首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Body size evolution in insular vertebrates: generality of the island rule   总被引:8,自引:1,他引:7  
Aim My goals here are to (1) assess the generality of the island rule – the graded trend from gigantism in small species to dwarfism in larger species – for mammals and other terrestrial vertebrates on islands and island‐like ecosystems; (2) explore some related patterns of body size variation in insular vertebrates, in particular variation in body size as a function of island area and isolation; (3) offer causal explanations for these patterns; and (4) identify promising areas for future studies on body size evolution in insular vertebrates. Location Oceanic and near‐shore archipelagos, and island‐like ecosystems world‐wide. Methods Body size measurements of insular vertebrates (non‐volant mammals, bats, birds, snakes and turtles) were obtained from the literature, and then regression analyses were conducted to test whether body size of insular populations varies as a function of body size of the species on the mainland (the island rule) and with characteristics of the islands (i.e. island isolation and area). Results The island rule appears to be a general phenomenon both with mammalian orders (and to some degree within families and particular subfamilies) as well as across the species groups studied, including non‐volant mammals, bats, passerine birds, snakes and turtles. In addition, body size of numerous species in these classes of vertebrates varies significantly with island isolation and island area. Main conclusions The patterns observed here – the island rule and the tendency for body size among populations of particular species to vary with characteristics of the islands – are actually distinct and scale‐dependent phenomena. Patterns within archipelagos reflect the influence of island isolation and area on selective pressures (immigration filters, resource limitation, and intra‐ and interspecific interactions) within particular species. These patterns contribute to variation about the general trend referred to as the island rule, not the signal for that more general, large‐scale pattern. The island rule itself is an emergent pattern resulting from a combination of selective forces whose importance and influence on insular populations vary in a predictable manner along a gradient from relatively small to large species. As a result, body size of insular species tends to converge on a size that is optimal, or fundamental, for a particular bau plan and ecological strategy.  相似文献   

2.
Aim Island taxa often attain forms outside the range achieved by mainland relatives. Body size evolution of vertebrates on islands has therefore received much attention, with two seemingly conflicting patterns thought to prevail: (1) islands harbour animals of extreme size, and (2) islands promote evolution towards medium body size (‘the island rule’). We test both hypotheses using body size distributions of mammal, lizard and bird species. Location World‐wide. Methods We assembled body size and insularity datasets for the world’s lizards, birds and mammals. We compared the frequencies with which the largest or smallest member of a group is insular with the frequencies expected if insularity is randomly assigned within groups. We tested whether size extremes on islands considered across mammalian phylogeny depart from a null expectation under a Brownian motion model. We tested the island rule by comparing insular and mainland members of (1) a taxonomic level and (2) mammalian sister species, to determine if large insular animals tend to evolve smaller body sizes while small ones evolve larger sizes. Results The smallest species in a taxon (order, family or genus) are insular no more often than would be expected by chance in all groups. The largest species within lizard families and bird genera (but no other taxonomic levels) are insular more often than expected. The incidence of extreme sizes in insular mammals never departs from the null, except among extant genera, where gigantism is marginally less common than expected under a Brownian motion null. Mammals follow the island rule at the genus level and when comparing sister species and clades. This appears to be driven mainly by insular dwarfing in large‐bodied lineages. A similar pattern in birds is apparent for species within orders. However, lizards follow the converse pattern. Main conclusions The popular misconception that islands have more than their fair share of size extremes may stem from a greater tendency to notice gigantism and dwarfism when they occur on islands. There is compelling evidence for insular dwarfing in large mammals, but not in other taxa, and little evidence for the second component of the island rule – gigantism in small‐bodied taxa.  相似文献   

3.
Large mammals are thought to evolve to be smaller on islands, whereas small mammals grow larger. A negative correlation between relative size of island individuals and body mass is termed the "island rule." Several mechanisms--mainly competitive release, resource limitation, dispersal ability, and lighter predation pressure on islands, as well as a general physiological advantage of modal size--have been advanced to explain this pattern. We measured skulls and teeth of terrestrial members of the order Carnivora in order to analyze patterns of body size evolution between insular populations and their near mainland conspecifics. No correlations were found between the size ratios of insular/mainland carnivore species and body mass. Only little support for the island rule is found when individual populations rather than species are considered. Our data are at odds with those advanced in support of theories of optimal body size. Carnivore size is subjected to a host of selective pressures that do not vary uniformly from place to place. Mass alone cannot account for the patterns in body size of insular carnivores.  相似文献   

