首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The extractable and bound lipids of a moderately halophilic gram-negative rod, strain No. 101 (wild type) grown in a medium containing 2 M NaC1, were examined. The extractable lipids were separated into at least 8 components by using thin-layer chromatography. The major phospholipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and an unidentified phosphoglycolipid in the whole cells, cell envelopes and outer membrane preparations, commonly. Judging from mild alkaline hydrolysis and exzymatic treatment with phospholipase A2, C and D, the unidentified phosphoglycolipid possessing Pi, glycerol, fatty acids and glucose in a molar ratio of 1 : 2 : 2 : 1, appeared likely to be a glucosyl derivative of phosphatidylglycerol. No glucuronic acid containing lipid was detected. The exractable lipid composition varied greatly with the concentrations of NaC1 in the medium and the stages of bacterial growth. The most characteristic phosphoglycolipid in this organism increased up to 25% of the total phospholipids with the addition of 1% glucose in the medium. The major fatty acids of the extractable lipids were C16:0, C16:1, C18:0, C18:1 and cyclopropanoic C17 and C19 acids and these compositions were very similar for each phospholipid. The cyclopropanoic fatty acids predominated as growth proceeded. The fatty acids of the bound lipids comprised a high concentration of 3-hydroxydodecanoic acid. The esterified fatty acids of the lipopolysaccharide molecule seemed to contain a wide variety of hydroxy and non-hydroxy shorter chain fatty acids, while the amide-linked fatty acids consisted almost entirely of 3-hydroxydodecanoic acid.  相似文献   

2.
1. Ten bacteria utilizing [2-14C]ethanol-2-amine as the sole or major source of nitrogen for growth on glycerol + salts medium incorporated radioactivity into a variety of bacterial substances. A high proportion was commonly found in lipid fractions, particularly in the case of Erwinia carotovora. 2. Detailed studies of [14C]ethanolamine incorporation into lipids by five bacteria, including E. carotovora, showed that all detectable lipids were labelled. Even where phosphatidylethanolamine was the major lipid labelled, radioactivity was predominantly in the fatty acid rather than the base moiety. The labelled fatty acids were identified in each case. 3. The addition of acetate to growth media decreased the incorporation of radioactivity from ethanolamine into both fatty acid and phosphatidyl-base fragments of lipids from all the bacteria except Mycobacterium smegmatis. Experiments with [3H]ethanolamine and [14C]acetate confirmed that unlabelled acetate decreased the incorporation of both radioactive isotopes into lipids, except in the case of M. smegmatis. 4. Enzyme studies suggested one of two metabolic routes between ethanolamine and acetyl-CoA for each of four bacteria. A role for ethanolamine O-phosphate was not obligatory for the incorporation of [14C]ethanolamine into phospholipids, but correlated with CoA-independent aldehyde dehydrogenase activity.  相似文献   

3.
Mixed rumen microorganisms (MRM) or suspensions of rumen Holotrich protozoa obtained from a sheep were incubated anaerobically with [1-(14)C]linoleic acid, [U-(14)C]glucose, or [1-(14)C]acetate. With MRM, the total amount of fatty acids present did not change after incubation. An increase in fatty acids esterified into sterolesters (SE) and polar lipids at the expense of free fatty acids was observed. This effect was intensified by the addition of fermentable carbohydrate to the incubations. Radioactivity from [1-(14)C]linoleic acid was incorporated into SE and polar lipids with both MRM and Holotrich protozoa. With MRM the order of incorporation of radioactivity was as follows: SE > phosphatidylethanolamine > phosphatidylcholine. With Holotrich protozoa, the order of incorporation was phosphatidylcholine > phosphatidylethanolamine > SE. With MRM the radioactivity remaining in the free fatty acids and that incorporated into SE was mainly associated with saturated fatty acids, but a considerable part of the radioactivity in the polar lipids was associated with dienoic fatty acids. This effect of hydrogenation prior to incorporation was also noted with Holotrich protozoa but to a much lesser extent. Small amounts of radioactivity from [U-(14)C]glucose and [1-(14)C]acetate were incorporated into rumen microbial lipids. With protozoa incubated with [U-(14)C]glucose, the major part of incorporated radioactivity was present in the glycerol moiety of the lipids. From the amounts of lipid classes present, their radioactivity, and fatty acid composition, estimates were made of the amounts of higher fatty acids directly incorporated into microbial lipids and the amounts synthesized de novo from glucose or acetate. It is concluded that the amounts directly incorporated may be greater than the amounts synthesized de novo.  相似文献   

