首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
It is a well-known phenomenon that islands can support populations of gigantic or dwarf forms of mainland conspecifics, but the variety of explanatory hypotheses for this phenomenon have been difficult to disentangle. The highly venomous Australian tiger snakes (genus Notechis) represent a well-known and extreme example of insular body size variation. They are of special interest because there are multiple populations of dwarfs and giants and the age of the islands and thus the age of the tiger snake populations are known from detailed sea level studies. Most are 5000-7000 years old and all are less than 10,000 years old. Here we discriminate between two competing hypotheses with a molecular phylogeography dataset comprising approximately 4800 bp of mtDNA and demonstrate that populations of island dwarfs and giants have evolved five times independently. In each case the closest relatives of the giant or dwarf populations are mainland tiger snakes, and in four of the five cases, the closest relatives are also the most geographically proximate mainland tiger snakes. Moreover, these body size shifts have evolved extremely rapidly and this is reflected in the genetic divergence between island body size variants and mainland snakes. Within south eastern Australia, where populations of island giants, populations of island dwarfs, and mainland tiger snakes all occur, the maximum genetic divergence is only 0.38%. Dwarf tiger snakes are restricted to prey items that are much smaller than the prey items of mainland tiger snakes and giant tiger snakes are restricted to seasonally available prey items that are up three times larger than the prey items of mainland tiger snakes. We support the hypotheses that these body size shifts are due to strong selection imposed by the size of available prey items, rather than shared evolutionary history, and our results are consistent with the notion that adaptive plasticity also has played an important role in body size shifts. We suggest that plasticity displayed early on in the occupation of these new islands provided the flexibility necessary as the island's available prey items became more depauperate, but once the size range of available prey items was reduced, strong natural selection followed by genetic assimilation worked to optimize snake body size. The rate of body size divergence in haldanes is similar for dwarfs (h(g) = 0.0010) and giants (h(g) = 0.0020-0.0025) and is in line with other studies of rapid evolution. Our data provide strong evidence for rapid and repeated morphological divergence in the wild due to similar selective pressures acting in different directions.  相似文献   

2.
Large mammals are thought to evolve to be smaller on islands, whereas small mammals grow larger. A negative correlation between relative size of island individuals and body mass is termed the "island rule." Several mechanisms--mainly competitive release, resource limitation, dispersal ability, and lighter predation pressure on islands, as well as a general physiological advantage of modal size--have been advanced to explain this pattern. We measured skulls and teeth of terrestrial members of the order Carnivora in order to analyze patterns of body size evolution between insular populations and their near mainland conspecifics. No correlations were found between the size ratios of insular/mainland carnivore species and body mass. Only little support for the island rule is found when individual populations rather than species are considered. Our data are at odds with those advanced in support of theories of optimal body size. Carnivore size is subjected to a host of selective pressures that do not vary uniformly from place to place. Mass alone cannot account for the patterns in body size of insular carnivores.  相似文献   

3.
The tempo and mode of body size evolution on islands are believed to be well known. It is thought that body size evolves relatively quickly on islands toward the mammalian modal value, thus generating extreme cases of size evolution and the island rule. Here, we tested both theories in a phylogenetically explicit context, by using two different species-level mammalian phylogenetic hypotheses limited to sister clades dichotomizing into an exclusively insular and an exclusively mainland daughter nodes. Taken as a whole, mammals were found to show a largely punctuational mode of size evolution. We found that, accounting for this, and regardless of the phylogeny used, size evolution on islands is no faster than on the continents. We compared different selection regimes using a set of Ornstein-Uhlenbeck models to examine the effects of insularity of the mode of evolution. The models strongly supported clade-specific selection regimes. Under this regime, however, an evolutionary model allowing insular species to evolve differently from their mainland relatives performs worse than a model that ignores insularity as a factor. Thus, insular taxa do not experience statistically different selection from their mainland relatives.  相似文献   