4.
Aim To investigate evolutionary changes in the size of leaves, stems and seeds of plants inhabiting isolated islands surrounding New Zealand. Location Antipodes, Auckland, Campbell, Chatham, Kermadec, Three Kings and Poor Knights Islands. Methods First, we compared the size of leaves and stems produced by 14 pairs of plant taxa between offshore islands and the New Zealand mainland, which were grown in a common garden to control for environmental effects. Similar comparisons of seed sizes were made between eight additional pairs of taxa. Second, we used herbarium specimens from 13 species pairs to investigate scaling relationships between leaf and stem sizes in an attempt to pinpoint which trait might be under selection. Third, we used herbarium specimens from 20 species to test whether changes in leaf size vary among islands located at different latitudes. Lastly, we compiled published records of plant heights to test whether insular species in the genus Hebe differed in size from their respective subgenera on the mainland. Results Although some evidence of dwarfism was observed, most insular taxa were larger than their mainland relatives. Leaf sizes scaled positively with stem diameters, with island taxa consistently producing larger leaves for any given stem size than mainland species. Leaf sizes also increased similarly among islands located at different latitudes. Size changes in insular Hebe species were unrelated to the average size of the respective subgenera on the mainland. Main conclusions Consistent evidence of gigantism was observed, suggesting that plants do not obey the island rule. Because our analyses were restricted to woody plants, results are also inconsistent with the ‘weeds‐to‐trees’ hypothesis. Disproportionate increases in leaf size relative to other plant traits suggest that selection may favour the evolution of larger leaves on islands, perhaps due to release from predation or increased intra‐specific competition.  相似文献   

5.
Area, isolation and body size evolution in insular carnivores   总被引:3,自引:1,他引:2  
Body sizes of insular mammals often differ strikingly from those of their mainland conspecifics. Small islands have reduced numbers of competitor and predator species, and more limited resources. Such reductions are believed to select for predictable changes in body sizes, with large mammals growing progressively smaller as island area decreases, while small ones grow progressively larger. Medium-sized mammals are thought to be largest on intermediate-sized islands. Increased isolation is seen as promoting insular gigantism. We searched for such patterns using a large database of insular carnivore specimens. Neither small nor large carnivores show a consistent area/body size relationship. Medium-sized carnivores are no more likely to attain large size on medium-sized islands then they are to be small there. We found no consistent patterns of body size variation in relation to isolation.  相似文献   

6.
Size evolution in island lizards   总被引:2,自引:0,他引:2  
Aim  The island rule, small animal gigantism and large animal dwarfism on islands, is a topic of much recent debate. While size evolution of insular lizards has been widely studied, whether or not they follow the island rule has never been investigated. I examined whether lizards show patterns consistent with the island rule.
Location  Islands worldwide.
Methods  I used literature data on the sizes of island–mainland population pairs in 59 species of lizards, spanning the entire size range of the group, and tested whether small insular lizards are larger than their mainland conspecifics and large insular lizards are smaller. I examined the influence of island area, island isolation, and dietary preferences on lizard size evolution.
Results  Using mean snout–vent length as an index of body size, I found that small lizards on islands become smaller than their mainland conspecifics, while large ones become larger still, opposite to predictions of the island rule. This was especially strong in carnivorous lizards; omnivorous and herbivorous species showed a pattern consistent with the island rule but this result was not statistically significant. No trends consistent with the island rule were found when maximum snout–vent length was used. Island area had, at best, a weak effect on body size. Using maximum snout–vent length as an index of body size resulted in most lizard populations appearing to be dwarfed on islands, but no such pattern was revealed when mean snout–vent length was used as a size index.
Main conclusions  I suggest that lizard body size is mostly influenced by resource availability, with large size allowing some lizard populations to exploit resources that are unavailable on the mainland. Lizards do not follow the island rule. Maximum snout–vent length may be biased by sampling effort, which should be taken into account when one uses this size index.  相似文献   

