首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
湖泊蓝藻水华发生机理研究进展   总被引:43,自引:6,他引:37  
马健荣  邓建明  秦伯强  龙胜兴 《生态学报》2013,33(10):3020-3030
蓝藻水华是富营养化湖泊常见的生态灾害,通过产生毒素、死亡分解时使水体缺氧和破坏正常的食物网威胁到饮用水安全、公众健康和景观,会造成严重的经济损失和社会问题,揭示其发生机理是进行防治的基础。综述了蓝藻水华发生机理的主要假说和证据,主要分为环境因子(营养盐、氮磷比、温度、微量元素、浮游动物牧食、水文和气象条件等)和生理生态特性(伪空泡、胶质鞘、CO2浓缩机制、适应低光强、贮藏营养物质、防晒、产毒素和固氮等)两个方面;评述了主要新理论,展望了今后的研究。到目前为止的研究表明寻找一两个关键因子并不能阐明蓝藻水华的发生机理。现存的理论或假说尽管已经在蓝藻水华的防治实践中产生重要作用,但仍然未能清楚地阐释其发生的客观规律。认为蓝藻水华是在各种环境因子(外因)的耦合驱动下,水华蓝藻由于其独特的生理生态特性(内因),产生巨大的生物量而在浮游植物群落中占绝对优势,在合适的水文气象条件下集聚于水表而形成。因此水华机理的研究应同时关注水华蓝藻的生理生态学规律和蓝藻水华发生的各种环境条件。不同环境因子协同影响水华蓝藻的不同生理生态特性的表达,从而影响水华的发生过程,将可能是以后研究的重点。蓝藻水华机理的研究在微观方面正趋向于应用分子生物学手段分析蓝藻生理过程,宏观方面则将广泛应用遥感遥测技术观测全湖蓝藻的变化规律。今后加强对水华蓝藻生理生态特性的基因表达与调控和环境多因子耦合作用于蓝藻水华过程的研究将有重要意义。蓝藻水华的机理研究包括现象、过程和原因3个层次的问题,通过大量的现象和过程的研究,不断揭示其发生过程中水华蓝藻的群落演替、种群发展、细胞活性和分子机理等变化规律,才能找到其发生的真正原因,为其防治提供理论依据和更好的治理措施。在蓝藻水华防治方面,控制营养盐和生态修复可能将是今后很长时间内最根本最有效和最具操作性的方法。  相似文献   

2.
In the past decade, extreme hydrological events were expressed with extreme droughts and floods in temperate regions. The aim of this paper is to explain how such changes in hydrology can influence cyanobacterial populations in floodplain ecosystems. We therefore analyzed a 6-year (2003–2008) study of the phytoplankton in the Kopački Rit floodplain, one of the largest natural floodplains in the middle section of the Danube River (Europe). During the studied period, the shallow floodplain lake shifted between a state of turbid water, characterized by high phytoplankton biomass and regular appearance of cyanobacteria blooms, to a state of clear water with very low phytoplankton biomass and absence of cyanobacteria, and back to the turbid state. Apparently, the major forces driving the cyclic shift were closely related to extremely high and long-lasting flood events. Significant increase in water level, low hydraulic residence time of water, decrease in transparency and low-light climate, together with mass developed aquatic macrophyte vegetation in the whole inundated floodplain were unfavorable conditions for growth and proliferation of cyanobacteria. With the establishment of the flood regime characterized by long-lasting periods without flooding, in-lake processes prevailed leading to cyanobacterial bloom. The most successful were filamentous non-N-fixing cyanobacteria tolerant to mixed and low-light conditions (Planktothrix and Limnothrix) and invasive species Cylindrospermopsis raciborskii. Their massive development led to the establishment of a phytoplankton steady state. All our results demonstrate that the altered intensity and frequency of flood events will have pronounced effects on the appearance of cyanobacterial blooms and generally on alternative stable states in the floodplain. Relating to this, management objectives should be focused on qualifications of changes in hydrology and projecting those effects for potential floodplain restoration.  相似文献   

