首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transfer of phosphatidylcholine molecules between different membrane fractions of Tetrahymena pyriformis cells grown at 15, 27 and 39.5°C was studied by electron spin resonance (ESR). Microsomes were labeled densely with a phosphatidylcholine spin label and the spin-labeled microsomes were incubated with non-labeled cilia, pellicles or microsomes. The transfer of the phosphatidylcholine spin labels was measured by decrease in the exchange broadening of the electron spin resonance spectrum. In one experiment, the lipid transfer was measured between 32P-labeled microsomes and non-labeled pellicles by use of their radioactivity. The result was in good agreement with that by ESR. The fluidity of the membrane was estimated using a fatty-acid spin label incorporated into the membranes. Transfer between lipid vesicles was also studied. The results obtained were as follows: (1) The transfer between sonicated vesicles of egg- or dipalmitoyl phosphatidylcholine occurred rapidly in the liquid crystalline phase, with an activation energy of 20 kcal/mol, whereas it hardly occurred in the solid crystalline phase. (2) The transfer rate between microsomal membranes increased with temperature, and an activation energy of the reaction was 17.8 kcal/mol. (3) The transfer from the spin-labeled microsomes to subcellular membranes of the cells grown at 15°C was larger than that to the membranes of the cells grown at 39.5°C. The membrane fluidity was larger for the cells grown at lower temperature. (4) Similar tendency was observed for the transfer between microsomal lipid vesicles prepared from the cells grown at 15°C and at 39.5°C. (5) The transfer from microsomes to various membrane fractions increased in the order, cilia < pellicles < microsomes. The order of increase in the membrane fluidity was cilia < microsomes < pellicles, although the difference between microsomes and pellicles was slight. These results indicate a crucial role of the membrane fluidity in the transfer reaction. (6) Some evidence supported the idea that the lipid transfer between these organelles occurred through the lipid exchange rather than through the fusion.  相似文献   

2.
C E Martin  G A Thompson 《Biochemistry》1978,17(17):3581-3586
Fluorescence polarization of 1,6-diphenylhexatriene (DPH) was used to study the effects of temperature acclimation on Tetrahymena membranes. The physical properties of membrane lipids were found to be highly dependent on cellular growth temperature. DPH polarization in lipids from three different membrane fractions correlated well with earlier freeze-fracture and electron spin resonance observations showing that membrane fluidity progressively decreases in the order microsomes greater than pellicles greater than cilia throughout a wide range of growth temperatures. Changes in membrane lipid fluidity following a shift from high to low growth temperatures proceed rapidly in the microsomes, whereas there is a pronounced lag in the changes of peripheral cell membrane lipids. These data support previous observations that adaptive changes in membrane fluidity proceed via lipid modifications in the endoplasmic reticulum, followed by dissemination of lipid components to other cell membranes. The rapid changes in polarization observed in the microsomal lipids following a temperature shift correspond closely with the time-dependent alterations in both lipid fatty acid composition and freeze-fracture patterns of membrane particle distribution, suggesting that, in the endoplasmic reticulum, lipid phase separation is the primary cause of membrane particle rearrangements.  相似文献   

3.
F Wunderlich  A Ronai  V Speth  J Seelig  A Blume 《Biochemistry》1975,14(17):3730-3735
The effect of temperature on the core structure of endoplasmic reticulum membranes has been visualized directly in cells of the poikilothermic eukaryote Tetrahymena pyriformis by freeze-etch electron microscopy. Moreover, the effect of temperature on the smooth microsomal membrane vesicles isolated from these cells, as well as on the extracted membrane lipids, has been examined by fluorescence probing, electron spin resonance, proton nuclear magnetic resonance, and calorimetry. Freeze-etch electron microscopy of T. pyriformis cells, equilibrated at different temperatures between 28 and 5 degrees, reveals the emergence of smooth areas on the fracture faces of endoplasmic reticulum membranes at temperatures below similar to 17 degrees. In this temperature range, we also find discontinuities in the glucose 6-phosphatase activity, in the fluorescence intensity of 8-anilino-1-naphthalensulfonate, in the partition of 4-doxyldecane, and in the separation of the outer hyperfine extrema of 5-doxylstearic acid in the microsomal membranes. These membranes apparently contain at least two lipid environments of different fluidity as indicated by the 12-doxylstearic acid spin-label. Proton nuclear magnetic resonance of the extracted membrane lipids indicates an abrupt change of the fatty acid chain mobilities at temperatures below similar to 17 degrees. This, however, is not due to a true thermal liquid crystalline in equilibrium crystalline phase transition. Calorimetric measurements also support this conclusion. The thermotropic alterations observed within the membranes are interpreted to be due primarily to a clustering of "rigid" liquid crystalline lipid environments which exclude membrane-intercalating proteins.  相似文献   

