首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Attempts to manipulate the level of C16:1 fatty acids in membrane phospholipids were made by using Bacillus subtilis and its protonophore-resistant mutants to test the hypothesis that C16:1 fatty acid levels relate to the bioenergetic properties of the mutant strains. Growth of the three mutants in the presence of palmitoleic acid restored the level of C16:1 fatty acids in the membrane lipids to somewhat above those found in the wild type. The palmitoleic acid was preferentially incorporated into diphosphatidylglycerol (cardiolipin) and phosphatidylethanolamine and was associated with increased levels of these phospholipids. These membrane preparations showed no increase in the levels of free fatty acids. The increase in C16:1 fatty acids achieved by growth in the presence of palmitoleic acid was accompanied by secondary changes in membrane lipids as well as a pronounced diminution in the protonophore resistance of growth and ATP synthesis. Other membrane-associated properties that had been observed in these mutants, e.g., elevated ATPase levels, were not altered coordinately with protonophore resistance and C16:1 fatty acid levels. Growth of the wild type in the presence of palmitic acid caused a modest elevation of the C16:0 of the membrane lipids and a modest increase in the protonophore resistance of growth and ATP synthesis. Growth of the wild type at elevated temperatures, in the absence of fatty acid supplementation, also enhanced its resistance to protonophores. The results support the hypothesis that specific changes in membrane lipid composition underlie the bioenergetic changes associated with protonophore resistance.  相似文献   

2.
The fatty acid desaturase activity in cell extracts of Bacillus subtilis was characterized and found to be O2 dependent, NADH dependent, and cyanide sensitive. In cell fractionation studies, only 10% of the desaturase activity was recovered in the membrane fraction; the addition of cytosolic factors, which by themselves were devoid of activity, restored membrane activity to the level found in the unfractionated cell extracts. NADH was preferred over NADPH as an electron donor, and palmitoyl-coenzyme A was used preferentially over stearoyl-coenzyme A as the straight-chain fatty acid substrate. An increase in desaturase activity was observed when either the growth or the assay temperature was lowered from 37 to 20 degrees C, although the assay temperature appeared to be the more important parameter. Three protonophore-resistant mutants of B. subtilis and a comparable mutant of Bacillus megaterium had been found to possess reduced levels of unsaturated fatty acids in their membrane phospholipids; their protonophore resistance was abolished when grown in the presence of an unsaturated fatty acid supplement. All of these strains were found to be either significantly deficient in or totally lacking desaturase activity in comparison with their wild-type parent strains. Full, protonophore-sensitive revertants of the mutants had levels of desaturase activity comparable to those of the wild-type. Temperature-sensitive revertants of two of the mutants, which grew at 32 degrees C but not at 26 degrees C in the presence of protonophore, exhibited desaturase activity comparable to that of the wild-type at 26 degrees C but lacked activity at 32 degrees C. These results indicate that the biochemical basis for protonophore resistance in these Bacillus mutants is a fatty acid desaturase deficiency.  相似文献   

3.
Effects of fatty acids on lysis of Streptococcus faecalis.   总被引:6,自引:5,他引:1       下载免费PDF全文
Palmitic, stearic, oleic, and linoleic acids at concentrations of 200 nmol/ml all inhibited autolysin activity 80% or more in whole cells or cell-free extracts. This concentration of the saturated fatty acids palmitic acid and stearic acid had little or no effect on the growth of whole cells or protoplasts. However, the unsaturated fatty acids oleic acid and linoleic acid induced lysis in both situations. This lytic effect is apparently not related to any uncoupling activity or inhibition of energy catabolism by unsaturated fatty acids. It is concluded that unsaturated fatty acids induce cell and protoplast lysis by acting as more potent membrane destabilizers than saturated fatty acids.  相似文献   