4.
In an effort to clarify the evolutionary processes influencing color-pattern variation in Lake Erie island water snake (Nerodia sipedon) populations, rates of gene flow among island and mainland populations were estimated from patterns of allozymic variation detected using electrophoresis. Rates of gene flow were high with Nm, the number of migrants per generation, averaging 25.5 among island sites, 9.2 between the Ontario mainland and the islands, and 3.6 between the Ohio mainland and the islands. Based on estimates of current population size from mark-recapture work and of past population size extrapolated from the extent of shoreline habitat, values of m between island and mainland populations ranged from 0.0008–0.01. Synthesis of estimates of the rate of gene flow with information on inheritance of color pattern, the strength of natural selection, and population history supports the hypothesis that color-pattern variation in island populations results from a balance between gene flow and natural selection. However, depending on the mode of inheritance of color pattern, stochastic processes such as drift may have been important in the initial stages of differentiation between island and mainland populations.  相似文献   

5.
Understanding the factors that contribute to loss of genetic diversity in fragmented populations is crucial for conservation measurements. Land‐bridge archipelagoes offer ideal model systems for identifying the long‐term effects of these factors on genetic variations in wild populations. In this study, we used nine microsatellite markers to quantify genetic diversity and differentiation of 810 pond frogs (Pelophylax nigromaculatus) from 24 islands of the Zhoushan Archipelago and three sites on nearby mainland China and estimated the effects of the island area, population size, time since island isolation, distance to the mainland and distance to the nearest larger island on reduced genetic diversity of insular populations. The mainland populations displayed higher genetic diversity than insular populations. Genetic differentiations and no obvious gene flow were detected among the frog populations on the islands. Hierarchical partitioning analysis showed that only time since island isolation (square‐root‐transformed) and population size (log‐transformed) significantly contributed to insular genetic diversity. These results suggest that decreased genetic diversity and genetic differentiations among insular populations may have been caused by random genetic drift following isolation by rising sea levels during the Holocene. The results provide strong evidence for a relationship between retained genetic diversity and population size and time since island isolation for pond frogs on the islands, consistent with the prediction of the neutral theory for finite populations. Our study highlights the importance of the size and estimated isolation time of populations in understanding the mechanisms of genetic diversity loss and differentiation in fragmented wild populations.  相似文献   

6.
1. Differences in body size between mainland and island populations have been reported for reptiles, birds and mammals. Despite widespread recognition of insular shifts in body size in these taxa, there have been no reports of such body size shifts in amphibians. 2. We provide the first evidence of an insular shift in body size for an amphibian species, the rice frog Rana limnocharis. We found significant increases in body size of rice frogs on most sampled islands in the Zhoushan archipelago when compared with neighbouring mainland China. 3. Large body size in rice frogs on islands was significantly related to increased population density, in both breeding and non-breeding seasons. Increases in rice frog density were significantly related to higher resource availability on islands. Increased resource availability on islands has led to higher carrying capacities, which has subsequently facilitated higher densities and individual growth rates, resulting in larger body size in rice frogs. We also suggest that large body size has evolved on islands, as larger individuals are competitively superior under conditions of harsh intraspecific competition at high densities. 4. Increases in body size in rice frogs were not related to several factors that have been implicated previously in insular shifts in body size in other taxa. We found no significant relationships between body size of rice frogs and prey size, number of larger or smaller frog species, island area or distance of islands from the mainland. 5. Our findings contribute to the formation of a broad, repeatable ecological generality for insular shifts in body size across a range of terrestrial vertebrate taxa, and provide support for recent theoretical work concerning the importance of resource availability for insular shifts in body size.  相似文献   