4.
The degree of fatty acid unsaturation and average chain length are closely similar for microsomal membranes from exponential-phase trophozoites and cysts ofAcanthamoeba castellanii despite significant differences in fatty acid composition. The same trend was apparent for total fatty acids extracted from whole cells. The observations suggest that the organism regulates these lipid parameters during differentiation in order to maintain optimum membrane lipid viscosity, and are consistent with previous electron spin resonance measurements indicating that the fluidity of microsomal membranes does not change during encystment. About 75% of the microsomal fatty acids are unsaturated for both cysts and amoebae. Wide-angle X-ray diffraction of phospholipid liposomes prepared from lipid extracts of the membranes has indicted that this high level of unsaturation renders the phospholipid exclusively liquid-crystalline at temperatures as low as 9°C for rough microsomes and-1.5°C for smooth microsomes. Thus, by retaining a high proportion of unsaturated fatty acids throughout its differentiation cycle, the organism gains some protection in its natural soil habitat against lateral phase separation of membrane lipids.  相似文献   

5.
Lipid-protein interactions in thylakoid membranes from lettuce, pea, tomato, and cucumber have been studied using spin-labeled analogues of the thylakoid membrane lipid components, monogalactosyl diglyceride and phosphatidylglycerol. The electron spin resonance spectra of the spin-labeled lipids all consist of two components, one corresponding to the fluid lipid environment in the membranes and the other to the motionally restricted lipids interacting with the integral membrane proteins. Comparison of the spectra from the same spin label in thylakoid membranes from different plants shows that the overall lipid fluidity in the membranes decreases with chilling sensitivity. Spectral subtraction has been used to quantitate the fraction of the membrane lipids in contact with integral membrane proteins. Thylakoid membranes of cucumber, a typical chilling-sensitive plant, have been found to have a higher proportion of motionally restricted lipids and a different lipid selectivity for lipid-protein interaction, as compared with those of pea, a typical chilling-resistant plant. This correlation with chilling sensitivity holds generally for the different plants studied. It seems likely that the chilling sensitivity in thylakoid membranes is not determined by lipid fluidity alone, but also by the lipid-protein interactions which could affect protein function in a more direct manner.  相似文献   

6.
A definite and characteristic relationship exists between growth temperature, fatty acid composition and the fluidity and physical state of the membrane lipids in wild type Bacillus stearothermophilus. As the environmental temperature is increased, the proportion of saturated fatty acids found in the membrane lipids is also markedly increased with a concomitant decrease in the proportion of unsaturated and branched chain fatty acids. The temperature range over which the gel to liquid-crystalline membrane lipid phase transition occurs is thereby shifted such that the upper boundary of this transition always lies near (and usually below) the temperature of growth. This organism thus possesses an effective and sensitive homeoviscous adaptation mechanism which maintains a relatively constant degree of membrane lipid fluidity over a wide range of environmental temperatures. A mutant of B. stearothermophilus which has lost the ability to increase the proportion of relatively high melting fatty acids in the membrane lipids, and thereby increase the phase transition temperature in response to increases in environmental temperature, is also unable to grow at higher temperatures. An effective homeoviscous regulatory mechanism thus appears to extend the growth temperature range of the wild type organism and may be an essential feature of adaptation to temperature extremes. Over most of their growth temperature ranges the membrane lipids of wild type and temperature-sensitive B. stearothermophilus cells exist entirely or nearly entirely in the liquid-crystalline state. Also, the temperature-sensitive mutant is capable of growth at temperatures well above those at which the membrane lipid gel to liquid-crystalline phase transition is completed. Therefore, although other evidence suggests the existence of an upper limit on the degree of membrane fluidity compatible with cell growth, the phase transition is completed. Therefore, although other evidence suggests the existence of an upper limit on the degree of membrane fluidity compatible with cell growth, the phase transition upper boundary itself does not directly determine the maximum growth temperature of this organism. Similarly, the lower boundary does not determine the minimum growth temperature, since cell growth ceases at a temperature at which most of the membrane lipid still exists in a fluid state. These observations do not support the suggestion made in an earlier study, which utilized electron spin resonance spectroscopy to monitor membrane lipid lateral phase separations, that the minimum and maximum growth temperatures of this organism might directly be determined by the solid-fluid membrane lipid phase transition boundaries. Evidence is presented here that the electron spin resonance techniques used previously did not in fact detect the gel to liquid-crystalline phase transition of the bulk membrane lipids, which, however, can be reliably measured by differential thermal analysis.  相似文献   