7.
Many insular vertebrates have undergone rapid and dramatic changes in body size compared to their mainland counterparts. Here we explore the relationship between two well known patterns of island body size – the tendency for large‐bodied species to dwarf and small‐bodied species to get larger on islands, known as the “island rule”, and the scaling of maximum and minimum body size of island assemblages with island area. Drawing on both fossil and modern data, we examined the relationship between body size and island area in Pacific island birds, both within clades and at the island assemblage level. We found that the size of the smallest bird on each island decreased with island area while the maximum body size increased with island area. Similarly, within clades the body size of small‐bodied groups decreased and large‐bodied groups increased from small to large islands, consistent with the island rule. However, the magnitude of size change within clades was not sufficient to explain the overall scaling of maximum size with island area. Instead, the pattern was driven primarily by the evolution of very large, flightless birds on large islands. Human‐mediated extinctions on islands over the past few millennia severely impacted large, flightless birds, to the effect that this macroecological pattern has been virtually erased. After controlling for effects of biogeographic region and island area, we found island productivity to be the best predictor of maximum size in flightless birds. This result, and the striking similarities in maximum body size between flightless birds and island mammals, suggests a common energetic mechanism linking body size and landmass area in both the island rule and the scaling of island body size extremes.  相似文献   

8.
There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.  相似文献   

9.
Aim Optimal body size theories predict that large clades have a single, optimal, body size that serves as an evolutionary attractor, with the full body size spectrum of a clade resulting from interspecific competition. Because interspecific competition is believed to be reduced on islands, such theories predict that insular animals should be closer to the optimal size than mainland animals. We test the resulting prediction that insular clade members should therefore have narrower body size ranges than their mainland relatives. Location World‐wide. Methods We used body sizes and a phylogenetic tree of 4004 mammal species, including more than 200 species that went extinct since the last ice age. We tested, in a phylogenetically explicit framework, whether insular taxa converge on an optimal size and whether insular clades have narrow size ranges. Results We found no support for any of the predictions of the optimal size theory. No specific size serves as an evolutionary attractor. We did find consistent evidence that large (> 10 kg) mammals grow smaller on islands. Smaller species, however, show no consistent tendency to either dwarf or grow larger on islands. Size ranges of insular taxa are not narrower than expected by chance given the number of species in their clades, nor are they narrower than the size ranges of their mainland sister clades – despite insular clade members showing strong phylogenetic clustering. Main conclusions The concept of a single optimal body size is not supported by the data that were thought most likely to show it. We reject the notion that inclusive clades evolve towards a body‐plan‐specific optimum.  相似文献   

10.

Aim

We assessed the generality of the island rule in a database comprising 1593 populations of insular mammals (439 species, including 63 species of fossil mammals), and tested whether observed patterns differed among taxonomic and functional groups.

Location

Islands world‐wide.

Methods

We measured museum specimens (fossil mammals) and reviewed the literature to compile a database of insular animal body size (Si = mean mass of individuals from an insular population divided by that of individuals from an ancestral or mainland population, M). We used linear regressions to investigate the relationship between Si and M, and ANCOVA to compare trends among taxonomic and functional groups.

Results

Si was significantly and negatively related to the mass of the ancestral or mainland population across all mammals and within all orders of extant mammals analysed, and across palaeo‐insular (considered separately) mammals as well. Insular body size was significantly smaller for bats and insectivores than for the other orders studied here, but significantly larger for mammals that utilized aquatic prey than for those restricted to terrestrial prey.

Main conclusions

The island rule appears to be a pervasive pattern, exhibited by mammals from a broad range of orders, functional groups and time periods. There remains, however, much scatter about the general trend; this residual variation may be highly informative as it appears consistent with differences among species, islands and environmental characteristics hypothesized to influence body size evolution in general. The more pronounced gigantism and dwarfism of palaeo‐insular mammals, in particular, is consistent with a hypothesis that emphasizes the importance of ecological interactions (time in isolation from mammalian predators and competitors was 0.1 to > 1.0 Myr for palaeo‐insular mammals, but < 0.01 Myr for extant populations of insular mammals). While ecological displacement may be a major force driving diversification in body size in high‐diversity biotas, ecological release in species‐poor biotas often results in the convergence of insular mammals on the size of intermediate but absent species.  相似文献   