4.
Mobilization of fatty acids from adipose tissue during metabolic stress will increase the amount of free fatty acids in blood and follicular fluid and, thus, may affect oocyte quality. In this in vitro study, the three predominant fatty acids in follicular fluid (saturated palmitic and stearic acid and unsaturated oleic acid) were presented to maturing oocytes to test whether fatty acids can affect lipid storage of the oocyte and developmental competence postfertilization. Palmitic and stearic acid had a dose-dependent inhibitory effect on the amount of fat stored in lipid droplets and a concomitant detrimental effect on oocyte developmental competence. Oleic acid, in contrast, had the opposite effect, causing an increase of lipid storage in lipid droplets and an improvement of oocyte developmental competence. Remarkably, the adverse effects of palmitic and stearic acid could be counteracted by oleic acid. These results suggest that the ratio and amount of saturated and unsaturated fatty acid is relevant for lipid storage in the maturing oocyte and that this relates to the developmental competence of maturing oocytes.  相似文献   

5.
Three mutant strains of Bacillus subtilis were isolated on the basis of their ability to grow in the presence of 5 microM carbonyl cyanide m-chlorophenylhydrazone (CCCP). The mutants (AG2A, AG1A3, and AG3A) were also resistant to 2,4-dinitrophenol, and AG2A exhibited resistance to tributyltin and neomycin. The mutants all exhibited (i) elevated levels of membrane ATPase activity relative to the wild type; (ii) slightly elevated respiratory rates, with the cytochrome contents of the membranes being the same as or slightly lower than those of the wild type; (3) a passive membrane permeability to protons that was indistinguishable from that of the wild type in the absence of CCCP and that was increased by addition of CCCP to the same extent as observed with the wild type; and (4) an enhanced sensitivity to valinomycin with respect to the ability of the ionophore to reduce the transmembrane electrical potential. Finally and importantly, starved whole cells of all the mutants synthesized more ATP than the wild type did upon energization in the presence of any one of several agents that lowered the proton motive force. Studies of revertants indicated that the phenotype resulted from a single mutation. Since a mutation in the coupling membrane might produce such pleiotropic effects, an analysis of the membrane lipids was undertaken with preparations made from cells grown in the absence of CCCP. The membrane lipids of the uncoupler-resistant strains differed from those of the wild type in having reduced amounts of monounsaturated C16 fatty acids and increased ratios of iso/anteiso branches on the C15 fatty acids. Correlations between protonophore resistance and the membrane lipid compositions of the wild type, mutants, and revertants were most consistent with the hypothesis that a reduction in the content of monounsaturated C16 fatty acids in the membrane phospholipids is related, perhaps casually, to the ability to synthesize ATP at low bulk transmembrane electrochemical gradients of protons.  相似文献   

6.
Cell growth, lipid accumulation and cellular lipid composition of Yarrowia lipolytica growing on mixtures of industrial fats containing stearic, oleic, linoleic and palmitic acid have been studied. During growth, the strain incorporated oleic and linoleic acids more rapidly than the saturated fatty acids. Relatively high lipid accumulation (up to 0.44 g of lipids per g of dry matter) was observed when stearic acid was included in the culture medium. In contrast, substrates rich in oleic acid did not favor cellular lipid accumulation. The accumulated lipids, mainly composed of triacylglycerols (45-55% w/w), demonstrated a different total fatty acid composition compared with that of the substrate; in all cases, the microorganism showed the unusual capacity to increase its cellular stearic acid level, even if this fatty acid was not found in high concentrations in the substrate. This permitted the synthesis of interesting lipid profiles with high percentages of stearic acid and non-negligible percentages of palmitic and oleic acid, with a composition resembling that of cocoa-butter.  相似文献   

7.
The effect of fatty acids on Mycobacterium smegmatis was examined in vitro at pH 5.0 to 7.0 to determine the role of fatty acids in the intracellular killing of mycobacteria. Unsaturated fatty acids showed strong bactericidal activity in low concentrations (0.005 to 0.02 mM), whereas saturated fatty acids, except for lauric and myristic acids, were not very effective even at a concentration of 0.2 mM. Addition of a saturated fatty acid (palmitic or stearic acid) to an unsaturated fatty acid (oleic or linoleic acid) did not strongly interfere with the bactericidal effect of the unsaturated fatty acid at pH 5.0 and 6.0. Ca2+ (3.0 mM), Mg2+ (1.0 mM), and gamma-globulin (0.4%) showed weak reversal effects on the bactericidal activity of unsaturated fatty acids at pH 5.0 and 6.0. Serum albumin and serum showed strong reversal effects. The concentrations of each fatty acid in a mixture (molar ratio, 1:1:1:1) of oleic, linoleic, palmitic, and stearic acids required for the killing of M. smegmatis in the presence of 2% serum (bovine, rabbit, or human) were 0.05 to 0.10 mM at pH 5.0 and 6.0 and 0.05 to 0.20 mM at pH 7.0, depending on the serum used. The susceptibilities of M. kansasii, M. bovis strain BCG, and M. tuberculosis to the mixture of the four fatty acids in the presence of 2% bovine serum were similar to that of M. smegmatis, although M. fortuitum was more resistant.  相似文献   

