处理高17.0%。去除和加倍凋落物土壤呼吸季节动态趋势与5 cm深度土壤温度相似, 它们之间呈显著指数相关, 模拟方程分别为: y=27.33e0.087 2t(R2=0.853, p<0.001), y=37.25e0.088 8t(R2=0.896, p<0.001)。去除和加倍凋落物的Q10值分别为2.39和2.43, 均比对照2.26大。去除和加倍凋落物土壤呼吸与土壤湿度之间关系不显著(p>0.05)。这一结果使我们能够在较短时间内观察到改变凋落物输入对土壤呼吸的影响, 证明凋落物是影响土壤CO2通量的重要因子之一。  相似文献   

12.
改变凋落物输入对川西亚高山天然次生林土壤呼吸的影响   总被引:1,自引:0,他引:1  
2019年5月-10月,采用LI-8100A土壤碳通量自动测量分析仪对川西米亚罗林区20世纪60年代采伐后经自然更新恢复形成的岷江冷杉(Abies faxoniana)次生针叶林(针叶林)、红桦(Betula albo-sinensis)+青榨槭(Acer davidii)+岷江冷杉次生针阔混交林(针阔混交林)和青榨槭+红桦+陕甘花楸(Sorbus koehneana Schneid)次生阔叶林(阔叶林)的土壤呼吸及土壤温湿度因子(对照、去除凋落物和加倍凋落物)进行观测。结果显示:去除和加倍凋落物对土壤温湿度的影响不显著,且3种林型之间的土壤呼吸速率差异不显著。与对照相比,去除凋落物使针叶林、针阔混交林、阔叶林的土壤呼吸速率分别降低了17.65%、21.01%和19.83%(P<0.05);加倍凋落物则分别增加6.76%、7.28%、8.16%(P>0.05)。3种林分土壤呼吸速率均与土壤温度极显著指数相关,与土壤湿度不相关。对照Q10值变幅为2.01-3.29,去除凋落物降低了3种林型的Q10值;加倍凋落物分别提高了针叶林和降低了针阔混交林和阔叶林的Q10值。土壤呼吸速率仅表现在天然次生林对照处理中受到土壤pH、有机质、可溶性有机氮和草本Pielou均匀度指数的显著影响。研究结果表明,天然次生阔叶林和针阔混交林凋落物对土壤呼吸的贡献及Q10值高于天然次生针叶林,说明在未来CO2浓度及温度升高背景下,地表凋落物增加并未引起天然次生林土壤呼吸速率成倍增加,更有利于该区域天然次生林尤其是针叶林的土壤碳吸存。  相似文献   

13.
《植物生态学报》2017,41(9):964
Aims Seasonal snow cover is one of the most important factors that control winter soil respiration in the cold biomes. The warming-induced decreases in snowpack could affect winter soil respiration of subalpine forests. The aim of this study was to explore the effects of snow removal on winter soil respiration in a Picea asperata forest.Methods A snow removal experiment was conducted in a P. asperata forest stand in western Sichuan during the winter of 2015/2016. The snow removal treatment was implemented using wooden roof method. Soil temperatures, snow depth and soil respiration rate were simultaneously measured in plots of snow removal and controls during the experimental period.Important findings Compared to the control, snow removal increased the fluctuations of soil temperatures. The average daily temperature of the soil surface and that at 5 cm depth were 1.12 °C and 0.34 °C lower, respectively, and the numbers of freeze-thaw cycles of the soil surface and that at 5 cm depth were increased by 39 and 12, respectively, in plots of snow removal than in the controls. The average rate of winter soil respiration and CO2 efflux were 0.52 μmol·m-2·s-1 and 88.44 g·m-2, respectively. On average, snow removal reduced soil respiration rate by 21.02% and CO2 efflux by 25.99%, respectively. More importantly, the snow effect mainly occurred in the early winter. The winter soil respiration rate had a significant exponential relationship with soil temperature. However, snow removal significantly reduced temperature sensitivity of the winter soil respiration. Our results suggest that seasonal snow reduction associated with climate change could inhibit winter soil respiration in the subalpine forests of western Sichuan, with significant implications for the carbon dynamics of the subalpine forests.  相似文献   

