首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Purpose

Intratumoral metabolic heterogeneity may increase the likelihood of treatment failure due to the presence of a subset of resistant tumor cells. Using a head and neck squamous cell carcinoma (HNSCC) xenograft model and a real-time fluorescence imaging approach, we tested the hypothesis that tumors are metabolically heterogeneous, and that tumor hypoxia alters patterns of glucose uptake within the tumor.

Experimental Design

Cal33 cells were grown as xenograft tumors (n = 16) in nude mice after identification of this cell line''s metabolic response to hypoxia. Tumor uptake of fluorescent markers identifying hypoxia, glucose import, or vascularity was imaged simultaneously using fluorescent molecular tomography. The variability of intratumoral 2-deoxyglucose (IR800-2-DG) concentration was used to assess tumor metabolic heterogeneity, which was further investigated using immunohistochemistry for expression of key metabolic enzymes. HNSCC tumors in patients were assessed for intratumoral variability of 18F-fluorodeoxyglucose (18F-FDG) uptake in clinical PET scans.

Results

IR800-2-DG uptake in hypoxic regions of Cal33 tumors was 2.04 times higher compared to the whole tumor (p = 0.0001). IR800-2-DG uptake in tumors containing hypoxic regions was more heterogeneous as compared to tumors lacking a hypoxic signal. Immunohistochemistry staining for HIF-1α, carbonic anhydrase 9, and ATP synthase subunit 5β confirmed xenograft metabolic heterogeneity. We detected heterogeneous 18F-FDG uptake within patient HNSCC tumors, and the degree of heterogeneity varied amongst tumors.

Conclusion

Hypoxia is associated with increased intratumoral metabolic heterogeneity. 18F-FDG PET scans may be used to stratify patients according to the metabolic heterogeneity within their tumors, which could be an indicator of prognosis.  相似文献   

2.
Preclinical xenograft models have contributed to advancing our understanding of the molecular basis of prostate cancer and to the development of targeted therapy. However, traditional preclinical in vivo techniques using caliper measurements and survival analysis evaluate the macroscopic tumor behavior, whereas tissue sampling disrupts the microenvironment and cannot be used for longitudinal studies in the same animal. Herein, we present an in vivo study of [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) designed to evaluate the metabolism within the microenvironment of LAPC4-CR, a unique murine model of castration-resistant prostate cancer. Mice bearing LAPC4-CR subcutaneous tumors were administered [18F]-FDG via intravenous injection. After a 60-minute distribution phase, the mice were imaged on a PET/CT scanner with submillimeter resolution; and the fused PET/CT images were analyzed to evaluate tumor size, location, and metabolism across the cohort of mice. The xenograft tumors showed [18F]-FDG uptake that was independent of tumor size and was significantly greater than uptake in skeletal muscle and liver in mice (Wilcoxon signed-rank P values of .0002 and .0002, respectively). [18F]-FDG metabolism of the LAPC4-CR tumors was 2.1 ± 0.8 ID/cm3*wt, with tumor to muscle ratio of 7.4 ± 4.7 and tumor to liver background ratio of 6.7 ± 2.3. Noninvasive molecular imaging techniques such as PET/CT can be used to probe the microenvironment of tumors in vivo. This study showed that [18F]-FDG-PET/CT could be used to image and assess glucose metabolism of LAPC4-CR xenografts in vivo. Further work can investigate the use of PET/CT to quantify the metabolic response of LAPC4-CR to novel agents and combination therapies using soft tissue and possibly bone compartment xenograft models.  相似文献   

3.
In oncology, positron emission computed tomography (PET/CT) has become an essential tool for initial staging, response evaluation and follow-up of cancer patients. Most of the frequent tumors (lung, breast, esophagus, and lymphomas) are highly avid for 18F-fluorodeoxyglucose (18FDG), but prostate cancer has not demonstrated significant uptake of FDG. The development of new tracers labeled with 18F such as choline analogs allowed already to obtain interesting results particularly in patients with biological relapse and inconclusive conventional imaging work-up. The impact of 18F-flurocholine PET/CT on patient management needs to be validated in large studies, but many centers use already this examination in order to guide further management, including radiotherapy planning.  相似文献   

4.