8.
In the studies described here rat liver microsomes containing labeled palmitic, stearic, oleic or linoleic acids were incubated with fatty acid binding protein (FABP) and the rate of removal of14C-labeled fatty acids from the membrane by the soluble protein was measured using a model system. More unsaturated than saturated fatty acids were removed from native liver microsomes incubated with similar amounts of FABP. Thein vitro peroxidation of microsomal membranes mediated by ascorbate-Fe++, modified its fatty acid composition with a considerable decrease of the peroxidizability index. These changes in the microsomes facilitated the removal of oleic and linoeic acids by FABP, but the removal of palmitic and stearic acids was not modified. This effect is proposed to result from a perturbation of membrane structure following peroxidation with release of free fatty acids from susceptible domains.Abbreviations BSA bovine serum albumin - FABP fatty acid binding protein  相似文献   

9.
Unsaturated fatty acids are important constituents of all cell membranes and are required for normal growth. In the filamentous fungus Aspergillus nidulans, unsaturated fatty acids and their derivatives also influence asexual (conidial) and sexual (ascospore) sporulation processes. To investigate the relationship between fatty acid metabolism and fungal development, we disrupted the A. nidulans sdeA and sdeB genes, both encoding Delta9-stearic acid desaturases responsible for the conversion of palmitic acid (16:0) and stearic acid (18:0) to palmitoleic acid (16:1) and oleic acid (18:1). The effects of sdeA deletion on development were profound, such that growth, conidial and ascospore production were all reduced at 22 and 37 degrees C. Total fatty acid content was increased over 3-fold in the DeltasdeA strain, reflected in up-regulation of the expression of the fasA gene encoding the alpha chain of the fatty acid synthase, compared to wild type. Stearic acid accumulated approximately 3-fold compared to wild type in the DeltasdeA strain, while unsaturated fatty acid production was decreased. In contrast, disruption of sdeB reduced fungal growth and conidiation at 22 degrees C, but did not affect these processes at 37 degrees C compared to wild type. Interestingly, ascospore production was increased at 37 degrees C for DeltasdeB compared to wild type. Total fatty acid content was not increased in this strain, although stearic acid accumulated 2-fold compared to wild type, and unsaturated fatty acid production was decreased. Combining the DeltasdeA and DeltasdeB alleles created a synthetic lethal strain requiring the addition of oleic acid to the medium for a modicum of growth. Taken together, our results suggest a role for sdeA in growth and development at all temperatures, while sdeB is involved in growth and development at lower temperatures.  相似文献   

10.
Effect of various fatty acids on the membrane potential of an alkaliphilic Bacillus, YN-2000, was examined. Addition of unsaturated fatty acids such as palmitoleic acid, oleic acid, linoleic acid, and linolenic acid at 30 M caused the instantaneous depolarization of the membrane potential of the bacterium, which appears to result in the drastic decrease of viability. On the other hand, no depolarization was detected by the addition of saturated acids such as palmitic acid, stearic acid, and 12-hydroxystearic acid even at 1 mM.  相似文献   