14.
We examined the effects of root and litter exclusion on the rate of soil CO2 efflux and microbial biomass using trenching and tent separation techniques in a secondary forest (SF) and a pine (Pinus caribaea Morelet) plantation in the Luquillo Experimental Forest in Puerto Rico. Soil surface CO2 efflux was measured using the alkali trap method at 12 randomly-distributed locations in each treatment (control, root exclusion, litter exclusion, and both root and litter exclusion) in the plantation and the SF, respectively. We measured soil CO2 efflux every two months and collected soil samples at each sampling location in different seasons to determine microbial biomass from August 1996 to July 1997. We found that soil CO2 efflux was significantly reduced in the litter and root exclusion plots (7-year litter and/or root exclusion) in both the secondary forest and the pine plantation compared with the control. The reduction of soil CO2 efflux was 35.6% greater in the root exclusion plots than in the litter exclusion plots in the plantation, whereas a reversed pattern was found in the secondary forest. Microbial biomass was also reduced during the litter and root exclusion period. In the root exclusion plots, total fungal biomass averaged 31.4% and 65.2% lower than the control plots in the plantation and the secondary forest, respectively, while the total bacterial biomass was 24% and 8.3% lower than the control plots in the plantation and the secondary forest, respectively. In the litter exclusion treatment, total fungal biomass averaged 69.2% and 69.7% lower than the control plots in the plantation and the secondary forest, respectively, while the total bacterial biomass was 48% and 50.1% lower than the control plots in the plantation and the secondary forest, respectively. Soil CO2 efflux was positively correlated with both fungal and bacterial biomass in both the plantation the secondary forest. The correlation between soil CO2 efflux and active fungal biomass was significantly higher in the plantation than in the secondary forest. However, the correlation between the soil CO2 efflux and both the active and total bacterial biomass was significantly higher in the secondary forest than in the plantation in the day season. In addition, we found soil CO2 efflux was highly related to the strong interactions among root, fungal and bacterial biomass by multiple regression analysis (R2 > 0.61, P < 0.05). Our results suggest that carbon input from aboveground litterfall and roots (root litter and exudates) is critical to the soil microbial community and ecosystem carbon cycling in the wet tropical forests.  相似文献   

15.
Ruan  H.H.  Zou  X.M.  Scatena  F.N.  Zimmerman  J.K. 《Plant and Soil》2004,260(1-2):147-154
Carbon availability often controls soil microbial growth and there is evidence that at regional scales soil microbial biomass is positively correlated with aboveground forest litter input. We examined the influence of plant litterfall on annual variation of soil microbial biomass in control and litter-excluded plots in a tropical wet forest of Puerto Rico. We also measured soil moisture, soil temperature, and plant litterfall in these treatment plots. Aboveground plant litter input had no effect on soil microbial biomass or on its pattern of fluctuation. Monthly changes in soil microbial biomass were not synchronized with aboveground litter inputs, but rather preceeded litterfall by one month. Soil microbial biomass did not correlate with soil temperature, moisture, or rainfall. Our results suggest that changes in soil microbial biomass are not directly regulated by soil temperature, moisture, or aboveground litter input at local scales within a tropical wet forest, and there were asynchronous fluctuation between soil microbial biomass and plant litterfall. Potential mechanisms for this asynchronous fluctuation include soil microbial biomass regulation by competition for soil nutrients between microorganisms and plants, and regulation by below-ground carbon inputs associated with the annual solar and drying-rewetting cycles in tropical wet forests.  相似文献   

16.
Wang CH  Chen FQ  Wang Y  Li JQ 《应用生态学报》2011,22(3):600-606
采用野外监测方法,研究了鄂东南低丘地区主要森林类型枫香林和马尾松林土壤异养呼吸、土壤温湿度的年动态;并通过室内试验研究了土壤呼吸随土壤深度的变化以及表层土壤(0~5 cm)异养呼吸的温湿度敏感性,建立了表层土壤异养呼吸的温湿度响应模型,探讨全球温暖化对该区土壤异养呼吸的潜在影响.结果表明:枫香林和马尾松林0~5 cm土壤呼吸速率分别是5~10 cm、10~15 cm层的2.39、2.62倍和2.01、2.94倍,说明土壤异养呼吸主要发生在土壤表层(0~5 cm);枫香林和马尾松林0~5 cm、5~10 cm及10~15 cm土壤的Q10分别是2.10、1.86、1.78和1.86、1.77、1.44;枫香林和马尾松林表层土壤呼吸对温度(T)的响应符合指数模型[R=αexp(βT)],对湿度(W)的响应符合二次函数模型(R=a+bW+cW2);0~5 cm土壤对温湿度双因子的响应符合lnR=a+bW+cW2+dT+eT2模型,且异养呼吸对湿度的响应具有温度依赖性,即在高温下敏感,低温下敏感性下降;应用表层土壤异养呼吸温湿度模型预测枫香林和马尾松林土壤异养呼吸年动态及总量,枫香林土壤异养呼吸量的模拟值比实测值略高...  相似文献   

