首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 21 毫秒
1.
There is increasing evidence that exotic populations may rapidly differentiate from those in their native range and that differences also arise among populations within the exotic range. Using morphological and DNA‐based analyses, we document the extent of trait divergence among native North American and exotic Hawaiian populations of northern cardinal (Cardinalis cardinalis). Furthermore, using a combination of historical records and DNA‐based analyses, we evaluate the role of founder effects in producing observed trait differences. We measured and compared key morphological traits across northern cardinal populations in the native and exotic ranges to assess whether trait divergence across the Hawaiian Islands, where this species was introduced between 1929 and 1931, reflected observed variation across native phylogeographic clades in its native North America. We used and added to prior phylogenetic analyses based on a mitochondrial locus to identify the most likely native source clade(s) for the Hawaiian cardinal populations. We then used Approximate Bayesian Computation (ABC) to evaluate the role of founder effects in producing the observed differences in body size and bill morphology across native and exotic populations. We found cardinal populations on the Hawaiian Islands had morphological traits that diverged substantially across islands and overlapped the trait space of all measured native North American clades. The phylogeographic analysis identified the eastern North American clade (C. cardinalis cardinalis) as the most likely and sole native source for all the Hawaiian cardinal populations. The ABC analyses supported written accounts of the cardinal's introduction that indicate the original 300 cardinals shipped to Hawaii were simultaneously and evenly released across Hawaii, Kauai, and Oahu. Populations on each island likely experienced bottlenecks followed by expansion, with cardinals from the island of Hawaii eventually colonizing Maui unaided. Overall, our results suggest that founder effects had limited impact on morphological trait divergence of exotic cardinal populations in the Hawaiian archipelago, which instead reflect postintroduction events.  相似文献   

2.
Aim Island taxa often attain forms outside the range achieved by mainland relatives. Body size evolution of vertebrates on islands has therefore received much attention, with two seemingly conflicting patterns thought to prevail: (1) islands harbour animals of extreme size, and (2) islands promote evolution towards medium body size (‘the island rule’). We test both hypotheses using body size distributions of mammal, lizard and bird species. Location World‐wide. Methods We assembled body size and insularity datasets for the world’s lizards, birds and mammals. We compared the frequencies with which the largest or smallest member of a group is insular with the frequencies expected if insularity is randomly assigned within groups. We tested whether size extremes on islands considered across mammalian phylogeny depart from a null expectation under a Brownian motion model. We tested the island rule by comparing insular and mainland members of (1) a taxonomic level and (2) mammalian sister species, to determine if large insular animals tend to evolve smaller body sizes while small ones evolve larger sizes. Results The smallest species in a taxon (order, family or genus) are insular no more often than would be expected by chance in all groups. The largest species within lizard families and bird genera (but no other taxonomic levels) are insular more often than expected. The incidence of extreme sizes in insular mammals never departs from the null, except among extant genera, where gigantism is marginally less common than expected under a Brownian motion null. Mammals follow the island rule at the genus level and when comparing sister species and clades. This appears to be driven mainly by insular dwarfing in large‐bodied lineages. A similar pattern in birds is apparent for species within orders. However, lizards follow the converse pattern. Main conclusions The popular misconception that islands have more than their fair share of size extremes may stem from a greater tendency to notice gigantism and dwarfism when they occur on islands. There is compelling evidence for insular dwarfing in large mammals, but not in other taxa, and little evidence for the second component of the island rule – gigantism in small‐bodied taxa.  相似文献   

3.
Species that have been introduced to islands experience novel and strong selection pressures after establishment. There is evidence that exotic species diverge from their native source populations; further, a few studies have demonstrated adaptive divergence across multiple exotic populations of a single species. Exotic birds provide a good study system, as they have been introduced to many locations worldwide, and we often know details concerning the propagule origin, time of introduction, and dynamics of establishment and dispersal within the introduced range. These data make them especially conducive to the examination of contemporary evolution. Island faunas have received intense scrutiny, therefore we have expectations concerning the patterns of diversification for exotic species. We examine six passerine bird species that were introduced to the Hawaiian archipelago less than 150 years ago. We find that five of these show morphological divergence among islands from the time since they were established. We demonstrate that some of this divergence cannot be accounted for by genetic drift, and therefore we must consider adaptive evolution to explain it. We also evaluate evolutionary divergence rates and find that these species are diverging at similar rates to those found in published studies of contemporary evolution in native species.  相似文献   