11.
Summary Solid animal fats aggregated when first added to aqueous media and strong agitation was necessary to accomplish and maintain their dispersion. The growth rate of Saccharomycopsis lipolytica accelerated as fat dispersion proceeded until similar rates of exponential growth were attained with either lard, mutton tallow or beef tallow as sole carbon source. The major fatty acids in all substances were oleic, palmitic, and stearic. A major proportion of both saturated acids were consumed during the yeast's growth on animal fats, but the growth rates were greatly reduced after exhaustion of the preferentially consumed unsaturated acid. At this time, substantial amounts of saturated acids, present both as free fatty acid and in glycerides, remained. The amounts of these residual acids were markedly affected by the distribution of acyl groups within the original triglycerides. With individual fatty acids as the sole carbon source, the yeast grew at comparable rates on palmitic and oleic acids but did not grow on stearic acid.  相似文献   

12.
Summary In order to improve the economic value of lipids produced by the oleaginous yeast strain Apiotrichum curvatum ATCC 20509, a search was made for mutants defective in the conversion of stearic acid to oleic acid. Mutants could be selected as unsaturated fatty acid auxotrophs, since unsaturated fatty acids are essential componenets in membrane lipids. After treatment of A. curvatum wild-type with N-methyl-N-nitro-N-nitrosoguanidine, 58 fatty-acid-requiring mutants were isolated. On the basis of (1) the growth response to saturated and unsaturated fatty acids and (2) the fatty acid composition of lipids produced by these mutants, it was concluded that only 18 of them were real unsaturated fatty acid (Ufa) mutants, while the other 40 were designated as fatty acid synthetase (Fas) mutants. It is further shown that Ufa mutants of A. curvatum are able to produce high amounts of lipids consisting of more than 90% triacylglycerols with a percentage of saturated fatty acids resembling that of cocoa butter, when grown in the presence of relatively small amounts of oleic acid in the growth medium. This may offer an economically favourable alternative in comparison with other methods that have been developed for the production of cocoa butter equivalents by microorganisms.Offprint requests to: H. Smit  相似文献   

13.
A naturally occurring fatty acid-requiring Butyrivibrio sp. (strain S2), isolated from the ovine rumen, deacylates plant galactolipids, phospholipids and sulpholipids to obtain sufficient fatty acid for growth. Growth in vitro was promoted by adding to the growth medium a single straight-chain saturated fatty acid (C13 to C18) or vaccenic acid. Palmitoleic and oleic acids also supported growth but gave lengthy lag phases probably due to their toxicity. Linolenic and linoleic acids supported good growth but they were completely hydrogenated to trans-11-octadecenoic acid which was incorporated into the bacterial complex lipids. No chain elongation, chain shortening or desaturation of the added fatty acids occurred and all were substantially incorporated into bacterial lipids of the plasmalogen type, partially as a new type of hydrophobic grouping derived from two molecules of fatty acid. The absence of fatty acid unsaturation poses the question of the maintenance of membrane fluidity within this bacterium.  相似文献   

14.
华南主要野生蔬菜的脂肪酸成分分析   总被引:5,自引:1,他引:4  
本实验以华南主要野生蔬菜守宫木、土人参、一点红、白仔菜、紫背菜、鳄嘴花、藤三七、塘葛菜为材料,并以华南特产蔬菜菜心为对照,对8种野生蔬菜的脂肪酸成分进行了分析.结果表明:8种野菜共检出十四酸、软脂酸、棕榈油酸、硬脂酸、油酸、亚油酸、亚麻酸、二十二酸和二十四酸共9种脂肪酸,但不同野菜之间的脂肪酸组成与含量差异极大.8种野菜的饱和脂肪酸的总量都高于菜心,饱和脂肪酸种类最多的是藤三七,含4种.不饱和脂肪酸的变化与饱和脂肪酸相反,8种野菜都低于菜心,但其油酸、亚油酸远高过菜心.菜心富含亚麻酸,但不含亚油酸.可见8种野菜油营养价值较高.  相似文献   