4.
W-Anthryl labelled fatty acids with hydrocarbon chains of different lengths (C8, C11, C15) and different degrees of unsaturation have been incorporated into the membrane lipids of three different cell lines in tissue culture by addition of these 3H-labelled precursor fatty acids to the growth medium. The cell lines were baby hamster kidney cells (BHK 21), Chang liver cells and the RN6 cell line derived from a chemically induced Schwannoma tumor cell clone. Cell growth was normal. The quantitative analysis on the basis of radioactivity determinations demonstrated that the fluorescent-labelled fatty acids were introduced into the neutral lipid fraction (triglycerides, diglycerides, and cholesterol esters, all present in small amounts), but mainly into the phospholipid classes phosphatidylcholine, -ethanolamine and -serine, and to a lesser extent, as N-acyl component of sphingolipids (sphingomyelins, ceramides, mono- and diglycosylceramides). Cell fractionation studies indicated that the membranes of all subcellular particles were labelled with the fluorescent probes in their lipid moieties. These w-anthryl fatty acids are the first type of fluorescent lipid precursors which can be incorporated biosynthetically in vivo into membrane lipids of eukaryotic cells. The effective incorporation of the bulky fluorescent anthryl group in the terminal position of fatty acids of different chain lengths into the complex membrane lipids of the cell gives proff of 1) their uninhibited membrane transport, 2) their activation by the acyl-CoA synthetase and 3) their substrate properties for the O- acyl and N-acyl transferases in phospho- and sphingolipid biosynthesis.  相似文献   

5.
The lipids of Saprolegnia parasitica contain 5,8,11,14,17-eicosapentaenoic acid as major constituent. No other acid having (n-3) structure was detected, but 5,8,11,14-eicosatetraenoic (arachidonic) acid and its common precursors of (n-6) structure are present in significant amounts. During rapid growth of the organism, [1-14C]acetate was efficiently incorporated into fatty acids. Arachidonic acid was labeled after 2 h to nearly the same extent as any precursor acid and 14C in eicosapentaenoic acid reached this level within 6 h. Results of incubations with labeled fatty acids indicated that, in S. parasitica, oleic, linoleic, (6,9,12)-linolenic and arachidonic acids are major intermediates in the pathway to eicosapentaenoic acid. Methyl-directed desaturation of (n-6) to (n-3) acids does not occur with C18 acids but is specific for the polyunsaturated C20 chain length. Arachidonic acid is the direct precursor of eicosapentaenoic acid.  相似文献   

6.
Attempts to manipulate the level of C16:1 fatty acids in membrane phospholipids were made by using Bacillus subtilis and its protonophore-resistant mutants to test the hypothesis that C16:1 fatty acid levels relate to the bioenergetic properties of the mutant strains. Growth of the three mutants in the presence of palmitoleic acid restored the level of C16:1 fatty acids in the membrane lipids to somewhat above those found in the wild type. The palmitoleic acid was preferentially incorporated into diphosphatidylglycerol (cardiolipin) and phosphatidylethanolamine and was associated with increased levels of these phospholipids. These membrane preparations showed no increase in the levels of free fatty acids. The increase in C16:1 fatty acids achieved by growth in the presence of palmitoleic acid was accompanied by secondary changes in membrane lipids as well as a pronounced diminution in the protonophore resistance of growth and ATP synthesis. Other membrane-associated properties that had been observed in these mutants, e.g., elevated ATPase levels, were not altered coordinately with protonophore resistance and C16:1 fatty acid levels. Growth of the wild type in the presence of palmitic acid caused a modest elevation of the C16:0 of the membrane lipids and a modest increase in the protonophore resistance of growth and ATP synthesis. Growth of the wild type at elevated temperatures, in the absence of fatty acid supplementation, also enhanced its resistance to protonophores. The results support the hypothesis that specific changes in membrane lipid composition underlie the bioenergetic changes associated with protonophore resistance.  相似文献   