7.
A definite and characteristic relationship exists between growth temperature, fatty acid composition and the fluidity and physical state of the membrane lipids in wild type Bacillus stearothermophilus. As the environmental temperature is increased, the proportion of saturated fatty acids found in the membrane lipids is also markedly increased with a concomitant decrease in the proportion of unsaturated and branched chain fatty acids. The temperature range over which the gel to liquid-crystalline membrane lipid phase transition occurs is thereby shifted such that the upper boundary of this transition always lies near (and usually below) the temperature of growth. This organism thus possesses an effective and sensitive homeoviscous adaptation mechanism which maintains a relatively constant degree of membrane lipid fluidity over a wide range of environmental temperatures. A mutant of B. stearothermophilus which has lost the ability to increase the proportion of relatively high melting fatty acids in the membrane lipids, and thereby increase the phase transition temperature in response to increases in environmental temperature, is also unable to grow at higher temperatures. An effective homeoviscous regulatory mechanism thus appears to extend the growth temperature range of the wild type organism and may be an essential feature of adaptation to temperature extremes.Over most of their growth temperature ranges the membrane lipids of wild type and temperature-sensitive B. stearothermophilus cells exist entirely or nearly entirely in the liquid-crystalline state. Also, the temperature-sensitive mutant is capable of growth at temperatures well above those at which the membrane lipid gel to liquid-crystalline phase transition is completed. Therefore, although other evidence suggests the existence of an upper limit on the degree of membrane fluidity compatible with cell growth, the phase transition upper boundary itself does not directly determine the maximum growth temperature of this organism. Similarly, the lower boundary does not determine the minimum growth temperature, since cell growth ceases at a temperature at which most of the membrane lipid still exists in a fluid state. These observations do not support the suggestion made in an earlier study, which utilized electron spin resonance spectroscopy to monitor membrane lipid lateral phase separations, that the minimum and maximum growth temperatures of this organism might be directly determined by the solid-fluid membrane lipid phase transition boundaries. Evidence is presented here that the electron spin resonance techniques used previously did not in fact detect the gel to liquid-crystalline phase transition of the bulk membrane lipids, which, however, can be reliably measured by differential thermal analysis.  相似文献   

8.
Streptococcus mutans was cultivated in media containing sucrose (10–40%, w/v) and the sucrose induced changes in chemical and physical properties of its membrane lipids were investigated. The degree of unsaturation in the fatty acids of both total lipid and glycolipid fractions decreased when the sucrose concentration was increased. An electron spin resonance spectroscopic study revealed the reduction of membrane lipid fluidity by adding sucrose to the growth medium. Liposomes prepared from membrane lipids of bacteria grown with sucrose showed less osmotic volume changes than those of bacteria grown without sucrose. These results suggest that modification of membrane lipid composition, fluidity and osmosis-resistance have an important role in the ability of Streptococcus mutans to grow in sucrose at high concentrations.  相似文献   

9.
The temperature response of nuclear membrane lipid fluidity and nuclear RNA release is investigated in macronuclei isolated from Tetrahymena cells grown at 28 °C. Electron spin resonance (ESR) using 5-doxylstearic acid as a spin label detects that the lipid fluidity of nuclear membranes decreases, with falling temperatures, biphasically with a discontinuity at ˜17 °C. In the same temperature range, a discontinuity occurs in the RNA release from [3H]uridine-prelabelled macronuclei. Nuclei treated with 0.3% Triton X-100, however, show a linear decrease in RNA release upon temperature lowering. These findings are compatible with the view that the nuclear membrane lipid fluidity, inter alia, can modulate nucleocytoplasmic RNA-transport.  相似文献   