11.
Aim We investigated the hypothesis that the insular body size of mammals results from selective forces whose influence varies with characteristics of the focal islands and the focal species, and with interactions among species (ecological displacement and release). Location Islands world‐wide. Methods We assembled data on the geographic characteristics (area, isolation, maximum elevation, latitude) and climate (annual averages and seasonality of temperature and precipitation) of islands, and on the ecological and morphological characteristics of focal species (number of mammalian competitors and predators, diet, body size of mainland reference populations) that were most relevant to our hypothesis (385 insular populations from 98 species of extant, non‐volant mammals across 248 islands). We used regression tree analyses to examine the hypothesized contextual importance of these factors in explaining variation in the insular body size of mammals. Results The results of regression tree analyses were consistent with predictions based on hypotheses of ecological release (more pronounced changes in body size on islands lacking mammalian competitors or predators), immigrant selection (more pronounced gigantism in small species inhabiting more isolated islands), thermoregulation and endurance during periods of climatic or environmental stress (more pronounced gigantism of small mammals on islands of higher latitudes or on those with colder and more seasonal climates), and resource subsidies (larger body size for mammals that utilize aquatic prey). The results, however, were not consistent with a prediction based on resource limitation and island area; that is, the insular body size of large mammals was not positively correlated with island area. Main conclusions These results support the hypothesis that the body size evolution of insular mammals is influenced by a combination of selective forces whose relative importance and nature of influence are contextual. While there may exist a theoretical optimal body size for mammals in general, the optimum for a particular insular population varies in a predictable manner with characteristics of the islands and the species, and with interactions among species. This study did, however, produce some unanticipated results that merit further study – patterns associated with Bergmann’s rule are amplified on islands, and the body size of small mammals appears to peak at intermediate and not maximum values of latitude and island isolation.  相似文献   

12.
Aim  We examine the effect of island area on body dimensions in a single species of primate endemic to Southeast Asia, the long-tailed macaque ( Macaca fascicularis ). In addition, we test Allen's rule and a within-species or intraspecific equivalent of Bergmann's rule (i.e. Rensch's rule) to evaluate body size and shape evolution in this sample of insular macaques.
Location  The Sunda Shelf islands of Southeast Asia.
Methods  Body size measurements of insular macaques gathered from the literature were analysed relative to island area, latitude, maximum altitude, isolation from the mainland and other islands, and various climatic variables using linear regression.
Results  We found no statistically significant relationship between island area and body length or head length in our sample of insular long-tailed macaques. Tail length correlated negatively with island area. Head length and body length exhibited increases corresponding to increasing latitude, a finding seemingly consistent with the expression of Bergmann's rule within a single species. These variables, however, were not correlated with temperature, indicating that Bergmann's rule is not in effect. Tail length was not correlated with either temperature or increasing latitude, contrary to that predicted by Allen's rule.
Main conclusions  The island rule dictating that body size will covary with island area does not apply to this particular species of primate. Our study is consistent with results presented in the literature by demonstrating that skull and body length in insular long-tailed macaques do not, strictly speaking, conform to Rensch's rule. Unlike previous studies, however, our findings suggest that tail-length variation in insular macaques does not support Allen's rule.  相似文献   

13.

Aim

To assess whether mammalian species introduced onto islands across the globe have evolved to exhibit body size patterns consistent with the ‘island rule,’, and to test an ecological explanation for body size evolution of insular mammals.

Location

Islands worldwide.

Methods

We assembled data on body mass, geographical characteristics (latitude, maximum elevation) and ecological communities (number of mammalian competitors, predators and prey) for 385 introduced populations across 285 islands, comprising 56 species of extant, non‐volant mammals. We used linear regression, ANCOVA and regression tree analyses to test whether introduced populations of mammals exhibit the island rule pattern, whether the degree of body size change increased with time in isolation and whether residual variation about the general trend can be attributed to the geographical and ecological characteristics of the islands.

Results

Introduced populations follow the predicted island rule trend, with body size shifts more pronounced for populations with greater residence times on the islands. Small mammals evolved to larger body sizes in lower latitudes and on islands with limited topographic relief. Consistent with our hypothesis on the ecology of evolution, body size of insular introduced populations was influenced by co‐occurring species of mammalian competitors, predators and prey.

Conclusion

The island rule is a pervasive pattern, exhibited across a broad span of geographical regions, taxa, time periods and, as evidenced here, for introduced as well as native mammals. Time in isolation impacts body size evolution profoundly. Body size shift of introduced mammals was much more pronounced with increasing residence times, yet far less than that exhibited by native, palaeo‐insular mammals (residence times > 10,000 years). Given the antiquity of many species introductions, it appears that much of what we view as the natural character and ecological dynamics of recent insular communities may have been rendered artefacts of ancient colonizations by humans and commensals.  相似文献   