Background

Inhibition of the epidermal growth factor receptor (EGFR) has shown clinical success in patients with advanced non-small cell lung cancer (NSCLC). Somatic mutations of EGFR were found in lung adenocarcinoma that lead to exquisite dependency on EGFR signaling; thus patients with EGFR-mutant tumors are at high chance of response to EGFR inhibitors. However, imaging approaches affording early identification of tumor response in EGFR-dependent carcinomas have so far been lacking.

Methodology/Principal Findings

We performed a systematic comparison of 3′-Deoxy-3′-[18F]-fluoro-L-thymidine ([18F]FLT) and 2-[18F]-fluoro-2-deoxy-D-glucose ([18F]FDG) positron emission tomography (PET) for their potential to identify response to EGFR inhibitors in a model of EGFR-dependent lung cancer early after treatment initiation. While erlotinib-sensitive tumors exhibited a striking and reproducible decrease in [18F]FLT uptake after only two days of treatment, [18F]FDG PET based imaging revealed no consistent reduction in tumor glucose uptake. In sensitive tumors, a decrease in [18F]FLT PET but not [18F]FDG PET uptake correlated with cell cycle arrest and induction of apoptosis. The reduction in [18F]FLT PET signal at day 2 translated into dramatic tumor shrinkage four days later. Furthermore, the specificity of our results is confirmed by the complete lack of [18F]FLT PET response of tumors expressing the T790M erlotinib resistance mutation of EGFR.

Conclusions

[18F]FLT PET enables robust identification of erlotinib response in EGFR-dependent tumors at a very early stage. [18F]FLT PET imaging may represent an appropriate method for early prediction of response to EGFR TKI treatment in patients with NSCLC.  相似文献   

5.
PURPOSE: This study aims to investigate whether the uptake of 2-(2-nitro-1H-imidazol-1-yl)-N-(2,2,3,3,3-pentafluoropropyl)-acetamide ([18F]EF5) and 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG) is associated with a hypoxia-driven adverse phenotype in head and neck squamous cell carcinoma cell lines and tumor xenografts. METHODS: Xenografts were imaged in vivo, and tumor sections were stained for hypoxia-inducible factor 1α (Hif-1α), carbonic anhydrase IX (CA IX), and glucose transporter 1 (Glut-1). Tracer uptakes and the expression of Hif-1α were determined in cell lines under 1% hypoxia. RESULTS: High [18F]EF5 uptake was seen in xenografts expressing high levels of CA IX, Glut-1, and Hif-1α, whereas low [18F]EF5 uptake was detected in xenografts expressing low amounts of CA IX and Hif-1α. The uptake of [18F]EF5 between cell lines varied extensively under normoxic conditions. A clear correlation was found between the expression of Hif-1α and the uptake of [18F]FDG during hypoxia. CONCLUSIONS: The UT-SCC cell lines studied differed with respect to their hypoxic phenotypes, and these variations were detectable with [18F]EF5. Acute hypoxia increases [18F]FDG uptake in vitro, whereas a high [18F]EF5 uptake reflects a more complex phenotype associated with hypoxia and an aggressive growth pattern.  相似文献   

6.

Objective

This study investigated the metabolic parameters of primary tumors and regional lymph nodes, as measured by pre-treatment F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) to compare the prognostic value for the prediction of tumor recurrence. This study also identified the most powerful parameter in patients with locally advanced cervical cancer treated with concurrent chemoradiotherapy.

Methods

Fifty-six patients who were diagnosed with cervical cancer with pelvic and/or paraaortic lymph node metastasis were enrolled in this study. Metabolic parameters including the maximum standardized uptake value (SUVmax), the metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of the primary tumors and lymph nodes were measured by pre-treatment F-18 FDG PET/CT. Univariate and multivariate analyses for disease-free survival (DFS) were performed using the clinical and metabolic parameters.