4.
Species invasions and exotic species introductions can be considered as ??unplanned experiments??, which help us to understand the evolution of organisms. In this study, we investigated whether an exotic bird species, the dunnock (Prunella modularis), has diverged genetically and morphologically from its native source population (Cambridge, England) after introduction into a new environment (Dunedin, South Island of New Zealand; exotic population). We used a set of microsatellite markers and three morphological traits to quantify the divergence between these two populations. We quantified neutral genotypic differentiation between the populations, and also used an individual-based Bayesian clustering method to assess genetic structure. We compared morphological divergence using univariate and principal components analyses. We found that individuals from the Dunedin population are genetically distinct from the Cambridge population, but levels of differentiation are very low. Overall within-population levels of genetic diversity are low compared to other bird species, and effective population sizes are small; indicating that the native population probably has a historically low level of genetic diversity, and that the introduced population retained most of that diversity after its introduction into New Zealand. We found little evidence of morphological divergence, and the evolutionary rate of change in these traits is below the average for other taxa. Our study adds support to the growing literature showing that invasive species maintain most of their initial genetic diversity after multiple founder events, even when population size is severely reduced. Moreover, our morphological data indicate slow evolutionary rates in species introduced to similar habitats.  相似文献   

5.
Size evolution in island lizards   总被引:2,自引:0,他引:2  
Aim  The island rule, small animal gigantism and large animal dwarfism on islands, is a topic of much recent debate. While size evolution of insular lizards has been widely studied, whether or not they follow the island rule has never been investigated. I examined whether lizards show patterns consistent with the island rule.
Location  Islands worldwide.
Methods  I used literature data on the sizes of island–mainland population pairs in 59 species of lizards, spanning the entire size range of the group, and tested whether small insular lizards are larger than their mainland conspecifics and large insular lizards are smaller. I examined the influence of island area, island isolation, and dietary preferences on lizard size evolution.
Results  Using mean snout–vent length as an index of body size, I found that small lizards on islands become smaller than their mainland conspecifics, while large ones become larger still, opposite to predictions of the island rule. This was especially strong in carnivorous lizards; omnivorous and herbivorous species showed a pattern consistent with the island rule but this result was not statistically significant. No trends consistent with the island rule were found when maximum snout–vent length was used. Island area had, at best, a weak effect on body size. Using maximum snout–vent length as an index of body size resulted in most lizard populations appearing to be dwarfed on islands, but no such pattern was revealed when mean snout–vent length was used as a size index.
Main conclusions  I suggest that lizard body size is mostly influenced by resource availability, with large size allowing some lizard populations to exploit resources that are unavailable on the mainland. Lizards do not follow the island rule. Maximum snout–vent length may be biased by sampling effort, which should be taken into account when one uses this size index.  相似文献   

6.
The island biogeography of exotic bird species   总被引:1,自引:0,他引:1  
Aim   A recent upsurge of interest in the island biogeography of exotic species has followed from the argument that they may provide valuable information on the natural processes structuring island biotas. Here, we use data on the occurrence of exotic bird species across oceanic islands worldwide to demonstrate an alternative and previously untested hypothesis that these distributional patterns are a simple consequence of where humans have released such species, and hence of the number of species released.
Location   Islands around the world.
Methods   Statistical analysis of published information on the numbers of exotic bird species introduced to, and established on, islands around the world.
Results   Established exotic birds showed very similar species–area relationships to native species, but different species–isolation relationships. However, in both cases the relationship for established exotics simply mimicked that for the number of exotic bird species introduced. Exotic bird introductions scaled positively with human population size and island isolation, and islands that had seen more native species extinctions had had more exotic species released.
Main conclusion   The island biogeography of exotic birds is primarily a consequence of human, rather than natural, processes.  相似文献   

7.