15.
The influence of fatty acids on model cholesterol/phospholipid membranes   总被引:1,自引:0,他引:1  
The aim of this work was to verify the influence of the saturated (SFA) (stearic acid) and the unsaturated (UFA) (oleic and alpha-linolenic) fatty acids on model cholesterol/phospholipid membranes. The experiments were based on the Langmuir monolayer technique. Cholesterol and phospholipid were mixed in the molar ratio that corresponds to the proportion of these lipids in the majority of natural human membranes. Into the binary cholesterol/phospholipid monolayers, various amounts of fatty acids were incorporated. Our investigations were based on the analysis of the interactions between molecules in ternary (cholesterol/phospholipids/fatty acid) mixtures, however, also binary (cholesterol/fatty acid and phospholipids/fatty acid) mixed system were examined. It was concluded that the influence of the fatty acids on model cholesterol/phospholipid membrane is closely connected with the shape of the fatty acid molecule, resulting from the saturation degree of the hydrocarbon chain. It was found that the saturated fatty acid makes the model membrane more rigid, while the presence of unsaturated fatty acid increases its fluidity. The increasing amount of stearic acid gradually destabilizes model membrane, however, this effect is the weakest at low content of SFA in the mixed monolayer. Unsaturated fatty acids in a small proportion make the membrane thermodynamically more stable, while higher content of UFA decreases membrane stability. This explains low proportion of the free fatty acids to other lipids in natural membrane.  相似文献   

16.
Duramycin-resistant mutant strains were selected from wild-type Bacillus subtilis (BD99) and its protonophore-resistant mutant derivative, strain AG1A3. Analyses of the membranes of the duramycin-resistant mutants showed that they had little or no phosphatidylethanolamine and diphosphatidylglycerol as determined by chemical detection after thin-layer chromatography. Small amounts of these phospholipids must remain in the mutant strains, however, because during studies of incorporation of exogenous, radioactive fatty acids, label associated with palmitoleic acid was found in chromatographic positions that corresponded to the expected positions of phosphatidylethanolamine and diphosphatidylglycerol. The duramycin-resistant strains both showed elevated levels of phosphatidylglycerol and aminoacyl(lysyl)phosphatidylglycerol. The duramycin-resistant derivative of protonophore-resistant AG1A3 (AG1A3-DR4), but not that of the wild type, also showed a decreased content of neutral relative to polar lipid in the membrane. The composition of neutral lipid in that strain was higher in free fatty acids and lower in 1,2-diacylglycerol than its parent strain. AG1A3-DR4 also contained appreciable levels of lysophosphatidylethanolamine and somewhat elevated diglycosyldiacylglycerol relative to the other strains in the study. The protonophore resistance of AG1A3 was unaltered by mutation to duramycin resistance. Nor was there any change in the efficacy of exogenous palmitoleic acid in diminishing the protonophore resistance of AG1A3-DR4. This phenomenon persists upon dramatic reduction in the content of phosphatidylethanolamine and diphosphatidylglycerol even though those phospholipids are normally the preferred sites of incorporation of the exogenous unsaturated fatty acids that mediate the effect.  相似文献   

17.
The aim of this study was to investigate the influence of supplementing growth medium with unsaturated fatty acids on the technical properties of the probiotic strain Lactobacillus johnsonii NCC 533, such as heat and acid tolerance, and inhibition of Salmonella enterica serovar Typhimurium infection. Our results showed that the membrane composition and morphology of L. johnsonii NCC 533 were significantly changed by supplementing a minimal Lactobacillus medium with oleic, linoleic, and linolenic acids. The ratio of saturated to unsaturated plus cyclic fatty acids in the bacterial membrane decreased by almost 2-fold when minimal medium was supplemented with unsaturated fatty acids (10 μg/ml). The subsequent acid and heat tolerance of L. johnsonii decreased by 6- and 20-fold when the strain was grown in the presence of linoleic and linolenic acids, respectively, compared with growth in oleic acid (all at 10 μg/ml). Following acid exposure, significantly higher (P < 0.05) oleic acid content was detected in the membrane when growth medium was supplemented with linoleic or linolenic acid, indicating that saturation of the membrane fatty acids occurred during acid stress. Cell integrity was determined in real time during stressed conditions using a fluorescent viability kit in combination with flow cytometric analysis. Following heat shock (at 62.5°C for 5 min), L. johnsonii was unable to form colonies; however, 60% of the bacteria showed no cell integrity loss, which could indicate that the elevated heat inactivated vital processes within the cell, rendering it incapable of replication. Furthermore, L. johnsonii grown in fatty acid-enriched minimal medium had different adhesion properties and caused a 2-fold decrease in S. enterica serovar Typhimurium UK1-lux invasion of HT-29 epithelial cells compared with bacteria grown in minimal medium alone. This could be related to changes in the hydrophobicity and fluidity of the membrane. Our study shows that technical properties underlying probiotic survivability can be affected by nutrient composition of the growth medium.  相似文献   