17.
凋落物是土壤呼吸的主要碳源,日益增加的大气氮沉降通过改变森林凋落物的输入与分解影响土壤呼吸。为揭示氮沉降及凋落物管理对森林土壤呼吸及其组分的影响,以贵州省国有扎佐林场15年生柳杉人工林为研究对象,设置4个氮添加处理:对照(CK,0 gN m-2 a-1)、低氮(LN,15 gN m-2 a-1)、中氮(MN,30 gN m-2 a-1)和高氮(HN,60 gN m-2 a-1),并在每种氮添加处理下设置去除凋落物和保留凋落物两种处理,于2021年3月-2022年2月利用LI-8100测定土壤呼吸速率,并分析氮添加及凋落物处理对土壤呼吸速率影响,确定影响土壤呼吸速率变化的主要因子。结果表明:氮添加和去除凋落物处理没有改变土壤呼吸速率的时间变化,土壤呼吸速率月均最大值出现在7月,月均最小值出现在2月。氮添加对土壤呼吸速率无显著影响(P > 0.05),除CK外,去除凋落物处理会显著降低土壤呼吸速率(P < 0.05)。凋落物对土壤总呼吸速率的贡献率为8.6%-28.5%,且LN处理下凋落物对土壤呼吸速率的贡献率最大。土壤呼吸速率与5 m土壤温度呈显著指数相关(P < 0.01),与5 cm土壤湿度呈显著负线性相关(P < 0.01)。土壤温度解释了土壤呼吸速率变异的58.5%-79.5%,土壤湿度解释了土壤呼吸速率变异的26.4%-39.5%,以土壤温度和湿度构建的双变量模型拟合效果均好于单因子模型,土壤温湿度共同解释土壤呼吸速率变异的59.1%-85.8%。结论表明在大气氮沉降增加的背景下,温度是影响土壤呼吸的主要因素,凋落物管理是调控土壤呼吸的关键过程。  相似文献   

18.
模拟氮沉降凋落物管理对樟树人工林土壤呼吸的影响   总被引:1,自引:0,他引:1  
陈毅  闫文德  郑威  廖菊阳  盘昱良  梁小翠  杨坤 《生态学报》2018,38(21):7830-7839
以湖南省植物园樟树人工林为对象,研究了模拟氮沉降下,不同凋落物处理对土壤呼吸的影响。设置4个施氮水平,分别为CK(0 kg N hm~(-2)a~(-1))、LN(50 kg N hm~(-2)a~(-1))、NM(150 kg N hm~(-2)a~(-1))以及HN(300 kg N hm~(-2)a~(-1));凋落物处理分别为去除凋落物、添加凋落物以及凋落物对照组。经过为期2年的观测研究,结果表明:(1)模拟氮沉降不同凋落物处理下,土壤温度呈现显著的季节性变化,但不存在显著差异;土壤湿度呈现显著的波动性变化,施氮及凋落物管理对土壤温度无影响。土壤湿度仅受凋落物管理的影响。在不同施氮水平下,去除凋落物的土壤湿度与加倍凋落物的土壤湿度均存在显著差异性。(2)模拟氮沉降不同凋落物处理下,土壤呼吸均呈现显著的季节性变化,最大值出现在6—8月;最小值出现在1月,且在生长季期间(4—8月),不同处理下土壤呼吸存在显著差异。(3)施氮对土壤呼吸表现为抑制作用,添加凋落物对土壤呼吸起促进作用,去除凋落物对土壤呼吸起抑制作用。(4)在凋落物对照组中,LN、MN、HN较CK相比,土壤呼吸速率年均值分别降低了35.4%、30.6%、36.8%,且各施氮水平与CK存在显著差异(P0.05);添加凋落物处理下,LN、MN、HN处理较CK相比,土壤呼吸速率年均值土壤呼吸分别降低了23.2%、15.8%、14.7%。去除凋落物处理下,LN、MN、HN较CK相比,土壤呼吸速率年均值分别降低了3.5%、0.5%、-11.6%。且添加或去除凋落物均能削弱施氮对土壤呼吸的抑制作用,且这种作用随着施氮水平的增加而增大。(5)土壤呼吸与5 cm处土壤温度存在显著相关性(P0.05),土壤温度可解释土壤呼吸变异的47.76%—72.61%;与土壤湿度呈现正相关,但未达到显著相关水平(P0.05)。  相似文献   