Aim

To assess whether mammalian species introduced onto islands across the globe have evolved to exhibit body size patterns consistent with the ‘island rule,’, and to test an ecological explanation for body size evolution of insular mammals.

Location

Islands worldwide.

Methods

We assembled data on body mass, geographical characteristics (latitude, maximum elevation) and ecological communities (number of mammalian competitors, predators and prey) for 385 introduced populations across 285 islands, comprising 56 species of extant, non‐volant mammals. We used linear regression, ANCOVA and regression tree analyses to test whether introduced populations of mammals exhibit the island rule pattern, whether the degree of body size change increased with time in isolation and whether residual variation about the general trend can be attributed to the geographical and ecological characteristics of the islands.

Results

Introduced populations follow the predicted island rule trend, with body size shifts more pronounced for populations with greater residence times on the islands. Small mammals evolved to larger body sizes in lower latitudes and on islands with limited topographic relief. Consistent with our hypothesis on the ecology of evolution, body size of insular introduced populations was influenced by co‐occurring species of mammalian competitors, predators and prey.

Conclusion

The island rule is a pervasive pattern, exhibited across a broad span of geographical regions, taxa, time periods and, as evidenced here, for introduced as well as native mammals. Time in isolation impacts body size evolution profoundly. Body size shift of introduced mammals was much more pronounced with increasing residence times, yet far less than that exhibited by native, palaeo‐insular mammals (residence times > 10,000 years). Given the antiquity of many species introductions, it appears that much of what we view as the natural character and ecological dynamics of recent insular communities may have been rendered artefacts of ancient colonizations by humans and commensals.  相似文献   

8.
Rapid evolution of a polyphenic threshold   总被引:1,自引:0,他引:1  
Polyphenisms are thought to play an important role in the evolution of phenotypic diversity and the origin of morphological and behavioral novelties. However, the extent to which polyphenic developmental mechanisms evolve in natural populations is unknown. Here we contrast patterns of male phenotype expression in native and exotic and ancestral and descendant populations of the horn polyphenic beetle, Onthophagus taurus. Males in this species express two alternative morphologies in response to larval feeding conditions. Favorable conditions cause males to grow larger than a threshold body size and to develop a pair of horns on their heads. Males that encounter relatively poor conditions do not reach this threshold size and remain hornless. We show that exotic and native populations of O. taurus differ significantly in the body size threshold that separates alternative male phenotypes. Comparison with archival museum collections and additional samples obtained from the native range of O. taurus suggests that allometric differences between exotic and native populations do not reflect preexisting variation in the native range of this species. Instead, our data suggest that threshold divergences between exotic and native populations have evolved in less than 40 years since the introduction to a new habitat and have proceeded in opposite directions in two exotic ranges of this species. Finally, we show that the kind and magnitude of threshold divergence between native and exotic populations are similar to differences normally observed between species. Our results support the view that certain components of the developmental control mechanism that underlie polyphenic development can evolve rapidly in natural populations and may provide important avenues for phenotypic differentiation and diversification in nature. We discuss the role of developmental control mechanisms in the origin of allometric diversification and explore potential evolutionary mechanisms that could drive scaling relationship evolution in nature.  相似文献   