7.
Aim To determine whether an exotic bird species, the great kiskadee (Pitangus sulphuratus), has diverged in morphology from its native source population, and, if so, has done so in a manner predicted by the island rule. The island rule predicts that insular vertebrates will tend towards dwarfism or gigantism when isolated on islands, depending on their body size. For birds, the island rule predicts that species with body sizes below 70–120 g should increase in size. The great kiskadee has a mean mass of c. 60 g in its native range, therefore we predicted that it would increase in size within the exotic, and more insular, Bermudan range. Location The islands of Bermuda (exotic population) and Trinidad (native source population). Methods We took eight morphological measurements on 84 individuals captured in the exotic (Bermudan) population and 62 individuals captured in the native source (Trinidadian) population. We compared morphological metrics between populations using univariate and principal components analyses. We assessed whether the effects of genetic drift could explain observed differences in morphology. We calculated divergence rates in haldanes and darwins for comparison with published examples of contemporary evolution. Finally, we used mark–recapture analysis to determine the effects of the measured morphological characters on survivorship within the exotic Bermudan population. Results Individuals in the exotic Bermudan population have larger morphological dimensions than individuals in the native source population on Trinidad. The degree of divergence in body mass (g) and bill width (mm) is probably not due to genetic drift. This rate of divergence is nearly equal to that observed amongst well‐documented examples of contemporary bird evolution, and is within the mid‐range of rates reported across taxa. There is no clear effect of body size on survivorship as only one character (bill width) was found to have an influence on individual survivorship. Main conclusions Exotic species provide useful systems for examining evolutionary predictions over contemporary time‐scales. We found that divergence between the exotic and native populations of this bird species occurred over c. 17 generations, and was in the direction predicted by the island rule, a principle based on the study of native species.  相似文献   

8.
Evolutionary theory predicts that in metapopulations subject to rapid extinction–recolonization dynamics, natural selection should favour evolution of traits that enhance dispersal and recolonization ability. Metapopulations of field voles (Microtus agrestis) on islands in the Stockholm archipelago, Sweden, are characterized by frequent local extinction and recolonization of subpopulations. Here, we show that voles on the islands were larger and had longer feet than expected for their body size, compared with voles from the mainland; that body size and size-specific foot length increased with increasing geographical isolation and distance from mainland; and that the differences in body size and size-specific foot length were genetically based. These findings provide rare evidence for relatively recent (less than 1000 years) and rapid (corresponding to 100–250 darwins) evolution of traits facilitating dispersal and recolonization in island metapopulations.  相似文献   

9.

Background

Speckled rattlesnakes (Crotalus mitchellii) inhabit multiple islands off the coast of Baja California, Mexico. Two of the 14 known insular populations have been recognized as subspecies based primarily on body size divergence from putative mainland ancestral populations; however, a survey of body size variation from other islands occupied by these snakes has not been previously reported. We examined body size variation between island and mainland speckled rattlesnakes, and the relationship between body size and various island physical variables among 12 island populations. We also examined relative head size among giant, dwarfed, and mainland speckled rattlesnakes to determine whether allometric differences conformed to predictions of gape size (and indirectly body size) evolving in response to shifts in prey size.

Methodology/Principal Findings

Insular speckled rattlesnakes show considerable variation in body size when compared to mainland source subspecies. In addition to previously known instances of gigantism on Ángel de la Guarda and dwarfism on El Muerto, various degrees of body size decrease have occurred frequently in this taxon, with dwarfed rattlesnakes occurring mostly on small, recently isolated, land-bridge islands. Regression models using the Akaike information criterion (AIC) showed that mean SVL of insular populations was most strongly correlated with island area, suggesting the influence of selection for different body size optima for islands of different size. Allometric differences in head size of giant and dwarf rattlesnakes revealed patterns consistent with shifts to larger and smaller prey, respectively.

Conclusions/Significance

Our data provide the first example of a clear relationship between body size and island area in a squamate reptile species; among vertebrates this pattern has been previously documented in few insular mammals. This finding suggests that selection for body size is influenced by changes in community dynamics that are related to graded differences in area over what are otherwise similar bioclimatic conditions. We hypothesize that in this system shifts to larger prey, episodic saturation and depression of primary prey density, and predator release may have led to insular gigantism, and that shifts to smaller prey and increased reproductive efficiency in the presence of intense intraspecific competition may have led to insular dwarfism.  相似文献   