19.
In order to investigate the annual variation of soil respiration and its components in relation to seasonal changes in soil temperature and soil moisture in a Mediterranean mixed oak forest ecosystem, we set up a series of experimental treatments in May 1999 where litter (no litter), roots (no roots, by trenching) or both were excluded from plots of 4 m2. Subsequently, we measured soil respiration, soil temperature and soil moisture in each plot over a year after the forest was coppiced. The treatments did not significantly affect soil temperature or soil moisture measured over 0–10 cm depth. Soil respiration varied markedly during the year with high rates in spring and autumn and low rates in summer, coinciding with summer drought, and in winter, with the lowest temperatures. Very high respiration rates, however, were observed during the summer immediately after rainfall events. The mean annual rate of soil respiration was 2.9 µ mol m?2 s?1, ranging from 1.35 to 7.03 µmol m?2 s?1. Soil respiration was highly correlated with temperature during winter and during spring and autumn whenever volumetric soil water content was above 20%. Below this threshold value, there was no correlation between soil respiration and soil temperature, but soil moisture was a good predictor of soil respiration. A simple empirical model that predicted soil respiration during the year, using both soil temperature and soil moisture accounted for more than 91% of the observed annual variation in soil respiration. All the components of soil respiration followed a similar seasonal trend and were affected by summer drought. The Q10 value for soil respiration was 2.32, which is in agreement with other studies in forest ecosystems. However, we found a Q10 value for root respiration of 2.20, which is lower than recent values reported for forest sites. The fact that the seasonal variation in root growth with temperature in Mediterranean ecosystems differs from that in temperate regions may explain this difference. In temperate regions, increases in size of root populations during the growing season, coinciding with high temperatures, may yield higher apparent Q10 values than in Mediterranean regions where root growth is suppressed by summer drought. The decomposition of organic matter and belowground litter were the major components of soil respiration, accounting for almost 55% of the total soil respiration flux. This proportion is higher than has been reported for mature boreal and temperate forest and is probably the result of a short‐term C loss following recent logging at the site. The relationship proposed for soil respiration with soil temperature and soil moisture is useful for understanding and predicting potential changes in Mediterranean forest ecosystems in response to forest management and climate change.  相似文献   

20.
陈刚  涂利华  彭勇  胡红玲  胡庭兴 《生态学报》2015,35(18):6100-6109
次生林在全球碳循环中占有重要地位,为了研究中国中亚热带次生林土壤有机碳组分特征,以四川瓦屋山中山段扁刺栲-中华木荷常绿阔叶次生林为对象,通过挖取土壤剖面分层(0—10、10—40、40—70 cm和70—100 cm)取样方式,研究土壤各有机碳组分特征。结果表明:土壤有机碳、微生物生物量碳、可浸提溶解性有机碳和易氧化碳含量均随土层深度增加而减小,0—10 cm土层有机碳含量为121.89 g/kg,高于已报道的亚热带其他常绿阔叶林和四川各类森林;0—10 cm层微生物生物量碳含量为1931.82 mg/kg,可浸提溶解性有机碳含量为697.42 mg/kg,易氧化碳含量为20.98 g/kg,高于已报道的许多相似天然林和人工林活性碳含量。土壤有机碳储量为154.87 t/hm2,在四川省各类森林中处于中等水平。研究表明瓦屋山扁刺栲-中华木荷常绿阔叶次生林活性碳含量较大,微生物活动和养分流动较为活跃,凋落物层转化为土壤碳的潜力较大,这类生态系统可能会在区域碳循环过程中扮演更为重要的角色。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号