Results

The metabolic parameters of the primary tumors were not associated with DFS. However, DFS was significantly longer in patients with low values of nodal metabolic parameters than in those with high values of nodal metabolic parameters. A univariate analysis revealed that nodal metabolic parameters (SUVmax, MTV and TLG), paraaortic lymph node metastasis, and post-treatment response correlated significantly with DFS. Among these parameters, nodal SUVmax (hazard ratio [HR], 4.158; 95% confidence interval [CI], 1.1–22.7; p = 0.041) and post-treatment response (HR, 7.162; 95% CI, 1.5–11.3; p = 0.007) were found to be determinants of DFS according to a multivariate analysis. Only nodal SUVmax was an independent pre-treatment prognostic factor for DFS, and the optimal cutoff for nodal SUVmax to predict progression was 4.7.

Conclusion

Nodal SUVmax according to pre-treatment F-18 FDG PET/CT may be a prognostic biomarker for the prediction of disease recurrence in patients with locally advanced cervical cancer.  相似文献   

7.
BackgroundThe purpose of this study was to characterize pre-treatment non-contrast computed tomography (CT) and 18F-fluorodeoxyglucose positron emission tomography (PET) based radiomics signatures predictive of pathological response and clinical outcomes in rectal cancer patients treated with neoadjuvant chemoradiotherapy (NACR T).Materials and methodsAn exploratory analysis was performed using pre-treatment non-contrast CT and PET imaging dataset. The association of tumor regression grade (TRG) and neoadjuvant rectal (NAR) score with pre-treatment CT and PET features was assessed using machine learning algorithms. Three separate predictive models were built for composite features from CT + PET.ResultsThe patterns of pathological response were TRG 0 (n = 13; 19.7%), 1 (n = 34; 51.5%), 2 (n = 16; 24.2%), and 3 (n = 3; 4.5%). There were 20 (30.3%) patients with low, 22 (33.3%) with intermediate and 24 (36.4%) with high NAR scores. Three separate predictive models were built for composite features from CT + PET and analyzed separately for clinical endpoints. Composite features with α = 0.2 resulted in the best predictive power using logistic regression. For pathological response prediction, the signature resulted in 88.1% accuracy in predicting TRG 0 vs. TRG 1–3; 91% accuracy in predicting TRG 0–1 vs. TRG 2–3. For the surrogate of DFS and OS, it resulted in 67.7% accuracy in predicting low vs. intermediate vs. high NAR scores.ConclusionThe pre-treatment composite radiomics signatures were highly predictive of pathological response in rectal cancer treated with NACR T. A larger cohort is warranted for further validation.  相似文献   

8.
The glucose consumption in tumoursin vivo as reflected by uptake of [18F]2-fluoro-2-deoxy-D-glucose (18FDG) using positron emission tomography (PET) is currently under investigation as a measure of tumour response to radiotherapy. The calculation of cerebral metabolic rate of glucose from18FDG-PET data requires a proportionality factor referred to as the lumped constant. In the presentin vitro study, the utilizations of18FDG and glucose have been measured in a human glioblastoma cell line (86HG-39) as a function of γ-radiation dose with various post-irradiation times and of different fractionation modes. The ratio of utilization of18FDG to that of glucose (RF/G), assumed to correspond to the lumped constant, was observed to increase 12 and 24 h after single fraction γ-exposure by factors ranging from 1.2 to 1.5 compared with the non-irradiated controls. It decreased after multiple fraction γ-exposure (4 × 2 Gy) by a factor of 0.7 compared with the single fraction schedule (1 × 8 Gy). The results suggest that the affinities of glucose transporters or hexokiriase enzyme or both for18FDG and glucose could be influenced by γ-irradiation in this tumour cell linein vitro. Apparent changes of the glucose consumption determined with PET in human tumours following radiotherapy may, therefore, not be solely due to changes in cellular metabolism or cell number but may also be due to changes in R F/G .  相似文献   