7.
The development of a system for modifying the membrane fatty acid composition of cultured soybean cells (Glycine max [L.] Merr.) is described. Tween-fatty acid esters carrying specific fatty acids were synthesized and added to the medium of suspension cultures. Cells transferred large quantities of exogenous fatty acids from Tweens to all acylated membrane lipids; up to 50% of membrane fatty acids were exogenously derived. C15 to C20 saturated fatty acids and C16, C18, and C20 unsaturated fatty acids with either cis or trans double bonds were incorporated into lipids. Cells elongated saturated fatty acids of C16 or less, and unsaturated fatty acids with cis double bonds were further desaturated. No other types of modifications were observed. Growth ceased in cells treated with excessive concentrations of Tween-fatty acid esters, but frequently not for several days. Cessation of cell growth was correlated with changes in membrane fatty acid composition resulting from incorporation of large amounts of exogenous fatty acids into membrane lipids, although cells tolerated large variations in fatty acid composition. Maximum tolerable Tween concentrations varied widely according to the fatty acid supplied. Potential uses of this system and implications of the observed modifications on the pathway of incorporation are discussed.  相似文献   

8.
Isobutyrate-1-(14)C and l-isoleucine-U-(14)C fed through the petiole labeled the surface lipids of broccoli leaves, but the incorporation was much less than from straight chain precursors. Not more than one-third of the (14)C incorporated into the surface lipids was found in the C(29) paraffin and derivatives, whereas more than two-thirds of the (14)C from straight chain precursors are usually found in these compounds. The small amount of (14)C incorporated into the paraffin fraction was found in the n-C(29) paraffin rather than branched paraffins showing that the (14)C in the paraffin must have come from degradation products. Radio gas-liquid chromatography of the saturated fatty acids showed that, in addition to the n-C(16) acid which was formed from both branched precursors, isoleucine-U-(14)C gave rise to branched C(15), C(17), and C(19) fatty acids, and isobutyrate-1-(14)C gave rise to branched C(16) and C(18) acids. Thus the reason for the failure of broccoli leaf to incorporate branched precursors into branched paraffins is not the unavailability of branched fatty acids, but the absolute specificity of the system that synthesizes paraffins, probably the elongation-decar-boxylation enzyme complex. Consistent with this view, no labeled branched fatty acids longer than C(19) could be found in the broccoli leaf. The branched fatty acids were also found in the surface lipids indicating that the epidermal layer of cells did have access to branched chains. Thus the paraffin synthesizing enzyme system is specific for straight chains in broccoli, but the fatty acid synthetase is not.  相似文献   

9.
Omega-Cyclohexyl undecanoic acid and omega-cyclohexyl tridecanoic acid were found in 10 strains of acido-thermophilic bacteria isolated from different Japanese hot springs. These unusual fatty acids were found in the esterified form in glyceride type complex lipids and constituted 74 to 93% of the total fatty acids in the bacteria. The fatty acids other than omega-cyclohexyl fatty acids found were 14-methyl hexadecanoic acid (3 to 15%) and 15-methyl hexadecanoic acid (1 to 6%), and trace amounts of straight chain and methyl-branched tetra- and penta-decanoic acids. Biosynthesis of omega-cyclohexyl fatty acids increased with increase in the concentration of glucose in the culture medium. The metabolism of omega-cyclohexyl fatty acids was studied using deuterium-labeled precursors by mass fragmentation analysis. The deuterium of [2-D]glucose was specifically incorporated into position 2 of the cyclohexyl ring of the fatty acids, indicating that the ring was synthesized from the glucose molecule. Radioactivity was efficiently incorporated into the omega-cyclohexyl fatty acids from labeled glucose, shikimate, and cyclohexyl carboxylate. These findings indicate that omega-cyclohexyl fatty acids are synthesized with glucose through shikimic acid and probably cyclohexyl carboxylyl-CoA derivative as the intermediates.  相似文献   