14.
The island rule: made to be broken?   总被引:1,自引:0,他引:1  
The island rule is a hypothesis whereby small mammals evolve larger size on islands while large insular mammals dwarf. The rule is believed to emanate from small mammals growing larger to control more resources and enhance metabolic efficiency, while large mammals evolve smaller size to reduce resource requirements and increase reproductive output. We show that there is no evidence for the existence of the island rule when phylogenetic comparative methods are applied to a large, high-quality dataset. Rather, there are just a few clade-specific patterns: carnivores; heteromyid rodents; and artiodactyls typically evolve smaller size on islands whereas murid rodents usually grow larger. The island rule is probably an artefact of comparing distantly related groups showing clade-specific responses to insularity. Instead of a rule, size evolution on islands is likely to be governed by the biotic and abiotic characteristics of different islands, the biology of the species in question and contingency.  相似文献   

15.
Aim To determine whether an exotic bird species, the great kiskadee (Pitangus sulphuratus), has diverged in morphology from its native source population, and, if so, has done so in a manner predicted by the island rule. The island rule predicts that insular vertebrates will tend towards dwarfism or gigantism when isolated on islands, depending on their body size. For birds, the island rule predicts that species with body sizes below 70–120 g should increase in size. The great kiskadee has a mean mass of c. 60 g in its native range, therefore we predicted that it would increase in size within the exotic, and more insular, Bermudan range. Location The islands of Bermuda (exotic population) and Trinidad (native source population). Methods We took eight morphological measurements on 84 individuals captured in the exotic (Bermudan) population and 62 individuals captured in the native source (Trinidadian) population. We compared morphological metrics between populations using univariate and principal components analyses. We assessed whether the effects of genetic drift could explain observed differences in morphology. We calculated divergence rates in haldanes and darwins for comparison with published examples of contemporary evolution. Finally, we used mark–recapture analysis to determine the effects of the measured morphological characters on survivorship within the exotic Bermudan population. Results Individuals in the exotic Bermudan population have larger morphological dimensions than individuals in the native source population on Trinidad. The degree of divergence in body mass (g) and bill width (mm) is probably not due to genetic drift. This rate of divergence is nearly equal to that observed amongst well‐documented examples of contemporary bird evolution, and is within the mid‐range of rates reported across taxa. There is no clear effect of body size on survivorship as only one character (bill width) was found to have an influence on individual survivorship. Main conclusions Exotic species provide useful systems for examining evolutionary predictions over contemporary time‐scales. We found that divergence between the exotic and native populations of this bird species occurred over c. 17 generations, and was in the direction predicted by the island rule, a principle based on the study of native species.  相似文献   

16.
The island rule is the phenomenon of the miniaturization of large animals and the gigantism of small animals on islands, with mammals providing the classic case studies. Several explanations for this pattern have been suggested, and departures from the predictions of this rule are common among mammals of differing body size, trophic habits, and phylogenetic affinities. Here we offer a new explanation for the evolution of body size of large insular mammals, using evidence from both living and fossil island faunal assemblages. We demonstrate that the extent of dwarfism in ungulates depends on the existence of competitors and, to a lesser extent, on the presence of predators. In contrast, competition and predation have little or no effect on insular carnivore body size, which is influenced by the nature of the resource base. We suggest dwarfism in large herbivores is an outcome of the fitness increase resulting from the acceleration of reproduction in low-mortality environments. Carnivore size is dependent on the abundance and size of their prey. Size evolution of large mammals in different trophic levels has different underlying mechanisms, resulting in different patterns. Absolute body size may be only an indirect predictor of size evolution, with ecological interactions playing a major role.  相似文献   

17.
The island rule refers to the tendency of small vertebrates to become larger when isolated on islands and the frequent dwarfing of large forms. It implies genetic control, and a necessary linkage, of size and body‐mass differences between insular and mainland populations. To examine the island rule, we compared body size and mass of gray jays (Perisoreus canadensis) on Anticosti Island, Québec, located in the Gulf of St. Lawrence, with three mainland populations (2 in Québec and 1 in Ontario). Although gray jays on Anticosti Island were ca 10% heavier, they were not structurally larger, than the three mainland populations. This suggests that Anticosti jays are not necessarily genetically distinct from mainland gray jays and that they may have achieved their greater body masses solely through packing more mass onto mainland‐sized body frames. As such, they may be the first‐known example of a proposed, purely phenotypic initial step in the adherence to the island rule by an insular population. Greater jay body mass is probably advantageous in Anticosti's high‐density, intensely competitive social environment that may have resulted from the island's lack of mammalian nest predators.  相似文献   