9.
PURPOSE: The objective is to validate the combination of 3′-deoxy-3′-[18F]fluorothymidine (18F-FLT) and 18F-fluorodeoxyglucose (18F-FDG) as a “novel” positron emission tomography (PET) tracer for better visualization of cancer cell components in solid cancers than individual radiopharmaceutical. METHODS: Nude mice with subcutaneous xenografts of human non-small cell lung cancer A549 and HTB177 cells and patients with lung cancer were included. In ex vivo study, intratumoral radioactivity of 18F-FDG, 18F-FLT, and the cocktail of 18F-FDG and 18F-FLT detected by autoradiography was compared with hypoxia (by pimonidazole) and proliferation (by bromodeoxyuridine) in tumor section. In in vivo study, first, 18F-FDG PET and 18F-FLT PET were conducted in the same subjects (mice and patients) 10 to 14 hours apart. Second, PET scan was also performed 1 hour after one tracer injection; subsequently, the other was administered and followed the second PET scan in the mouse. Finally, 18F-FDG and 18F-FLT cocktail PET scan was also performed in the mouse. RESULTS: When injected individually, 18F-FDG highly accumulated in hypoxic zones and high 18F-FLT in proliferative cancer cells. In case of cocktail injection, high radioactivity correlated with hypoxic regions and highly proliferative and normoxic regions. PET detected that intratumoral distribution of 18F-FDG and 18F-FLT was generally mismatched in both rodents and patients. Combination of 18F-FLT and 18F-FDG appeared to map more cancer tissue than single-tracer PET. CONCLUSIONS: Combination of 18F-FDG and 18F-FLT PET imaging would give a more accurate representation of total viable tumor tissue than either tracer alone and would be a powerful imaging strategy for cancer management.  相似文献   

10.

Background

18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) has become an established method for detecting hypermetabolic sites of known and occult disease and is widely used in oncology surgical planning. Intraoperatively, it is often difficult to localize tumors and verify complete resection of tumors that have been previously detected on diagnostic PET/CT at the time of the original evaluation of the cancer patient. Therefore, we propose an innovative approach for intraoperative tumor localization and verification of complete tumor resection utilizing 18F-FDG for perioperative PET/CT imaging and intraoperative gamma probe detection.

Methods

Two breast cancer patients were evaluated. 18F-FDG was administered and PET/CT was acquired immediately prior to surgery. Intraoperatively, tumors were localized and resected with the assistance of a handheld gamma probe. Resected tumors were scanned with specimen PET/CT prior to pathologic processing. Shortly after the surgical procedure, patients were re-imaged with PET/CT utilizing the same preoperatively administered 18F-FDG dose.

Results

One patient had primary carcinoma of breast and a metastatic axillary lymph node. The second patient had a solitary metastatic liver lesion. In both cases, preoperative PET/CT verified these findings and demonstrated no additional suspicious hypermetabolic lesions. Furthermore, intraoperative gamma probe detection, specimen PET/CT, and postoperative PET/CT verified complete resection of the hypermetabolic lesions.

Conclusion

Immediate preoperative and postoperative PET/CT imaging, utilizing the same 18F-FDG injection dose, is feasible and image quality is acceptable. Such perioperative PET/CT imaging, along with intraoperative gamma probe detection and specimen PET/CT, can be used to verify complete tumor resection. This innovative approach demonstrates promise for assisting the oncologic surgeon in localizing and verifying resection of 18F-FDG positive tumors and may ultimately positively impact upon long-term patient outcomes.
  相似文献   