10.
1. The relationship between the rate of [1-14C] acetate incorporation into the fatty acids of renal papillary lipids and the acetate concentration in the medium has been measured. 2. [1-14C] acetate was incorporated mainly into fatty acids of phospholipids and triacylglycerols. Only a few per cent of the radioactivity was found in the free fatty acid fraction. 3. The major part of the [1-14C] acetate was found to be incorporated by a chain elongation of prevalent fatty acids. The major component of the poly-unsaturated fatty acids in triacylglycerols and the major product of fatty acid synthesis from [1-14C] acetate in vitro was demonstrated by mass spectrometry to be docosa-7,10,13,16-tetraenoic acid. 4. The radioactivity of docosa-7,10,13,16-tetraenoic acid accounted for 40% of total radioactivity in triacylglycerol fatty acids (lipid droplet fraction) and 20% of total radioactivity in membrane phospholipid fatty acids.  相似文献   

11.
Blood fatty acids are an important parameter for the synthesis of brain myelin as exogenous stearic acid is needed: after subcutaneous injection to 18-day-old mice this labelled stearic acid is transported into brain myelin and incorporated into its lipids. However the acid is partly metabolized in the brain by elongation (thus providing very long chain fatty acids, mainly lignoceric acid) or by degradation to acetate units (utilized for synthesis of medium chain fatty acids as palmitic acid, and cholesterol). These metabolites are further incorporated into myelin lipids. The myelin lipid radioactivity increases up to 3 days; most of the activity is found in phospholipids; their fatty acids are labelled in saturated as well as in polyunsaturated homologues but sphingolipids, especially cerebrosides, contain also large amounts of radioactivity (which is mainly found in very long chain fatty acids, almost all in lignoceric acid). The occurrence of unesterified fatty acids must be pointed out, these molecules unlike other lipids, are found in constant amount (expressed in radioactivity per mg myelin lipid).  相似文献   

12.
Uptake of Tween-fatty acid esters and incorporation of the fatty acids into lipids by soybean (Glycine max [L.] Merr.) suspension cultures was investigated, together with subsequent turnover of the incorporated fatty acids and associated changes in endogenous fatty acid synthesis. Tween uptake was saturable, and fatty acids were rapidly transferred from Tweens to all acylated lipids. Patterns of incorporation into glycerolipids were similar in cells treated with Tweens carrying [1-14C]-fatty acids and in cells treated with [1-14C]acetate, indicating that exogenous fatty acids were used for glycerolipid synthesis essentially as if they had been made by the cell. In Tween-treated cells neutral lipids (which include Tweens) initially accounted for the majority of lipid radioactivity. Radioactivity was then rapidly transferred to glycerolipids. A transient pool of free fatty acids accounting for up to 10% of lipid radioactivity was observed. This was consistent with the hypothesis that fatty acids are transferred from Tweens to lipids by deacylation of the Tweens, creating a pool of free fatty acids which are then used for lipid synthesis. Sterols were only slightly labeled in cells treated with Tweens, but accounted for nearly 50% of lipid radioactivity in cells treated with acetate. This suggested very little degradation and reutilization of the radioactive fatty acids in cells treated with Tweens. In cells treated with either [1-14C]acetate or Tween-[1-14C]-18:1, 70% of the initial fatty acid radioactivity remained in fatty acids after a 100 hour chase. By contrast, fatty acids not normally present disappeared more rapidly, suggesting differential treatment of such fatty acids compared with those normally present. Cells which had incorporated large amounts of exogenous fatty acids altered fatty acid synthesis in three distinct ways: (a) amounts of [1-14C]acetate incorporated into fatty acids were reduced; (b) cells incorporating exogenous unsaturated fatty acids increased the proportion of [1-14C]acetate partitioned into saturated fatty acids, while the converse was true of cells which had incorporated exogenous saturated fatty acids; (c) desaturation of 18:1 to 18:2 and 18:3 was reduced in cells which had incorporated unsaturated fatty acids. These results suggest that Tween-fatty acid esters will be useful for supplying fatty acids to cells for a variety of studies related to fatty acid or membrane metabolism.  相似文献   