9.
Body size evolution in insular vertebrates: generality of the island rule   总被引:8,自引:1,他引:7  
Aim My goals here are to (1) assess the generality of the island rule – the graded trend from gigantism in small species to dwarfism in larger species – for mammals and other terrestrial vertebrates on islands and island‐like ecosystems; (2) explore some related patterns of body size variation in insular vertebrates, in particular variation in body size as a function of island area and isolation; (3) offer causal explanations for these patterns; and (4) identify promising areas for future studies on body size evolution in insular vertebrates. Location Oceanic and near‐shore archipelagos, and island‐like ecosystems world‐wide. Methods Body size measurements of insular vertebrates (non‐volant mammals, bats, birds, snakes and turtles) were obtained from the literature, and then regression analyses were conducted to test whether body size of insular populations varies as a function of body size of the species on the mainland (the island rule) and with characteristics of the islands (i.e. island isolation and area). Results The island rule appears to be a general phenomenon both with mammalian orders (and to some degree within families and particular subfamilies) as well as across the species groups studied, including non‐volant mammals, bats, passerine birds, snakes and turtles. In addition, body size of numerous species in these classes of vertebrates varies significantly with island isolation and island area. Main conclusions The patterns observed here – the island rule and the tendency for body size among populations of particular species to vary with characteristics of the islands – are actually distinct and scale‐dependent phenomena. Patterns within archipelagos reflect the influence of island isolation and area on selective pressures (immigration filters, resource limitation, and intra‐ and interspecific interactions) within particular species. These patterns contribute to variation about the general trend referred to as the island rule, not the signal for that more general, large‐scale pattern. The island rule itself is an emergent pattern resulting from a combination of selective forces whose importance and influence on insular populations vary in a predictable manner along a gradient from relatively small to large species. As a result, body size of insular species tends to converge on a size that is optimal, or fundamental, for a particular bau plan and ecological strategy.  相似文献   

10.
Novel ecosystems have become widespread created, in part, by the global spread of species. The nonnative species in these environments can be under intense evolutionary pressures that cause rapid morphological change, which can then influence species interactions. In Hawaii, much of the native frugivore community is extinct, replaced by nonnative bird species. Here, we determined if the passerine species of the nonnative frugivore community on O'ahu have morphologically diverged from their native ranges. We compared a variety of traits, all important for frugivory, between museum specimens from the species’ native ranges to wild individuals from O'ahu. All four species tested exhibited significant divergence ranging in magnitude from 2.3% to 13.0% difference in at least two traits. Using a method developed from quantitative genetics, we found evidence that a mixture of nonadaptive and adaptive processes worked in concert to create the observed patterns of divergence. Our results suggest that rapid morphological change is occurring and, based on the traits measured, that these changes may influence seed dispersal effectiveness. As these species are largely responsible for seed dispersal on the island, the rapid morphological change of these species can influence the stability and maintenance of plant communities on O'ahu.  相似文献   

11.
Well-studied model systems present ideal opportunities to understand the relative roles of contemporary selection versus historical processes in determining population differentiation and speciation. Although guppy populations in Trinidad have been a model for studies of evolutionary ecology and sexual selection for more than 50 years, this work has been conducted with little understanding of the phylogenetic history of this species. We used variation in nuclear (X-src) and mitochondrial DNA (mtDNA) sequences to examine the phylogeographic history of Poecilia reticulata Peters (the guppy) across its entire natural range, and to test whether patterns of morphological divergence are a consequence of parallel evolution. Phylogenetic, nested clade, population genetic, and demographic analyses were conducted to investigate patterns of genetic structure at several temporal scales and are discussed in relation to vicariant events, such as tectonic activity and glacial cycles, shaping northeast South American river drainages. The mtDNA phylogeny defined five major lineages, each associated with one or more river drainages, and analysis of molecular variance also detected geographic structuring among these river drainages in an evolutionarily conserved nuclear (X-src) locus. Nested clade and other demographic analyses suggest that the eastern Venezuela/ western Trinidad region is likely the center of origin of P. reticulata. Mantel tests show that the divergence of morphological characters, known to differentiate on a local scale in response to natural and sexual selection pressures, is not associated with mtDNA genetic distance; however, TreeScan analysis identified several significant associations of these characters with the haplotype tree. Parallel upstream/downstream patterns of morphological adaptation in response to selection pressures reported in P. reticulata within Trinidad rivers appears to persist across the natural range. Our results together with previous studies suggest that, although morphological variation in P. reticulata is primarily attributed to selection, phylogeographic history may also play a role.  相似文献   