10.
Freeze-fracturing of cholesterol-rich Mycoplasma gallisepticum membranes from cells grown in a medium containing horse serum revealed particle-free patches. The patches appeared in cells quenched from either 4 or 37 degrees C. Particle-free patches also occurred in membranes of cells grown in a serum-free medium supplemented with egg-phosphatidylcholine but not in membranes of cells grown with dioleoylphosphatidylcholine. The appearance of particle-free patches was attributed to the presence of disaturated phosphatidylcholine (PC) molecules in M. gallisepticum membranes, which were synthesized by the insertion of a saturated fatty acid at position 2 of lysophosphatidylcholine derived from exogenous PC present in the growth medium. Consequences of the synthesis of the disaturated PC also included a decrease in osmotic fragility and the ability of the cells to be permeated by K+. Electron paramagnetic resonance and fluorescence polarization measurements revealed that the fluidity of the lipid domain in the protein-rich M. gallisepticum membranes was almost identical to that of an aqueous dispersion of M. gallisepticum membrane lipids. Furthermore, the electron paramagnetic resonance spectra of the membranes were single-component spectra showing no indication of immobilized regions. The possibility that the osmotic resistance of M. gallisepticum cells is associated with the particle-free patches rather than with a restricted membrane fluidity caused by membrane proteins is discussed.  相似文献   

11.
A strain of Synechococcus sp. was grown at its optimal growth temperature (58 degrees C) and at 38 degrees C, in order to investigate possible adaptations of membrane-related properties to growth temperature. Light-induced electron transport in thylakoid membranes from both types of cells showed linear Arrhenius plots with the same activation energy (48 kJ/mol). Membranes from cells grown at 58 degrees C had a higher temperature optimum (53 degrees C) than those from cells grown at 38 degrees C (41 degrees C). Growth at 38 degrees C caused an increase in the proportion of unsaturated fatty acids compared to growth at 58 degrees C. The fluidity of the membranes was investigated by measuring the temperature dependence of the parameters derived from electron spin resonance spectra of the spin-labels 5-doxyldecane, 5-doxylstearate and 16-doxylstearate. Only small differences between the dynamic properties of the membranes from cells grown at different temperatures could be detected. This suggests that the observed change in fatty acid composition of the membranes following the change in growth temperature does not serve to maintain a constant viscosity at the growth temperature.  相似文献   

12.
Increased levels of unconjugated bilirubin, the end product of heme catabolism, impair crucial aspects of nerve cell function. In previous studies, we demonstrated that bilirubin toxicity may be due to cell death by apoptosis. To characterize the sequence of events leading to neurotoxicity, we exposed developing rat brain astrocytes and neurons to unconjugated bilirubin and investigated whether changes in membrane dynamic properties can mediate apoptosis. Bilirubin induced a rapid, dose-dependent increase in apoptosis, which was nevertheless preceded by impaired mitochondrial metabolism. Using spin labels and electron paramagnetic resonance spectroscopy analysis of whole cell and isolated mitochondrial membranes exposed to bilirubin, we detected major membrane perturbation. By physically interacting with cell membranes, bilirubin induced an almost immediate increase in lipid polarity sensed at a superficial level. The enhanced membrane permeability coincided with an increase in lipid fluidity and protein mobility and was associated with significant oxidative injury to membrane lipids. In conclusion, apoptosis of nerve cells induced by bilirubin is mediated by its primary effect at physically perturbing the cell membrane. Bilirubin directly interacts with membranes influencing lipid polarity and fluidity, protein order, and redox status. These data suggest that nerve cell membranes are primary targets of bilirubin toxicity.  相似文献   

13.
Mobilization and aggregation of intramembrane particles (IMPs) are physiological events observed in various cells. In erythrocyte membranes, aggregation of IMPs can be induced by the exposure of partially desprectrinized erythrocyte membranes to acidic pH. We investigated the association between IMPs aggregation, protein mobility, and membrane fluidity in erythrocyte membranes of healthy controls and Duchenne muscular dystrophy (DMD) patients by using electron spin resonance and specific spin labels for membrane proteins and lipids. In erythrocyte membranes of control subjects, the partial spectrin removal induced a decreased segmental motion of protein spin label indicating an increase of protein-protein interactions. Stearic acid spin labels 5- and 16-(N-oxyl-4,4'-dimethyloxazolidine) showed that the treatment induces an increase of membrane fluidity. In DMD patients, both treated and untreated erythrocyte membranes showed changes of membrane fluidity when compared to those of the controls. Our results suggest that defects in the interactions between skeletal proteins and/or between membrane and skeleton components may contribute to the alterations of erythrocyte membranes in DMD.  相似文献   