3.
Eight hypereutrophic phytoplankton dominated ponds from the Brussels Capital Region (Belgium) were biomanipulated (emptied with fish removal) to restore their ecological quality and reduce the risk of cyanobacterial bloom formation. Continuous monitoring of the ponds before and after the biomanipulation allowed the effects of the management intervention on different compartments of pond ecosystems (phytoplankton, zooplankton, submerged vegetation and nutrients) to be assessed. Fish removal resulted in a drastic reduction in phytoplankton biomass and a shift to the clear-water state in seven out of eight biomanipulated ponds. The reduction in phytoplankton biomass was associated with a marked increase in density and size of large cladocerans in six ponds and a restoration of submerged macrophytes in five ponds. The phytoplankton biomass in the ponds with extensive stands of submerged macrophytes was less affected by planktivorous fish recolonisation of some of the ponds later in the summer. The two non-vegetated ponds as well as one pond with sparse submerged vegetation showed a marked increase in phytoplankton biomass associated with the appearance of fish. Phytoplankton biomass increase coincided with the decrease in large Cladocera density and size. One pond lacking submerged macrophytes could maintain very low phytoplankton biomass owing to large Cladocera grazing alone. The results of this study confirmed the importance of large zooplankton grazing and revegetation with submerged macrophytes for the maintenance of the clear-water state and restoration success in hypereutrophic ponds. They also showed that large Cladocera size is more important than their number for efficient phytoplankton control and when cladocerans are large enough, they can considerably restrain phytoplankton growth, including bloom-forming cyanobacteria, even when submerged vegetation is not restored. The positive result of fish removal in seven out of eight biomanipulated ponds clearly indicated that such management intervention can be used, at least, for the short-term restoration of ecological water quality and prevention of noxious cyanobacterial bloom formation. The negative result of biomanipulation in one pond seems to be related to the pollution by sewage water. Guest editors: B. Oertli, R. Cereghino, A. Hull & R. Miracle Pond Conservation: From Science to Practice. 3rd Conference of the European Pond Conservation Network, Valencia, Spain, 14–16 May 2008  相似文献   

4.
5.
The occurrence of cyanobacterial blooms has been re-ported in fresh water all over the world~[1].Cyanobacterial bloom in ponds and reservoirs are associated with adverse ef-fects on organisms.including acute toxicity in animals and cases of illness in humans when the toxins released into the aquatic environment after cyanobacterial cell lysis~[2].  相似文献   

6.
In winter 2009/10, a sudden under-ice bloom of heterotrophic bacteria occurred in the seasonally ice-covered, temperate, deep, oligotrophic Lake Stechlin (Germany). Extraordinarily high bacterial abundance and biomass were fueled by the breakdown of a massive bloom of Aphanizomenon flos-aquae after ice formation. A reduction in light resulting from snow coverage exerted a pronounced physiological stress on the cyanobacteria. Consequently, these were rapidly colonized, leading to a sudden proliferation of attached and subsequently of free-living heterotrophic bacteria. Total bacterial protein production reached 201 µg C L−1 d−1, ca. five times higher than spring-peak values that year. Fluorescence in situ hybridization and denaturing gradient gel electrophoresis at high temporal resolution showed pronounced changes in bacterial community structure coinciding with changes in the physiology of the cyanobacteria. Pyrosequencing of 16S rRNA genes revealed that during breakdown of the cyanobacterial population, the diversity of attached and free-living bacterial communities were reduced to a few dominant families. Some of these were not detectable during the early stages of the cyanobacterial bloom indicating that only specific, well adapted bacterial communities can colonize senescent cyanobacteria. Our study suggests that in winter, unlike commonly postulated, carbon rather than temperature is the limiting factor for bacterial growth. Frequent phytoplankton blooms in ice-covered systems highlight the need for year-round studies of aquatic ecosystems including the winter season to correctly understand element and energy cycling through aquatic food webs, particularly the microbial loop. On a global scale, such knowledge is required to determine climate change induced alterations in carbon budgets in polar and temperate aquatic systems.  相似文献   