12.
Marmota vancouverensis is the only insular species among the 14 species of marmots. The evolutionary history of this species is unresolved. Although M. vancouverensis is strongly differentiated in osteological and other morphological characters, its low genetic divergence suggests recent evolution from an ancestral continental species. We used geometric morphometric techniques to assess the morphology of hemimandibles from 239 modern M. vancouverensis , Marmota caligata , Marmota flaviventris , Marmota olympus and 30 Holocene (9435–735 cal. yr bp) subfossil M. vancouverensis . Our results confirm that the mandible of M. vancouverensis is strongly differentiated in shape from continental marmot species, but similar in size to its mainland sister species M. caligata . Temporal variation in size and shape over the past 2500 years among allochronic samples of M. vancouverensis was minimal suggesting that the morphological divergence of this species occurred in a period of rapid change following its isolation from mainland populations in the late Pleistocene. Selection pressures associated with environmental changes and founder effects and genetic drift resulting from population bottlenecks created by population declines and habitat fragmentation are hypothesized as factors contributing to the morphological divergence of this species.  相似文献   

13.
We studied the pattern of bird species richness in native and exotic forest patches in Hungary. We hypothesized that species-area relationship will depend on forest naturalness, and on the habitat specialization of bird species. Therefore, we expected strong species-area relationship in native forest patches and forest bird species, and weaker relationship in exotic forest patches containing generalist species. We censused breeding passerine bird communities three times in 13 forest patches with only native tree species, and 14 with only exotic trees in Eastern Hungary in 2003. Although most bird species (92%) of the total of 41 species occurred in both exotic and native forests, the species-area relationship was significant for forest specialist, but not for generalist species in the native forests. No relationship between bird species and area was found for either species group in the forest with exotic tree species. The comparison of native versus exotic forest patches of similar sizes revealed that only large (>100 ha) native forests harbor higher bird species richness than exotic forests for the forest specialist bird species. There is no difference between small and medium forest patches and in richness of generalist species. Thus, the species-area relationship may diminish in archipelago of exotic habitat patches and/or for habitat generalist species; this result supports the warning that the extension of exotic habitats have been significantly contributing to the decline of natural community patterns.  相似文献   

14.
There are a number of ecogeographical “rules” that describe patterns of geographical variation among organisms. The island rule predicts that populations of larger mammals on islands evolve smaller mean body size than their mainland counterparts, whereas smaller‐bodied mammals evolve larger size. Bergmann's rule predicts that populations of a species in colder climates (generally at higher latitudes) have larger mean body sizes than conspecifics in warmer climates (at lower latitudes). These two rules are rarely tested together and neither has been rigorously tested in treeshrews, a clade of small‐bodied mammals in their own order (Scandentia) broadly distributed in mainland Southeast Asia and on islands throughout much of the Sunda Shelf. The common treeshrew, Tupaia glis, is an excellent candidate for study and was used to test these two rules simultaneously for the first time in treeshrews. This species is distributed on the Malay Peninsula and several offshore islands east, west, and south of the mainland. Using craniodental dimensions as a proxy for body size, we investigated how island size, distance from the mainland, and maximum sea depth between the mainland and the islands relate to body size of 13 insular T. glis populations while also controlling for latitude and correlation among variables. We found a strong negative effect of latitude on body size in the common treeshrew, indicating the inverse of Bergmann's rule. We did not detect any overall difference in body size between the island and mainland populations. However, there was an effect of island area and maximum sea depth on body size among island populations. Although there is a strong latitudinal effect on body size, neither Bergmann's rule nor the island rule applies to the common treeshrew. The results of our analyses demonstrate the necessity of assessing multiple variables simultaneously in studies of ecogeographical rules.  相似文献   