10.
There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.  相似文献   

11.
Island and mainland populations of animal species often differ strikingly in life-history traits such as clutch size, egg size, total reproductive effort and body size. However, despite widespread recognition of insular shifts in these life-history traits in birds, mammals and reptiles, there have been no reports of such life-history shifts in amphibians. Furthermore, most studies have focused on one specific life-history trait without explicit consideration of coordinated evolution among these intimately linked life-history traits, and thus the relationships among these traits are poorly studied. Here we provide the first evidence of insular shifts and trade-offs in a coordinated suite of life-history traits for an amphibian species, the pond frog Rana nigromaculata . Life-history data were collected from eight islands in the Zhoushan Archipelago and neighboring mainland China. We found consistent, significant shifts in all life-history traits between mainland and island populations. Island populations had smaller clutch sizes, larger egg sizes, larger female body size and invested less in total reproductive effort than mainland populations. Significant negative relationships were found between egg size and clutch size and between egg size and total reproductive effort among frog populations after controlling for the effects of body size. Therefore, decreased reproductive effort and clutch size, larger egg size and body size in pond frogs on islands were selected through trade-offs as an overall life-history strategy. Our findings contribute to the formation of a broad, repeatable ecological generality for insular shifts in life-history traits across a range of terrestrial vertebrate taxa.  相似文献   

12.
Size evolution in island lizards   总被引:2,自引:0,他引:2  
Aim  The island rule, small animal gigantism and large animal dwarfism on islands, is a topic of much recent debate. While size evolution of insular lizards has been widely studied, whether or not they follow the island rule has never been investigated. I examined whether lizards show patterns consistent with the island rule.
Location  Islands worldwide.
Methods  I used literature data on the sizes of island–mainland population pairs in 59 species of lizards, spanning the entire size range of the group, and tested whether small insular lizards are larger than their mainland conspecifics and large insular lizards are smaller. I examined the influence of island area, island isolation, and dietary preferences on lizard size evolution.
Results  Using mean snout–vent length as an index of body size, I found that small lizards on islands become smaller than their mainland conspecifics, while large ones become larger still, opposite to predictions of the island rule. This was especially strong in carnivorous lizards; omnivorous and herbivorous species showed a pattern consistent with the island rule but this result was not statistically significant. No trends consistent with the island rule were found when maximum snout–vent length was used. Island area had, at best, a weak effect on body size. Using maximum snout–vent length as an index of body size resulted in most lizard populations appearing to be dwarfed on islands, but no such pattern was revealed when mean snout–vent length was used as a size index.
Main conclusions  I suggest that lizard body size is mostly influenced by resource availability, with large size allowing some lizard populations to exploit resources that are unavailable on the mainland. Lizards do not follow the island rule. Maximum snout–vent length may be biased by sampling effort, which should be taken into account when one uses this size index.  相似文献   

13.
Bird songs in island populations have often been reported to be simplified, in that island birds have a smaller number of song types and song-element types compared to mainland birds. However, there is less information on the characteristics of acoustic structure in island songs. I investigated song structure of one mainland and three island populations of Japanese bush warblers, Cettia diphone, and found that island songs had an acoustically simple structure. The frequency-modulated (FM) portions of the songs were shorter and had fewer frequency inflections in the insular populations than in the mainland population, while the number of FM notes, the frequency range of these notes, and the song repertoire sizes of males did not differ between the islands and the mainland. I also investigated whether the song complexity is related to sexual selection pressure using the degree of sexual size dimorphism as a proxy for the latter. The degree of dimorphism in body mass was larger on the mainland. Thus, weakened sexual selection on islands is a possible factor in the formation of simple songs. Further studies related to male–male competition and female choice on islands are required.  相似文献   

14.
Island biogeography has provided fundamental hypotheses in population genetics, ecology and evolutionary biology. Insular populations usually face different feeding conditions, predation pressure, intraspecific and interspecific competition than continental populations. This so‐called island syndrome can promote the evolution of specific phenotypes like a small (or large) body size and a light (or dark) colouration as well as influence the evolution of sexual dimorphism. To examine whether insularity leads to phenotypic differentiation in a consistent way in a worldwide‐distributed nonmigratory species, we compared body size, body shape and colouration between insular and continental barn owl (Tyto alba) populations by controlling indirectly for phylogeny. This species is suitable because it varies in pheomelanin‐based colouration from reddish‐brown to white, and it displays eumelanic black spots for which the number and size vary between individuals, populations and species. Females are on average darker pheomelanic and display more and larger eumelanic spots than males. Our results show that on islands barn owls exhibited smaller and fewer eumelanic spots and lighter pheomelanic colouration, and shorter wings than on continents. Sexual dimorphism in pheomelanin‐based colouration was less pronounced on islands than continents (i.e. on islands males tended to be as pheomelanic as females), and on small islands owls were redder pheomelanic and smaller in size than owls living on larger islands. Sexual dimorphism in the size of eumelanic spots was more pronounced (i.e. females displayed much larger spots than males) in barn owls living on islands located further away from a continent. Our study indicates that insular conditions drive the evolution towards a lower degree of eumelanism, smaller body size and affects the evolution of sexual dichromatism in melanin‐based colour traits. The effect of insularity was more pronounced on body size and shape than on melanic traits.  相似文献   