18.
The islands of Bocas del Toro, Panama, were sequentially separated from the adjacent mainland by rising sea levels during the past 10,000 years. Three-toed sloths (Bradypus) from five islands are smaller than their mainland counterparts, and the insular populations themselves vary in mean body size. We first examine relationships between body size and physical characteristics of the islands, testing hypotheses regarding optimal body size, evolutionary equilibria, and the presence of dispersal in this system. To do so, we conduct linear regressions of body size onto island area, distance from the mainland, and island age. Second, we retroactively calculate two measures of the evolutionary rate of change in body size (haldanes and darwins) and the standardized linear selection differential, or selection intensity (i). We also test the observed morphological changes against models of evolution by genetic drift. The results indicate that mean body size decreases linearly with island age, explaining up to 97% of the variation among population means. Neither island area nor distance from the mainland is significant in multiple regressions that include island age. Thus, we find no evidence for differential optimal body size among islands, or for dispersal in the system. In contrast, the dependence of body size on island age suggests uniform directional selection for small body size in the insular populations. Although genetic drift cannot be discounted as the cause for this evolution in body size, the probability is small given the consistent direction of evolution (repeated dwarfism). The insular sloths show a sustained rate of evolution similar to those measured in haldanes over tens of generations, appearing to unite micro- and macroevolutionary time scales. Furthermore, the magnitude and rate of this example of rapid differentiation fall within predictions of theoretical models from population genetics. However, the linearity of the relationship between body size and island age is not predicted, suggesting that either more factors are involved than those considered here, or that theoretical advances are necessary to explain constant evolutionary rates over long time spans in new selective environments.  相似文献   

19.
Aim The distinct nature of island populations has traditionally been attributed either to adaptation to particular insular conditions or to random genetic effects. In order to assess the relative importance of these two disparate processes, insular effects were addressed in the European wood mouse, Apodemus sylvaticus (Linnaeus, 1758). Location Wood mice from 33 localities on both mainland and various Atlantic and western Mediterranean islands were considered. This sampling covers only part of the latitudinal range of A. sylvaticus but included the two main genetic clades identified by previous studies. Islands encompass a range of geographical conditions (e.g. small islands fringing the continent through large and isolated ones). Methods The insular syndrome primarily invokes variations in body size, but ecological factors such as release from competition, niche widening and food availability should also influence other characters related to diet. In the present study, the morphology of the wood mice was quantified based on two characters involved in feeding: the size and shape of the mandibles and first upper molars. The size of the mandible is also a proxy for the body size of the animal. Patterns of morphological differentiation of both features were estimated using two‐dimensional outline analysis based on Fourier methods. Results Significant differences between mainland and island populations were observed in most cases for both the mandibles and molars. However, molars and mandibles displayed divergent patterns. Mandible shape diverged mostly on islands of intermediate remoteness and competition levels, whereas molars exhibited the greatest shape differentiation on small islands, such as Port‐Cros and Porquerolles. A mosaic pattern was also displayed for size. Body and mandible size increased on Ibiza, but molar size remained similar to mainland populations. Mosaic patterns were, however, not apparent in the mainland populations. Congruent latitudinal variations were evident for the size and shape of both mandibles and molars. Main conclusions Mosaic evolution appears to characterize insular divergence. The molar seems to be more prone to change with reduced population size on small islands, whereas the mandible could be more sensitive to peculiar environmental conditions on large and remote islands.  相似文献   

20.
The generality of the island rule reexamined   总被引:1,自引:0,他引:1  
Aim  M.V. Lomolino and colleagues have recently reviewed the island rule in mammals and other vertebrates, claiming it is a general pattern. They have portrayed our recent analysis as weakly supporting the island rule, seeing weakness in our use of what they considered to be inadequate size indices (skulls and teeth, rather than mass or body length) and in our use of large islands. They argue that size evolution on islands points to a bauplan-specific fundamental size. We aim to test the generality of the rule and the adequacy of some of the data used to support it.
Location  Insular environments world-wide.
Methods  We collate and analyse data on skull sizes of carnivores and body masses of mammals in general to see whether there is a graded trend from dwarfism in large species to gigantism in smaller ones.
Results  The island rule is not supported with either the carnivore or the mammal data sets. Island area does not influence size change.
Main conclusions  Our results suggest that data recently advanced in support of the island rule are inadequate and that the island rule is not a general pattern for all mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号