15.
Oceanic islands are good model systems with which to explore factors affecting exotic species diversity. Islands vary in size, topography, substrate type, degree of isolation, native species diversity, history, human population characteristics, and economic development. Moreover, islands are highly vulnerable to exotic species establishment. We used AICc analyses of data on 1132 vascular plant species for 15 countries and 114 islands from the Pacific Island Ecosystems at Risk (PIER) project to examine biological, geographical, and socioeconomic correlates of exotic species richness. PIER provides data on the distribution of naturalized non-native plant species thought to pose environmental or economic risk. We hypothesized that the numbers of PIER-listed species would be positively correlated with island size, habitat diversity, and proximity to major source pools for propagules. Further, we expected numbers of PIER-listed exotic species to be similar among islands in the same country and to be greater where human populations were larger and where economic activity was high. Most species (908) were found on ≤ 10 islands. Species number was significantly correlated with island and country areas and with native plant species richness. The strongest model revealed by AICc analyses of island data included log (area) and maximum elevation as well as country membership, substrate type, and presence of an airport with paved runway (an index of economic activity). By country, AICc analyses revealed two equivalent models, both of which included log (area) and per capita gross domestic product as well as a measure of population size (either log (population size) or (population density)). Our analyses provide strong evidence of the roles of biogeographic, environmental, and socioeconomic impacts on the distribution and spread of exotic species.  相似文献   

16.
Aim Negative relationships between body mass and substitution rates have previously been reported. However, most of these studies have involved contrasted taxa that, due to their highly divergent phylogenetic histories, also differ in many additional characteristics other than mass. In particular, there has been little examination of the potentially confounding effects of climate or population size. Here we test for differences in rates of microevolution among bird species that, although differing in mass, are nonetheless very closely related phylogenetic pairs. We additionally tested for latitudinal/elevational and population size effects across these contrasts. Location Global. Methods The tempo of microevolution within the cytochrome b gene of mitochondrial DNA was compared between closely related bird species that differed in body mass, using 130 phylogenetically independent species pairs. In order to minimize climate effects, pairs not having overlapping latitudinal ranges were discarded. In addition, a subset of pairs was identified and analysed that involved comparisons between species that have different latitudinal or elevational midpoints. Results Species with smaller mass had substitution rates marginally faster than those with larger mass (small : large median ratio = 1.05). However, this result was only statistically significant when data were pruned to eliminate comparisons in which population or range size also varied substantially between contrasted species. Latitude and elevation had a much stronger association with substitution rates than body mass within the subset of pairs (n = 30) that also differed in their spatial distributions: lower elevation or latitude species had substantially more substitutions than those at higher latitudes or elevations (low : high ratio = 1.35). Furthermore, when the dataset was pruned of pairs in which body mass was confounded by latitude or elevation, the body mass effect was eliminated. Main conclusions Body mass is known to correlate with latitude, so that the latitudinal/elevational association with microevolution we found might either be additive to, or causal of, the body mass effect. These results are consistent with the evolutionary speed hypothesis, which suggests that latitudinal diversity gradients derive from variation in the rate of microevolution. Our findings also serve to raise concerns about biogeographical studies that use genetic distances between taxa to estimate time since divergence.  相似文献   

17.
Adaptation to new environments is a key feature in evolution promoting divergence in morphological structures under selection. The house mouse (Mus musculus domesticus) introduced on the Sub‐Antarctic Guillou Island (Kerguelen Archipelago) had and still has to face environmental conditions that likely shaped the pattern and pace of its insular evolution. Since mouse arrival on the island, probably not more than two centuries ago, ecological conditions dramatically differed from those available to their Western European commensal source populations. In addition, over the last two decades, the plant and animal communities of Guillou Island were considerably modified by the eradication of rabbits, the effects of climate change and the spread of invasive species detrimental to native communities. Under such a changing habitat, the mouse response was investigated using a morphometric quantification of mandible and molar tooth, two morphological structures related to food processing. A marked differentiation of the insular mice compared with their relatives from Western Europe was documented for both mandibles and molar shapes. Moreover, these shapes changed through the 16 years of the record, in agreement with expectations of drift for the molar, but more than expected by chance for the mandible. These results suggest that mice responded to the recent changes in food resources, possibly with a part of plastic variation for the mandible prone to bone remodelling. This pattern exemplifies the intricate interplay of evolution, ecology and plasticity that is a probable key of the success of such an invasive rodent facing pronounced shifts in food resources exploitation under a changing environment.  相似文献   