15.
We investigated the evolutionary history of the spotted flycatcher Muscicapa striata, a long distance migratory passerine having a widespread range, using mitochondrial markers and nuclear introns. Our mitochondrial results reveal the existence of one insular lineage restricted to the western Mediterranean islands (Balearics, Corsica, Sardinia) and possibly to the Tyrrhenian coast of Italy that diverged from the mainland lineages around 1 Mya. Mitochondrial genetic distance between insular and mainland lineages is around 3.5%. Limited levels of shared nuclear alleles among insular and mainland populations further support the genetic distinctiveness of insular spotted flycatchers with respect to their mainland counterparts. Moreover, lack of mitochondrial haplotypes sharing between Balearic birds (M. s. balearica) and Corso‐Sardinian birds (M. s. tyrrhenica) suggest the absence of recent matrilineal gene flow between these two insular subspecies. Accordingly, we suggest that insular spotted flycatchers could be treated as one polytypic species (Muscicapa tyrrhenica) that differs from M. striata in morphology, migration, mitochondrial and nuclear DNA and comprises two subspecies (the nominate and M. t. balearica) that diverged recently phenotypically and in mitochondrial DNA and but still share the same nuclear alleles. This study provides an interesting case‐study illustrating the crucial role of western Mediterranean islands in the evolution of a passerine showing high dispersal capabilities. Our genetic results highlight the role of glacial refugia of these islands that allowed initial allopatric divergence of insular populations. We hypothesize that differences in migratory and breeding phenology may prevent any current gene flow between insular and mainland populations of the spotted flycatcher that temporarily share the same insular habitats during the spring migration.  相似文献   

16.
Aim The distinct nature of island populations has traditionally been attributed either to adaptation to particular insular conditions or to random genetic effects. In order to assess the relative importance of these two disparate processes, insular effects were addressed in the European wood mouse, Apodemus sylvaticus (Linnaeus, 1758). Location Wood mice from 33 localities on both mainland and various Atlantic and western Mediterranean islands were considered. This sampling covers only part of the latitudinal range of A. sylvaticus but included the two main genetic clades identified by previous studies. Islands encompass a range of geographical conditions (e.g. small islands fringing the continent through large and isolated ones). Methods The insular syndrome primarily invokes variations in body size, but ecological factors such as release from competition, niche widening and food availability should also influence other characters related to diet. In the present study, the morphology of the wood mice was quantified based on two characters involved in feeding: the size and shape of the mandibles and first upper molars. The size of the mandible is also a proxy for the body size of the animal. Patterns of morphological differentiation of both features were estimated using two‐dimensional outline analysis based on Fourier methods. Results Significant differences between mainland and island populations were observed in most cases for both the mandibles and molars. However, molars and mandibles displayed divergent patterns. Mandible shape diverged mostly on islands of intermediate remoteness and competition levels, whereas molars exhibited the greatest shape differentiation on small islands, such as Port‐Cros and Porquerolles. A mosaic pattern was also displayed for size. Body and mandible size increased on Ibiza, but molar size remained similar to mainland populations. Mosaic patterns were, however, not apparent in the mainland populations. Congruent latitudinal variations were evident for the size and shape of both mandibles and molars. Main conclusions Mosaic evolution appears to characterize insular divergence. The molar seems to be more prone to change with reduced population size on small islands, whereas the mandible could be more sensitive to peculiar environmental conditions on large and remote islands.  相似文献   