11.
In the 21st century, the incidence and mortality of cancer, one of the most challenging diseases in the world, have rapidly increased. The purpose of this study was to develop 2-(2-[18F]fluoroethoxy)ethyl 4-methylbenzenesulfonate ([18F]FEM) as a positron emission tomography (PET) agent for tumor imaging. In this study, [18F]FEM was synthesized with a good radiochemical yield (45.4 ± 5.8%), high specific radioactivity (over 25 GBq/μmol), and commendable radiochemical purity (over 99%). The octanol/water partition coefficient of [18F]FEM was 1.44 ± 0.04. The probe demonstrated good stability in vitro (phosphate-buffered saline (PBS) and mouse serum (MS)), and binding specificity to five different tumor cell lines (A549, PC-3, HCC827, U87, and MDA-MB-231). PET imaging of tumor-bearing mice showed that [18F]FEM specifically accumulated at the tumor site of the five different tumor cell lines. The average tumor-to-muscle (T/M) ratio was over 2, and the maximum T/M values reached about 3.5. The biodistribution and dynamic PET imaging showed that most probes were metabolized by the liver, whereas a small part was metabolized by the kidney. Moreover, dynamic brain images and quantitative data showed [18F]FEM can quickly cross the blood brain barrier (BBB) and quickly fade out, thereby suggesting it may be a promising candidate probe for the imaging of brain tumors. The presented results demonstrated that [18F]FEM is a promising probe for tumor PET imaging.  相似文献   

12.
[18F]fluorodeoxyglucose (18FDG) positron emission tomography (PET) is a noninvasive metabolic imaging modality that is well suited to the assessment of activity and extent of large vessel vasculitis, such as giant cell arteritis and Takayasu arteritis. PET could be more effective than magnetic resonance imaging in detecting the earliest stages of vascular wall inflammation. The visual grading of vascular [18F]FDG uptake makes it possible to discriminate arteritis from atherosclerosis, providing therefore high specificity. High sensitivity can be achieved provided scanning is performed during active inflammatory phase, preferably before starting corticosteroid treatment. Large scale prospective studies are needed to determine the exact value of PET imaging in assessing the large vessel vasculitis outcome and response to immunosuppressive treatment.  相似文献   

13.
Paragangliomas (PGL) are relatively rare neural crest tumors originating in the adrenal medulla (usually called pheochromocytoma), chemoreceptors (i.e., carotid and aortic bodies) or autonomic ganglia. These tumors are highly vascular, usually benign and slow-growing. PGL may occur as sporadic or familial entities, the latter mostly in association with germline mutations of the succinate dehydrogenase (SDH) B, SDHC, SDHD, SDH5, von Hippel-Lindau (VHL), ret proto-oncogene (RET), neurofibromatosis 1 (NF1) (von Recklinghausen's disease), prolyl hydroxylase domain protein 2 (PHD2) genes and TMEM127. Molecular nuclear imaging has a central role in characterization of PGL and include: somatostatine receptor imaging (111In, 68Ga), MIBG scintigraphy (131I, 123I), 18F-dihydroxyphenylalanine (18F-DOPA) positron emission tomography (PET), and 18F-deoxyglucose (18F-FDG) PET. The choice of the tracer is not yet fully established but the work-up of familial forms often require the combination of multiple approaches.  相似文献   

14.
15.
Nuclear medicine plays an important role in the evaluation of infection and inflammation. A variety of diagnostic methods are available for imaging this inflammation and infection, most notably computed tomography, 68Ga scintigraphy or radionuclide labeled leucocytes. Fluorine 18 fluorodeoxyglucose (18F-FDG) is a readily available radiotracer that offers rapid, exquisitely sensitive high-resolution images by positron emission tomography (PET).Inflammation can be acute or chronic, the former showing predominantly neutrophilic granulocyte infiltrates, whereas in the latter, macrophages predominate. FDG uptake in infection is based on the fact that mononuclear cells and granulocytes use large quantities of glucose by way of the hexose monophosphate shunts. 18F-FDG PET accurately helps diagnose spinal osteomyelitis, diabetic foot and in inflammatory conditions such as sarcoidosis and tuberculosis.(it appears to be useful for defining the extent of disease and monitoring response to treatment). 18F-FDG PET can also help localize the source of fever of undetermined origin, thereby guiding additional testing. 18F-FDG PET may be of limited usefulness in postoperative patients and in patients with a failed joint prosthesis or bowel inflammatory disease. In this review, we will focus on the role of 18F-FDG PET in the management of patients with inflammation or suspected or confirmed infection.  相似文献   