14.
The fatty acid distribution pattern of lipids extracted from different subcellular components of Tetrahymena pyriformis was found to be significantly different from one type of membrane to another.The growth-temperature shift caused alterations in fatty acid composition. The ratio of palmitoleic to palmitic acid, especially, showed a sharp linear decline with increase of temperature in all of the membrane fractions.The spin labels were rapidly incorporated into Tetrahymena membranes. The order parameter of 5-nitroxide stearate spin label incorporated into various membrane fractions was found to be different for the different membrane fractions, suggesting the following order of the fluidity; microsomes > pellicles > cilia.The fluidity of the surface membranes, cilia and pellicles isolated from Tetrahymena cells grown at 15°C was noticeably higher than that of the membranes from cells grown at 34°C but was not so different with microsomal fractions.The motion of the spin label in the pellicular membrane was more restricted than in its extracted lipids, thus indicating the assumption that in Tetrahymena membranes the proteins influence the fluidity.It was also suggested that a sterol-like triterpenoid compound, tetrahymanol, which is principally localized in the surface membranes, would be involved in the membrane fluidity.  相似文献   

15.
The role of membrane lipids and membrane fluidity in thermosensitivity of mammalian cells is not well understood. The limited experimental data in the literature have led to conflicting results. A detailed investigation of lipid composition and membrane fluidity of cellular membranes was undertaken to determine their relationship to cell survival after hyperthermia. Ehrlich ascites (EA) cells, mouse fibroblast LM cells, and HeLa S3 cells differed in thermosensitivity as expressed by a D0 of 3.1, 5.2, and 9.7 min, respectively, at 44 degrees C. No correlation with cellular thermosensitivity could be found with respect to the amount of cholesterol and to the cholesterol to phospholipid ratio in the particulate fraction of the cells. By growing the cells for some generations in different media, cholesterol and phospholipid content could be changed in the particulate fraction, but no difference in cell survival was observed. When mouse fibroblasts were grown for 24 hr in a serum-free medium supplemented with arachidonic acid (20:4), all subcellular membranes were about eight times richer in phospholipids containing polyunsaturated acyl (PUFA) chains and membrane fluidity was increased as measured by fluorescence polarization of diphenylhexatriene (DPH). The alterations resulted in a higher thermosensitivity. When mouse fibroblasts were made thermotolerant no change in cholesterol and phospholipid content could be found in the particulate fraction of the cells. The relative weights and the quality of the phospholipids as well as the fatty acid composition of the phospholipids appeared to be the same for normal and thermotolerant cells. Fluidity measurements in whole cells, isolated plasma membranes, and liposomes prepared from phospholipids extracted from the cells revealed no significant differences between normal and thermotolerant fibroblasts when assayed by fluorescence polarization (DPH) and electron spin resonance (5-nitroxystearate). It is concluded that the mechanism of thermal adaptation resulting in differences in lipid composition as reported in the literature differs from the mechanism of the acquisition of thermal tolerance. The lower heat sensitivity of thermotolerant cells, as initiated by a nonlethal triggering heat dose followed by an induction period at 37 degrees C, does not involve changes in lipid composition and membrane fluidity. However, a prompt and clear (also nonlethal) change in membrane fluidity by an increase in PUFA does result in an increased thermosensitivity, probably because of an indirect effect via the lipids in causing disfunctioning of proteins in the membrane and/or the cytoskeleton.  相似文献   

16.
Dictyostelium discoideum grown axenically in media containing polyunsaturated fatty acids exhibited normal growth rates but impaired differentiation (Weeks, G. (1976) Biochim. Biophys. Acta 450, 21--32). Since cell-cell contact is vital for differentiation but unnecessary for growth we have examined the isolated plasma membranes of these cells. The lipids of the plasma membranes of cells grown in the presence of polyunsaturated fatty acids contain considerable quantities of these acids, but the total phospholipid and sterol contents of the plasma membrane are close to normal. Electron spin resonance studies using 5-doxyl-stearic acid as the spin probe reveal two things. Firstly, there are no detectable characteristic transition temperatures in the plasma membranes of D. discoideum. Secondly, the plasma membranes of cell grown in the presence of polyunsaturated fatty acids have essentially the same fluidity as that of the control cells. The possible significance of this result to impaired cell-cell interaction is discussed.  相似文献   

17.
Butylated hydroxytoluene (BHT) increases the fluidity of membrane lipids in the hydrocarbon but not the polar regions, as measured by electron spin resonance spin label probes. BHT also sensitizes nucleated mammalian cells to freeze-thaw damage as measured by colony formation survival assays. Furthermore, the membranes of BHT-exposed cells are more susceptible to physical stress, as reflected by the BHT-induced sensitization to hypotonic stress. Since others have shown that BHT induces hexagonal phase lipids in lipid bilayers, this phenomenon may also influence the above survival results.  相似文献   