17.
The niche variation hypothesis predicts insular populations exhibit increased sexual size dimorphism (SSD), to minimize intraspecific competition. Although many animal taxa conform to this prediction, insular patterns of SSD have yet to be investigated in plants. Here, we tested for differences in SSD of dioecious plants that colonised four island groups (Kermadec, Three Kings, Chatham and Auckland Islands) from New Zealand. Using herbarium collections, we quantified leaf and stem sizes of 263 individuals from 28 dioecious taxa. We developed a novel analytical technique to explore changes in the direction of SSD on islands. Lastly, we tested for evolutionary size changes of male and female plants on islands. The degree of SSD did not vary predictably between insular and mainland taxa, contrary to predictions of the niche variation hypothesis. Furthermore, the direction of SSD was not predictable on islands, while it was consistently female biased on the mainland. Our results suggest that selection favours increased size of both sexes on islands and that SSD is unpredictable for insular plants.  相似文献   

18.
The evolution of striking phenotypes on islands is a well‐known phenomenon, and there has been a long‐standing debate on the patterns of body size evolution on islands. The ecological causes driving divergence in insular populations are, however, poorly understood. Reduced predator fauna is expected to lower escape propensity, increase body size and relax selection for crypsis in small‐bodied, insular prey species. Here, we investigated whether escape behaviour, body size and dorsal coloration have diverged as predicted under predation release in spatially replicated islet and mainland populations of the lizard species Podarcis gaigeae. We show that islet lizards escape approaching observers at shorter distances and are larger than mainland lizards. Additionally, we found evidence for larger between‐population variation in body size among the islet populations than mainland populations. Moreover, islet populations are significantly more divergent in dorsal coloration and match their respective habitats poorer than mainland lizards. These results strongly suggest that predation release on islets has driven population divergence in phenotypic and behavioural traits and that selective release has affected both trait means and variances. Relaxed predation pressure is therefore likely to be one of the major ecological factors driving body size divergence on these islands.  相似文献   

19.
Island populations have long been important for understanding the dynamics and mechanisms of evolution in natural systems. While genetic drift is often strong on islands due to founder events and population bottlenecks, the strength of selection can also be strong enough to counteract the effects of drift. Here, we used several analyses to identify the roles of genetic drift and selection on genetic differentiation and diversity of Canada lynx (Lynx canadensis) across eastern Canada, including the islands of Cape Breton and Newfoundland. Specifically, we assessed whether we could identify a genetic component to the observed morphological differentiation that has been reported across insular and mainland lynx. We used a dinucleotide repeat within the promoter region of a functional gene that has been linked to mammalian body size, insulin‐like growth factor‐1 (IGF‐1). We found high genetic differentiation at neutral molecular markers but convergence of allele frequencies at the IGF‐1 locus. Thus, we showed that while genetic drift has influenced the observed genetic structure of lynx at neutral molecular markers, natural selection has also played a role in the observed patterns of genetic diversity at the IGF‐1 locus of insular lynx.  相似文献   

20.
Many oceanic islands harbor diverse species that differ markedly from their mainland relatives with respect to morphology, behavior, and physiology. A particularly common morphological change exhibited by a wide range of species on islands worldwide involves either a reduction in body size, termed island dwarfism, or an increase in body size, termed island gigantism. While numerous instances of dwarfism and gigantism have been well documented, documentation of other morphological changes on islands remains limited. Furthermore, we lack a basic understanding of the physiological mechanisms that underlie these changes, and whether they are convergent. A major hypothesis for the repeated evolution of dwarfism posits selection for smaller, more efficient body sizes in the context of low resource availability. Under this hypothesis, we would expect the physiological mechanisms known to be downregulated in model organisms exhibiting small body sizes due to dietary restriction or artificial selection would also be downregulated in wild species exhibiting dwarfism on islands. We measured body size, relative head size, and circulating blood glucose in three species of reptiles—two snakes and one lizard—in the California Channel Islands relative to mainland populations. Collating data from 6 years of study, we found that relative to mainland population the island populations had smaller body size (i.e., island dwarfism), smaller head sizes relative to body size, and lower levels of blood glucose, although with some variation by sex and year. These findings suggest that the island populations of these three species have independently evolved convergent physiological changes (lower glucose set point) corresponding to convergent changes in morphology that are consistent with a scenario of reduced resource availability and/or changes in prey size on the islands. This provides a powerful system to further investigate ecological, physiological, and genetic variables to elucidate the mechanisms underlying convergent changes in life history on islands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号