16.
~(18)F-FDG PET/CT常规代谢成像反应肿瘤的葡萄糖代谢及乏氧情况,而~(18)F-FDG PET/CT早期动态成像能反映PET/CT成像早期肿瘤的灌注情况。由于肿瘤的异质性,在早期动态~(18)F-FDG PET/CT成像,即~(18)F-FDG PET/CT灌注成像中,存在独立于常规60 min~(18)F-FDG PET/CT代谢成像的SUVmax(最大标准摄取值)高摄取区。因此,在临床工作中应用~(18)F-FDG PET/CT早期动态成像,能够进一步对实体肿瘤的活性区域进行评估,能够更好评价患者预后、完善治疗方案。当前~(18)F-FDG早期动态成像已经应用在肝癌、肾癌以及膀胱癌等实体肿瘤诊断中。早期动态~(18)F-FDG PET/CT成像结合常规标准~(18)F-FDG PET/CT代谢成像,对实体肿块进行一站式成像方法,能够更好的对肿瘤进行评估。  相似文献   

17.

Background

In vivo imaging using Annexin A5-based radioligands is a powerful technique for visualizing massive cell death, but has been less successful in monitoring the modest cell death typically seen in solid tumors after chemotherapy. Here we combined dynamic positron emission tomography (PET) imaging using Annexin A5 with a serum-based apoptosis marker, for improved sensitivity and specificity in assessment of chemotherapy-induced cell death in a solid tumor model.

Methodology/Principal Findings

Modest cell death was induced by doxorubicin in a mouse xenograft model with human FaDu head and neck cancer cells. PET imaging was based on 11C-labeled Sel-tagged Annexin A5 ([11C]-AnxA5-ST) and a size-matched control. 2-deoxy-2-[18F]fluoro-D-glucose ([18F]-FDG) was utilized as a tracer of tissue metabolism. Serum biomarkers for cell death were ccK18 and K18 (M30 Apoptosense® and M65). Apoptosis in tissue sections was verified ex vivo for validation. Both PET imaging using [11C]-AnxA5-ST and serum ccK18/K18 levels revealed treatment-induced cell death, with ccK18 displaying the highest detection sensitivity. [18F]-FDG uptake was not affected by this treatment in this tumor model. [11C]-AnxA5-ST gave robust imaging readouts at one hour and its short half-life made it possible to perform paired scans in the same animal in one imaging session.

Conclusions/Significance

The combined use of dynamic PET with [11C]-AnxA5-ST, showing specific increases in tumor binding potential upon therapy, with ccK18/K18 serum measurements, as highly sensitive markers for cell death, enabled effective assessment of modest therapy-induced cell death in this mouse xenograft model of solid human tumors.  相似文献   