18.
Fluidity of membrane lipids of shoot and root tissue and of chloroplasts from young wheat seedlings of contrasting freezing tolerance was investigated by measuring the motion and order parameters after spin labeling. A striking similarity was observed in membrane lipid fluidity of the five cultivars grown at 22 C. After cold hardening by growth at 2 C, a small change in membrane lipid fluidity was observed, but this was not correlated with the development of freezing tolerance, and there was no alteration in the transition temperature of membrane lipids. The results show that neither changes in membrane lipid fluidity nor transition temperature are a necessary feature of cold acclimation in wheat.  相似文献   

19.
A specific effect of cardiolipin on fluidity of mitochondrial membranes was demonstrated in Tetrahymena cells acclimated to a lower temperature in the previous report (Yamauchi, T., Ohki, K., Maruyama, H. and Nozawa, Y. (1981) Biochim. Biophys. Acta 649, 385-392). This study was further confirmed by the experiment using fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH). Anisotropy of DPH for microsomal and pellicular total lipids from Tetrahymena cells showed that membrane fluidity of these lipids increased gradually as the cells were incubated at 15 degrees C after the shift down of growth temperature from 39 degrees C. However, membrane fluidity of mitochondrial total lipids was kept constant up to 10 h. This finding is compatible with the result obtained using spin probe in the previous report. Additionally, the break-point temperature of DPH anisotropy was not changed in mitochondrial lipids whereas those temperatures in pellicular and microsomal lipids lowered during the incubation at 15 degrees C. Interaction between cardiolipins and various phospholipids, which were isolated from Tetrahymena cells grown at 39 degrees C or 15 degrees C and synthesized chemically, was investigated extensively using a spin labeling technique. The addition of cardiolipins from Tetrahymena cells grown at either 39 degrees C or 15 degrees C did not change the membrane fluidity (measured at 15 degrees C) of phosphatidylcholine from whole cells grown at 39 degrees C. On the other hand, both cardiolipins of 39 degrees C-grown and 15 degrees C-grown cells decreased the membrane fluidity of phosphatidylcholine from Tetrahymena cells grown at 15 degrees C. The same results were obtained for phosphatidylcholines of mitochondria and microsomes. Membrane fluidity of phosphatidylethanolamine, isolated from cells grown at 15 degrees C, was reduced to a small extent by Tetrahymena cardiolipin whereas that of 39 degrees C-grown cells was not changed. Representative molecular species of phosphatidylcholines of cells grown at 39 degrees C and 15 degrees C were synthesized chemically; 1-palmitoyl-2-oleoylphosphatidylcholine for 39 degrees C-grown cells and dipalmitoleoylphosphatidylcholine for 15 degrees C-grown ones. By the addition of Tetrahymena cardiolipin, the membrane fluidity of 1-palmitoyl-2-oleoylphosphatidylcholine was not changed but that of dipalmitoleoylphosphatidylcholine was decreased markedly. These phenomena were caused by Tetrahymena cardiolipin. However, bovine heart cardiolipin, which has a different composition of fatty acyl chains from the Tetrahymena one, exerted only a small effect.  相似文献   

20.
The thermal stability of excitation transfer from pigment proteins to the Photosystem II reaction center of Nerium oleander adjusts by 10 Celsius degrees when cloned plants grown at 20°C/15°C, day/night growth temperatures are shifted to 45°C/32°C growth temperature or vice versa. Concomitant with this adjustment is a decrease in the fluidity of thylakoid membrane polar lipids as determined by spin labeling. The results are consistent with the hypothesis that there is a limiting maximum fluidity compatible with maintenance of native membrane structure and function. This limiting fluidity was about the same as for a number of other species which exhibit a range of thermal stabilities. Inversely correlated shifts in lipid fluidity and thermal stability occurred during the time course of acclimation of N. oleander to new growth temperatures. Thus, the temperature at which the limiting fluidity was reached changed during acclimation while the limiting fluidity remained constant. Although the relative proportion of the major classes of membrane polar lipids remained constant during adjustments in fluidity, large changes occured in the abundance of specific fatty acids. These changes were different for the phospho- and galacto-lipids suggesting that the fatty acid composition of these two lipid classes is regulated by different mechanisms. Comparisons between membrane lipid fluidity and fatty acid composition indicate that fluidity is not a simple linear function of fatty acid composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号