13.
Metabolic studies on isolated mouse skin components were undertaken to determine the specific sites of fatty acid and sterol synthesis. The concentrations of long-chain fatty acids and sterols and the incorporation of radioactivity from acetate-1-(14)C into these lipids are reported for various skin components and intact whole skin. Only fatty acids having chain lengths of 18 carbons or less were produced by the connective tissue cells of the dermis, while fatty acids containing 20 carbons or more, as well as the acids of 18 carbons or less, were synthesized in the upper dermis (papillary reticulum). The upper dermis also produced significant quantities of eicosenoic acid and of an octadecadienoic acid (not linoleic acid), and incorporated labeled acetate into fatty acids containing an odd number of carbons. Removal of the epidermis and adnexa diminished sterol synthesis. However, the upper region of the dermis was capable of synthesizing, from acetate, large quantities of unidentified nonsaponifiable lipids which were neither sterols nor squalene.  相似文献   

14.
To determine if medium and long chain fatty acids can be appropriately metabolized by species that normally produce 16 and 18 carbon fatty acids, homogenates of developing Cuphea wrightii, Carthamus tinctorius, and Crambe abyssinica seeds were incubated with radiolabeled lauric, palmitic, oleic, and erucic acids. In all three species, acyl-CoA synthetase showed broad substrate specificity in synthesis of acyl-coenzyme A (CoA) from any of the fatty acids presented. In Carthamus, two- to fivefold less of the foreign FAs, lauric, and erucic acid was incorporated into acyl-CoAs than palmitic and oleic acid. Lauric and erucic acid also supported less glycerolipid synthesis in Carthamus than palmitic and oleic acid, but the rate of acyl-CoA synthesis did not control rate of glycerolipid synthesis. In all species examined, medium and long chain fatty acids were incorporated predominantly into triacylglycerols and were almost excluded from phospholipid synthesis, whereas palmitic and oleic acid were found predominantly in polar lipids. However, the rate of esterification of unusual fatty acids to triacylglycerol is slow in species that do not normally synthesize these acyl substrates.  相似文献   

15.
Rabbit reticulocytes obtained by repeated bleeding metabolize exogenous [1-14C]linoleic acid and [1-14C]arachidonic acid by three different pathways. 1. Incorporation into cellular lipids: 50% of the fatty acids metabolized are incorporated into phospholipids, mainly phosphatidylcholine (32.8%) but also into phosphatidylethanolamine (12%), whereas about 10% of the radioactivity was found in the neutral lipids (mono- di- and triacylglycerols, but not cholesterol esters). 2. Formation of lipoxygenase products: 30% of the fatty acids metabolized are converted via the lipoxygenase pathway mainly to hydroxy fatty acids. Their formation is strongly inhibited by lipoxygenase inhibitors such as 5,8,11,14-eicosatetraynoic acid or nordihydroguaiaretic acid. Inhibition of the lipoxygenase pathway results in an increase of the incorporation of the fatty acids into cellular lipids. 15-Hydroxy-5,8,11,13(Z,Z,Z,E)eicosatetraenoic acid and 13-hydroxy-9,11(Z,E)-octadecadienoic acid are incorporated by reticulocytes into cellular lipids and also are metabolized via beta-oxidation. The metabolism of arachidonic acid and linoleic acid is very similar except for a higher incorporation of linoleic acid into neutral lipids. 3. beta-Oxidation of the exogenous fatty acids: about 10% of the polyenoic fatty acids are metabolized via beta-oxidation to 14CO2. Addition of 5,8,11,14-eicosatetraynoic acid strongly increased the 14CO2 formation from the polyenoic fatty acids whereas antimycin A completely abolished beta-oxidation. Erythrocytes show very little incorporation of unsaturated fatty acids into phospholipids and neutral lipids. Without addition of calcium and ionophore A23187 lipoxygenase metabolites could not be detected.  相似文献   