7.
A cyanobacterial bloom prevents fish trophic cascades   总被引:1,自引:0,他引:1  
1. We experimentally compared the impacts of visually feeding zooplanktivorous fish and filter‐feeding omnivorous fish in shallow tropical Dakar Bango reservoir, Senegal. We provoked a cyanobacterial Anabaena bloom under mesotrophic to eutrophic N‐limited conditions in 18 enclosures assigned to six Nile tilapia life‐stage treatments, at typical biomasses: fishless control (C), zooplanktivorous fry (Z), omnivorous juveniles (O), herbivorous fingerlings (H) and two combinations (OZ, OH). 2. All fish grew well, but as prevalent inedible phytoplankton dampened fish effects, community‐level trophic cascades did not occur. Planktivore types acted independently and affected differentially the biomasses of total zooplankton, cyclopoids, nauplii, cladocerans, invertebrate carnivores, large herbivores, colonial cyanobacteria and Chlorophyta. They neither influenced the total biomass of phytoplankton, nor most water chemistry characteristics. Responses were apparently not fish‐biomass related. The bloom collapsed synchronously in all enclosures, coinciding with enrichment ending, with a return to clear water within 12 days. 3. Our results support the hypothesis that excess nutrients and prevalent inedible cyanobacteria inhibit the cascading effects of natural biomass levels of both visually feeding zooplanktivores and filter‐feeding omnivores. In N‐limited meso‐eutrophic shallow tropical lakes with predominantly small herbivorous zooplankton, neither the type nor the biomass of planktivorous fish present seems likely to prevent the transient outburst of cyanobacterial blooms. Such fragile ecosystems may thus not sustain a trophic state suitable for drinking water production, unless human impacts are restricted. The generality of restoration approaches based on ecological engineering should be further explored.  相似文献   

8.
Toxic cyanobacterial blooms are globally increasing with negative effects on aquatic ecosystems, water use and human health. Blooms' main driving forces are eutrophication, dam construction, urban waste, replacement of natural vegetation with croplands and climate change and variability. The relative effects of each driver have not still been properly addressed, particularly in large river basins. Here, we performed a historical analysis of cyanobacterial abundance in a large and important ecosystem of South America (Uruguay river, ca 1900 km long, 365,000 km2 basin). We evaluated the interannual relationships between cyanobacterial abundance and land use change, river flow, urban sewage, temperature and precipitation from 1963 to the present. Our results indicated an exponential increase in cyanobacterial abundance during the last two decades, congruent with an increase in phosphorus concentration. A sharp shift in the cyanobacterial abundance rate of increase after the year 2000 was identified, resulting in abundance levels above public health alert since 2010. Path analyses showed a strong positive correlation between cyanobacteria and cropland area at the entire catchment level, while precipitation, temperature and water flow effects were negligible. Present results help to identify high nutrient input agricultural practices and nutrient enrichment as the main factors driving toxic bloom formation. These practices are already exerting severe effects on both aquatic ecosystems and human health and projections suggest these trends will be intensified in the future. To avoid further water degradation and health risk for future generations, a large-scale (transboundary) change in agricultural management towards agroecological practices will be required.  相似文献   

9.
Sellner  K. G.  Olson  M. M.  Kononen  K. 《Hydrobiologia》1994,(1):249-254
Blooms of the cyanobacteria Nodularia spumigena and Aphanizomenon flos-aquae dominated the phytoplankton assemblages of the western Gulf of Finland and the eastern side of the northern Baltic Sea in late July–August, 1992. The bloom overlapped the peak seasonal contributions of the dominant mesozooplankton herbivores in the region, the copepods Acartia bifilosa and Eurytemora affinis and the cladoceran Bosmina longispina maritima. Using radio-labelling techniques; the copepods were offered one of the cyanobacteria, Nodularia, as well as the 10–54 µm fraction of the natural phytoplankton assemblage. In general, incorporation rates of the labelled phytoplankton into the copepods declined with increasing contributions of the cyanobacteria. For both copepods, incorporation was inversely related to total phytoplankton biomass, whether measured as chlorophyll, total cells or cyanobacteria biomass. The very low rates for Acartia (< 0.8 µl [copepod h]–1) indicated that this copepod was likely starving in the cyanobacteria bloom, consistent with the generally poor condition of the animal observed in the laboratory. The other major mesozooplanktor, B. longispina maritima, ingested substantially more cyanobacterial biomass than the two copepods, based on HPLC-identified cyanobacteria-specific pigment echinenone in the gut. Bloom carbon provided < 1% and < 4% of the daily rations for Acartia and Eurytemora, respectively. Total copepod demand in the cyanobacteria blooms was trivial, < 1% of bloom biomass consumed daily. These results suggest that copepod herbivory is relatively unimportant in dissipating summer cyanobacteria blooms in the Gulf of Finland.  相似文献   