18.
The fluidity of the lipids in membrane preparations from a mutant of Escherichia coli resistant to the uncoupler CCCP, grown at different temperatures with and without CCCP, was examined by electron spin resonance using the spin probe 5-doxyl stearic acid. The fluidity of the membrane lipids at the growth temperature, as estimated using electron spin resonance, was less in cells grown at lower temperatures. Precise homeoviscous adaptation was not observed. Growth in the presence of CCCP resulted in a decrease in membrane lipid fluidity, particularly in the inner (cytoplasmic) membrane. There was no change in the proportion of phosphatidylethanolamine, phosphatidylglycerol and cardiolipin in the cell envelope. However, there was an increase in the proportion of unsaturated fatty acids in membranes from cells grown with uncoupler. This was reflected in the increased fluidity of the lipids extracted from these membranes. This result is contrary to that expected from measurements of the fluidity of the lipid in these membranes. The decreased fluidity of the lipid in these membranes may be a consequence of the observed increase in the ratio of protein to phospholipid.  相似文献   

19.
The effect of growth temperature on the cellular fatty acid profiles of Bacillus subtilis and Bacillus megaterium was studied over a temperature range from 40 to 10 degrees C. As the growth temperature of B. subtilis was reduced, the lower-melting point anteiso-acids increased, while the higher-melting point iso-acids decreased. Consequently the ratio of branched- to straight-chain acids was unaffected by temperature, although changes in the position of fatty acid branching and the degree of unsaturated branched-chain fatty acids occurred. In B. megaterium a more complicated, biphasic behaviour was observed. Saturated, straight-chain and iso-branched acids decreased only from 40 degrees C down to 20-26 degrees C, and anteiso-acids decreased only from 20-26 degrees C to 10 degrees C, while unsaturated acids increased over the whole temperature range studied. Thus, in B. megaterium total branched-chain acids decreased and straight-chain acids increased as temperature decreased. However, the overall cellular content of lower-melting point fatty acids increased with decreasing temperature in both bacilli, and unsaturated fatty acids appeared to be essential components in the adaptation of the microbes to changes in temperatures. Since changes in the relative amounts of branched- and straight-chain fatty acid biosynthesis are known to reflect differences in fatty acid primers, temperature seems to affect not only the activity of the fatty acid desaturases but also the formation or availability of these primers. The results indicate, however, that notable species-specific regulatory features exist in this genus of bacteria.  相似文献   

20.
Identification of a putative Bacillus subtilis rho gene.   总被引:7,自引:4,他引:3       下载免费PDF全文
Transposon Tn917 mutagenesis of Bacillus subtilis BD99 followed by selection for protonophore resistance led to the isolation of strain MS119, which contained a single Tn917 insertion in an open reading frame whose deduced amino acid sequence was 56.6% identical to that of the Escherichia coli rho gene product. The insertional site was near the beginning of the open reading frame, which was located in a region of the B. subtilis chromosome near the spoOF gene; new sequence data for several open reading frames surrounding the putative rho gene are presented. The predicted B. subtilis Rho protein would have 427 amino acids and a molecular weight of 48,628. The growth of the mutant strain was less than that of the wild type on defined medium at 30 degrees C. On yeast extract-supplemented medium, the growth of MS119 was comparable to that of the wild type on defined medium at 30 degrees C. On yeast extract-supplemented medium, the growth of MS119 was comparable to that of the wild type at 30 degrees C but was much slower at lower temperatures; sporulation occurred and competence was developed in cells of the mutant grown at 30 degrees C. To determine whether the protonophore resistance and sensitivity to low growth temperature resulted from the insertion, a chloramphenicol resistance cassette was inserted into the wild-type B. subtilis rho gene of strain BD170; the resulting derivative displayed the same phenotype as MS119.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号