16.
17.
Growth of the protonophore-resistant strain of Bacillus megaterium, strain C8, in the presence of oleic acid markedly reduced its resistance to low concentrations of carbonylcyanide m-chlorophenylhydrazone (CCCP). Growth of the CCCP-sensitive wild-type strain in the presence of stearic acid increased the resistance of that strain to growth inhibition by protonophore. Studies of the membrane lipids indicated that in the absence of additions to the medium, membranes from C8 contained greatly reduced levels of monounsaturated fatty acids relative to the wild type; wild-type levels were restored by growth of C8 in the presence of oleic acid, concomitant with the loss of resistance. Conversely, growth of the wild type on stearic acid increased the ratio of saturated/unsaturated fatty acids in the membrane, concomitant with a modest increase in the resistance of the wild-type strain to CCCP. The exogenous oleic acid was preferentially incorporated into phosphatidylethanolamine, diphosphatidylglycerol, and 1,2-diacylglycerol, whereas stearic acid was incorporated preferentially into phosphatidylglycerol, and into the small component of free fatty acids. Depending upon the growth conditions, changes in membrane lipid-to-membrane protein ratio and in the ratios of polar lipid components were observed, but none of those changes correlated as did the changes in saturated fatty-acid-to-unsaturated fatty-acid ratio with protonophore resistance. This latter correlation was further suggested by experiments in which the protonophore resistance of wild type B. megaterium was shown to increase with increasing growth temperature without any temperature-dependent loss of protonophore efficacy. The experiments here support the hypothesis developed from work with Bacillus subtilis that changes in the fatty acid composition of the membrane phospholipids affect energy coupling, and make it clear that simple increases or decreases in the hydrolytic activity of ATPase in the uncoupler-resistant mutants of bacilli are not correlated with resistance in some direct way.  相似文献   

18.
—Adult rats were killed 16 h, 48 h, 6 days and 21 days after intracerebral application of n-[15,16-3H]tetracosanoic acid (lignoceric acid). After incorporation into complex lipids with a strong preference for the ester-bound fatty acids of glycerophospholipids, radioactivity decreased with time. The incorporated activity into the amide-bound fatty acids of sphingolipids was also shown to decrease, with exception of the cerebroside of the hydroxy fatty acid type (cerebron fraction). Only negligible amounts of labelled triglyceride and cholesterol ester could be detected. The fatty acids derived from the complex lipids were analysed by radio gas chromatography. It was revealed that some of the applied labelled lignoceric acid was hydroxylated and incorporated into the cerebron fraction while the rest had their chains shortened. In the latter case all even and odd numbered chain lengths down to C18 and C16 (stearic and palmitic acid) were detected. At this stage, the pool of the degradation products of lignoceric acid is stabilized by the preferred incorporation of fatty acids of these chain lengths into glycerophospholipids. A time-dependent desaturation to oleic acid from stearic acid was observed.  相似文献   

19.
Deinococcus radiodurans contains novel phospholipids of which the structures of three have been previously described. These three lipids contain both fatty acids and alkylamines. Both the fatty acid and alkylamine constituents were found to be composed of a mixture of species, of which C15, C16, and C17 saturated and monounsaturated alkyl chains predominated. Alkylamines contained a relatively higher proportion of saturated species. Progression of bacterial growth through the mid-log to stationary phases was accompanied by an increase in the proportions of C15 and C17 alkyl chains in both fatty acid and alkylamine constituents. Radiolabeled palmitic acid was found to be rapidly incorporated into both fatty acid and alkylamine components of phosphatidylglyceroylalkylamine, which is the precursor of the more-complex phosphoglycolipids found in major amounts in D. radiodurans. After culturing D. radiodurans in the presence of a mixture of palmitic acids labeled with 14C and 3H in the 1 and 9,10 positions, respectively, the same 14C/3H ratio was recovered in both fatty acid and alkylamine constituents, strongly suggesting that alkylamines are derived from intact fatty acids rather than by a de novo pathway. The results identify a novel product of fatty acid metabolism which has not to date been observed in any other organism.  相似文献   

20.
Results concerning the ruminal fluid growth requirement of the ruminal acetogen, Syntrophococcus sucromutans, indicate that octadecenoic acid isomers satisfy this essential requirement. Complex lipids, such as triglycerides and phospholipids, can also support growth. The cellular fatty acid and aldehyde composition closely reflects that of the lipid supplement provided to the cells. Up to 98% of the fatty acids and 80% of the fatty aldehydes are identical in chain length and degree of unsaturation to the octadecenoic acid supplement provided in the medium. S. sucromutans shows a tendency to have a greater proportion of the aldehyde form among its 18 carbon chains than it does with the shorter-chain simple lipids, which may be interpreted as a strategy to maintain membrane fluidity. 14C labeling showed that most of the oleic acid taken up from the medium was incorporated into the membrane fraction of the cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号