10.
Waterbodies such as lakes and ponds are fragile environments affected by human influences. Suitable conditions can result in massive growth of phototrophs, commonly referred to as phytoplankton blooms. Such events benefit heterotrophic bacteria able to use compounds secreted by phototrophs or their biomass as major nutrient source. One example of such bacteria are Planctomycetes, which are abundant on the surfaces of marine macroscopic phototrophs; however, less data are available on their ecological roles in limnic environments. In this study, we followed a cultivation-independent deep sequencing approach to study the bacterial community composition during a cyanobacterial bloom event in a municipal duck pond. In addition to cyanobacteria, which caused the bloom event, members of the phylum Planctomycetes were significantly enriched in the cyanobacteria-attached fraction compared to the free-living fraction. Separate datasets based on isolated DNA and RNA point towards considerable differences in the abundance and activity of planctomycetal families, indicating different activity peaks of these families during the cyanobacterial bloom. Motivated by the finding that the sampling location harbours untapped bacterial diversity, we included a complementary cultivation-dependent approach and isolated and characterized three novel limnic strains belonging to the phylum Planctomycetes.  相似文献   

11.
SUMMARY 1. Large in situ enclosures were used to study the effects of experimentally induced cyanobacterial blooms on zooplankton communities. A combination of N and P was added to shallow (2 m) and deep enclosures (5 m) with the goal of reducing the TN : TP ratio to a low level (∼5 : 1) to promote cyanobacterial growth. After nutrient additions, high biomass of cyanobacteria developed rapidly in shallow enclosures reaching levels only observed during bloom events in eutrophic lakes.
2. In the shallow enclosures, particulate phosphorus (PP) was on average 35% higher in comparison with deep enclosures, suggesting that depth plays a key role in P uptake by algae. Phytoplankton communities in both deep and shallow enclosures were dominated by three cyanobacteria species – Aphanizomenon flos-aquae , Anabaena flos-aquae and Microcystis aeruginosa – which accounted for up to 70% of total phytoplankton biomass. However, the absolute biomass of the three species was much higher in shallow enclosures, especially Aphanizomenon flos-aquae . The three cyanobacteria species responded in contrasting ways to nutrient manipulation because of their different physiology.
3. Standardised concentrations of the hepatotoxic microcystin-LR increased as a result of nutrient manipulations by a factor of four in the treated enclosures. Increased biomass of inedible and toxin producing cyanobacteria was associated with a decline in Daphnia pulicaria biomass caused by a reduction in the number of individuals with a body length of >1 mm. Zooplankton biomass did not decline at moderate cyanobacteria biomass, but when cyanobacteria reached high biomass large cladocerans were reduced.
4. Our results demonstrate that zooplankton communities can be negatively affected by cyanobacterial blooms and therefore the potential to use herbivory to reduce algal blooms in such eutrophic lakes appears limited.  相似文献   

12.
淡水湖泊浮游藻类对富营养化和气候变暖的响应   总被引:8,自引:0,他引:8  
水体富营养化和气候变暖是淡水生态系统面临的两大威胁。文章分别阐述了富营养化和气候变暖对淡水湖泊浮游藻类直接和间接效应, 并总结气候变暖可能通过影响水体理化性质、水生植物组成、食物链结构从而直接或间接改变浮游藻类生物量或群落结构。作者重点分析了气候变暖下湖泊生态系统蓝藻水华暴发机制, 比较了不同湖泊蓝藻对气候变暖和富营养化响应的异同点, 发现气候变暖和富营养化对湖泊生态系统影响存在相似性, 表现在均促进湖泊由清水-浊水稳态转变、增加蓝藻水华发生频率和强度。然而二者对湖泊浮游藻类影响的相对重要性取决于分层型湖泊和混合型湖泊的差异性、不同营养型湖泊和不同类群蓝藻组成差异性。作者认为, 开展气候变暖和富营养化下, 湖泊浮游藻类功能群响应研究亟待进行。  相似文献   

13.
Cyanobacterial blooms are an increasing threat to water quality and global water security caused by the nutrient enrichment of freshwaters. There is also a broad consensus that blooms are increasing with global warming, but the impacts of other concomitant environmental changes, such as an increase in extreme rainfall events, may affect this response. One of the potential effects of high rainfall events on phytoplankton communities is greater loss of biomass through hydraulic flushing. Here we used a shallow lake mesocosm experiment to test the combined effects of: warming (ambient vs. +4°C increase), high rainfall (flushing) events (no events vs. seasonal events) and nutrient loading (eutrophic vs. hypertrophic) on total phytoplankton chlorophyll‐a and cyanobacterial abundance and composition. Our hypotheses were that: (a) total phytoplankton and cyanobacterial abundance would be higher in heated mesocosms; (b) the stimulatory effects of warming on cyanobacterial abundance would be enhanced in higher nutrient mesocosms, resulting in a synergistic interaction; (c) the recovery of biomass from flushing induced losses would be quicker in heated and nutrient‐enriched treatments, and during the growing season. The results supported the first and, in part, the third hypotheses: total phytoplankton and cyanobacterial abundance increased in heated mesocosms with an increase in common bloom‐forming taxa—Microcystis spp. and Dolichospermum spp. Recovery from flushing was slowest in the winter, but unaffected by warming or higher nutrient loading. Contrary to the second hypothesis, an antagonistic interaction between warming and nutrient enrichment was detected for both cyanobacteria and chlorophyll‐a demonstrating that ecological surprises can occur, dependent on the environmental context. While this study highlights the clear need to mitigate against global warming, oversimplification of global change effects on cyanobacteria should be avoided; stressor gradients and seasonal effects should be considered as important factors shaping the response.  相似文献   