18.
《Endocrine practice》2019,25(7):669-677
Objective: The management of large nonsecreting adrenal tumors (at least 4 cm) is still a matter of debate as it is unclear whether imaging, especially 18F-fluorodeoxyglucose (FDG), can be used to characterize their potential malignancy. Moreover, the risk of new hypersecretion in nonoperated tumors is uncertain. Our aim was to better characterize these large adrenal incidentalomas.Methods: Patients followed in our center for a nonsecreting large (at least 4 cm) adrenal incidentaloma, with an initial computed tomography (CT) and 18F-FDG positron emission tomography (PET) CT, were retrospectively included. Patients who were not operated after initial diagnosis had to be followed with clinical, biological, and imaging evaluations for at least 3 years or until delayed surgery.Results: Eighty-one patients were included in the study: 44 patients (54.3%) had initial surgery while 37 were followed, including 21 (25.9%) who were operated after a mean of 19 months. Among the 65 operated patients, 13 (20%) had a malignant lesion (3 with metastasis, and 10 with adrenocortical carcinoma). Unenhanced CT <10 showed 85.6% sensitivity and 78.8% specificity; all had a 18F-FDG uptake ratio >1.5. Among the 24 patients who were followed for at least 3 years, 5 (20.8%) finally presented hypercortisolism (4 subclinical).Conclusion: As expected, large adrenal tumors are at a higher risk of malignancy. The combination of unenhanced CT <10 and 18F-FDG PET ratio <1.5 prove to be reassuring and might lead to a close follow-up rather than immediate surgery. Hormonal follow-up should be focused on the risk of hypercortisolism.Abbreviations: CI = confidence interval; CT = Computed Tomography; ENSAT = European Network for the Study of Adrenal Tumors; ESE = European Society of Endocrinology; FDG = fluorodeoxyglucose; HU = Hounsfield units; PET = positron emission tomography; ROI = regions of interest; SUV = standard uptake value  相似文献   

19.
An ideal positron emission tomography (PET) tracer should be highly extractable by the tumor tissue or organ that contains low toxicity and can provide high-resolution images in vivo. In this work, the aim was to evaluate the application of Al18F-labeled 1,4,7-triazacyclononane-1,4,7-triacetic acid containing sulfonamide group (18F-Al-NOTA-SN) as a potential tumor-targeting signal-enhanced radioactive tracer in PET. SN as a tumor-targeting group was incorporated to NOTA to make a ligand. Subsequently, this ligand reacted with Na18F and AlCl3 to produce a compound 18F-Al-NOTA-SN. This compound was further characterized and its property in regard to cell cytotoxicity assay, microPET imaging, biodistribution, cell uptake assay, and tumor selectivity in vitro and in vivo, was also investigated. 18F-Al-NOTA-SN possessed low cell cytotoxicity and uptake to COS-7 and 293T healthy cells and high cell cytotoxicity and uptake to MDA-MB-231, HepG2, and HeLa tumor cells in vitro. Moreover, 18F-Al-NOTA-SN showed good tumor-targeting property and high PET signal enhancement of HeLa tumors, liver, and kidneys in mice, as well as the uptake ratios of tumor to blood and tumor to muscle, were 4.98 and 3.87, respectively. 18F-Al-NOTA-SN can be accepted to be kidney and liver eliminated earlier and show a potential tumor-targeting signal-enhanced radioactive tracer in PET.  相似文献   

20.
The noninvasive imaging of cell death, including apoptosis and necrosis, is an important tool for the assessment of degenerative diseases and in the monitoring of tumor treatments. Duramycin is a peptide of 19-amino acids. It binds specifically to phosphatidylethanolamine a novel molecular target for cell death. N-(2-18F-Fluoropropionyl)duramycin ([18F]FPDuramycin) was prepared as a novel positron emission tomography (PET) tracer from the reaction of duramycin with 4-nitrophenyl 2-[18F]fluoropropionate ([18F]NFP). Compared with control cells (viable tumor cells), the in vitro binding of [18F]FPDuramycin with apoptotic cells induced by anti-Fas antibody resulted in a doubling increase, while the binding of [18F]FPDuramycin with necrotic cells induced by three freeze and thaw cycles resulted in a threefold increase. Biodistribution study in mice exhibited its rapid blood and renal clearance and predominant accumulation in liver and spleen over 120 min postinjection. Small-animal PET/CT imaging with [18F]FPDuramycin proved to be a successful way to visualize in vivo therapeutic-induced tumor cell death. In summary, [18F]FPDuramycin seems to be a potential PET probe candidate for noninvasive visualization of in vivo cell death sites induced by chemotherapy in tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号