14.
Cyanobacterial blooms are a current cause for concern globally, with vital water sources experiencing frequent and increasingly toxic blooms in the past decade. These increases are resultant of both anthropogenic and natural factors, with climate change being the central concern. Of the more affected parts of the world, Africa has been considered particularly vulnerable due to its historical predisposition and lag in social economic development. This review collectively assesses the available information on cyanobacterial blooms in Africa as well as any visible trends associated with reported occurrences over the last decade. Of the 54 countries in Africa, only 21 have notable research information in the area of cyanobacterial blooms within the last decade, although there is substantial reason to attribute these blooms as some of the major water quality threats in Africa collectively. The collected information suggests that civil wars, disease outbreaks and inadequate infrastructure are at the core of Africa’s delayed advancement. This is even more so in the area of cyanobacteria related research, with 11 out of 21 countries having recorded toxicity and physicochemical parameters related to cyanobacterial blooms. Compared to the rest of the continent, peripheral countries are at the forefront of research related to cyanobacteria, with countries such as Angola having sufficient rainfall, but poor water quality with limited information on bloom occurrences. An assessment of the reported blooms found nitrogen concentrations to be higher in the water column of more toxic blooms, validating recent global studies and indicating that phosphorous is not the only factor to be monitored in bloom mitigation. Blooms occurred at low TN: TP ratios and at temperatures above 12 °C. Nitrogen was linked to toxicity and temperature also had a positive effect on bloom occurrence and toxicity. Microcystis was the most ubiquitous of the cyanobacterial strains reported in Africa and the one most frequently toxic. Cylindrospermopsis was reported more in the dry, north and western parts of the continent countries as opposed to the rest of the continent, whilst Anabaena was more frequent on the south eastern regions. In light of the entire continent, the inadequacy in reported blooms and advances in this area of research require critical intervention and action.  相似文献   

15.
Toxic cyanobacterial blooms can strongly affect freshwater food web structures. However, little is known about how the patchy occurrence of blooms within systems affects the spatial distribution of zooplankton communities. We studied this by analysing zooplankton community structures in comparison with the spatially distinct distribution of a toxic Microcystis bloom in a small, shallow, eutrophic lake. While toxic Microcystis was present at all sites, there were large spatial differences in the level of cyanobacterial biomass and in the zooplankton communities; sites with persistently low cyanobacterial biomass displayed a higher biomass of adult Daphnia and higher zooplankton diversity than sites with persistently high cyanobacterial biomass. While wind was the most likely reason for the spatially distinct occurrence of the bloom, our data indicate that it was the differences in cyanobacterial biomass that caused spatial differences in the zooplankton community structures. Overall, our study suggests that even in small systems with extensive blooms ‘refuge sites’ exist that allow large grazers to persist, which can be an important mechanism for a successful re-establishment of the biodiversity in an ecosystem after periods of cyanobacterial blooms.  相似文献   

16.
17.
Sudden exposure of an aquatic system to an insecticide can have significant effects on populations other than susceptible organisms. Although this is intuitively obvious, little is actually known about how such exposure might affect bacterial communities and their relative metabolic activity in ecosystems. Here, we assessed small sub-unit (ssu)-RNA levels in open and shaded 9 m(3) aquatic mesocosms (16 units - 2 x 2 factorial design in quadruplicate) to examine the effects of sudden addition of deltamethrin to the units. When deltamethrin was added, a cascade of bacterial then phytoplankton "blooms" occurred over time. The bacterial bloom, which most likely included organisms from the plastid/cyanobacterial phylogenetic guild, was almost immediate (within hours), whereas the phytoplankton (algal) bloom lagged by about 4 days. This sequential response can be explained by an apparent sudden release of nutrients consequent to arthropod death that triggered a series of responses in the microbial loop. Interestingly, bacterial blooms were noted in both open and shaded mesocosms, whereas the algal bloom was only seen in open units, suggesting that both deltamethrin addition (and presumptive nutrient release) and an adequate light supply was required for the phytoplankton response. Overall, this work shows that microbial activities as reflected by ssu-rRNA levels can respond dramatically via apparently indirect effects following insecticide application.  相似文献   

18.
The accumulation of cyanobacterial biomass may severely affect the performance of aquatic consumers. Here, we investigated the role of sterols in determining the food quality of cyanobacteria for the invasive clam Corbicula fluminea, which has become a common benthic invertebrate in many freshwater ecosystems throughout the world. In standardized growth experiments, juvenile clams were fed mixtures of different cyanobacteria (Anabaena variabilis, Aphanothece clathrata, Synechococcus elongatus) or sterol-containing eukaryotic algae (Cryptomonas sp., Nannochloropsis limnetica, Scenedesmus obliquus). In addition, the cyanobacterial food was supplemented with different sterols. We provide evidence that somatic growth of C. fluminea on cyanobacterial diets is constrained by the absence of sterols, as indicated by a growth-enhancing effect of sterol supplementation. Thus, our findings contribute to our understanding of the consequences of cyanobacterial mass developments for benthic consumers and highlight the importance of considering sterols as potentially limiting nutrients in aquatic food webs.  相似文献   

19.
Cyanobacterial blooms have increased in freshwater ecosystems worldwide in the last century, mostly resulting from eutrophication and climate change. These blooms represent serious threats to environmental and human health because of the production of harmful metabolites, called cyanotoxins. Like many countries, Egypt has been plagued with cyanobacterial blooms in most water sources, including the Nile River, irrigation canals, lakes and fishponds. However, the data about cyanotoxins produced in these blooms are limited. Only two types of cyanotoxins, microcystins and cylindrospermopsin, have been identified and characterised, mainly from Microcystis and Cylindrospermopsis blooms. The data revealed the presence of microcystins in raw and treated drinking waters at concentrations (0.05–3.8 µg l?1), exceeding the WHO limit (1 µg l?1) in some drinking water treatment plants. In addition, Nile tilapia Oreochromis niloticus caught from ponds containing heavy cyanobacterial blooms have accumulated considerable amounts of cyanotoxins in their edible tissues. The data presented here could be the catalyst for the establishment of a monitoring and management programme for harmful cyanobacteria and their cyanotoxins in Egyptian fresh waters. This review also elucidates the important research gaps and possible avenues for future research on cyanobacterial blooms and cyanotoxins in Egypt.  相似文献   

20.
The fate of diazotrophic nitrogen (ND) fixed by planktonic cyanobacteria in pelagic food webs remains unresolved, particularly for toxic cyanophytes that are selectively avoided by most herbivorous zooplankton. Current theory suggests that ND fixed during cyanobacterial blooms can enter planktonic food webs contemporaneously with peak bloom biomass via direct grazing of zooplankton on cyanobacteria or via the uptake of bioavailable ND (exuded from viable cyanobacterial cells) by palatable phytoplankton or microbial consortia. Alternatively, ND can enter planktonic food webs post-bloom following the remineralization of bloom detritus. Although the relative contribution of these processes to planktonic nutrient cycles is unknown, we hypothesized that assimilation of bioavailable ND (e.g., nitrate, ammonium) by palatable phytoplankton and subsequent grazing by zooplankton (either during or after the cyanobacterial bloom) would be the primary pathway by which ND was incorporated into the planktonic food web. Instead, in situ stable isotope measurements and grazing experiments clearly documented that the assimilation of ND by zooplankton outpaced assimilation by palatable phytoplankton during a bloom of toxic Nodularia spumigena Mertens. We identified two distinct temporal phases in the trophic transfer of ND from N. spumigena to the plankton community. The first phase was a highly dynamic transfer of ND to zooplankton with rates that covaried with bloom biomass while bypassing other phytoplankton taxa; a trophic transfer that we infer was routed through bloom-associated bacteria. The second phase was a slowly accelerating assimilation of the dissolved-ND pool by phytoplankton that was decoupled from contemporaneous variability in N. spumigena concentrations. These findings provide empirical evidence that ND can be assimilated and transferred rapidly throughout natural plankton communities and yield insights into the specific processes underlying the propagation of ND through pelagic food webs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号