18.
Morphological characteristics reflect geographical variation resulting from adaptation to varying environmental conditions. Carnivore species distributed over a wide geographical range generally have highly polymorphic morphological variation. The raccoon dog (Nyctereutes procyonoides) has a longitudinal distribution restricted to East Asia and the northern Indochina Peninsula. Its unique geographical range makes it an appropriate model to examine how morphological differences are influenced by geography. To demonstrate morphological evolution of Russian, Chinese, Korean and Japanese raccoon dogs predicted by geographical differences, we tested the island rule and Bergmann's rule. We compared craniodental variation among populations and examined morphological implications for intraspecific taxonomic status. Insular raccoon dogs possessed substantially smaller body size than those from the mainland. Moreover, different island effects among Japanese islands were demonstrated by markedly larger occipital condyle breath in the Hokkaido population. Larger skull size in Russian and Hokkaido raccoon dogs could be explained by Bergmann's rule. Based on previous chromosomal and molecular studies and results of our morphological analyses, we suggest Japanese raccoon dogs are a distinct species from the mainland N. procyonoides.  相似文献   

19.
Some of the most important insights into the ecological and evolutionary processes of diversification and speciation have come from studies of island adaptive radiations, yet relatively little research has examined how these radiations initiate. We suggest that Anolis sagrei is a candidate for understanding the origins of the Caribbean Anolis adaptive radiation and how a colonizing anole species begins to undergo allopatric diversification, phenotypic divergence and, potentially, speciation. We undertook a genomic and morphological analysis of representative populations across the entire native range of A. sagrei, finding that the species originated in the early Pliocene, with the deepest divergence occurring between western and eastern Cuba. Lineages from these two regions subsequently colonized the northern Caribbean. We find that at the broadest scale, populations colonizing areas with fewer closely related competitors tend to evolve larger body size and more lamellae on their toepads. This trend follows expectations for post‐colonization divergence from progenitors and convergence in allopatry, whereby populations freed from competition with close relatives evolve towards common morphological and ecological optima. Taken together, our results show a complex history of ancient and recent Cuban diaspora with populations on competitor‐poor islands evolving away from their ancestral Cuban populations regardless of their phylogenetic relationships, thus providing insight into the original diversification of colonist anoles at the beginning of the radiation. Our research also supplies an evolutionary framework for the many studies of this increasingly important species in ecological and evolutionary research.  相似文献   

20.
Aim The Mediterranean Basin is a centre of radiation for numerous species groups. To increase our understanding of the mechanisms underlying speciation and radiation events in this region, we assessed the phenotypic variability within the Pipistrellus pipistrellus–pygmaeus–hanaki species complex. Although bats form the second largest mammalian order, studies of insular evolution in this group are scarce. We approached this problem from a microevolutionary perspective and tested for the recurrence of the insular syndrome. Location The Mediterranean Basin, with a special focus on isolated populations from Corsica, the Maghreb, Cyprus, Cyrenaica and Crete. Methods Phenotypic variability was assessed by cranial morphometrics using the coordinates of 41 3D landmarks and associated geometric‐morphometric methods. We analysed 125 specimens representing all of the lineages in the species complex. Differences between taxa and between insular and continental populations in cranial size, shape, form and allometries were tested using analyses of variance and visualized using boxplots and canonical variate analysis. Relationships between molecular data from a previous study (cytochrome b sequences) and morphometric data were tested with co‐inertia analyses (RV test) and multivariate regressions. Results The three species were relatively well differentiated in cranial size and shape, and each species showed a significant amount of inter‐population variability. Comparisons of pairs of insular versus continental populations revealed heterogeneities in cranial patterns among island phenotypes, suggesting no recurrent insular syndrome. Molecular and phenotypic traits were correlated, except for molecular and lateral cranium shape. Main conclusions The Pipistrellus pipistrellus pygmaeus hanaki species complex exhibits phenotypic variability as a result of the fragmentation of its distribution (especially on islands), its phylogenetic and phylogeographic history and, most probably, other evolutionary factors that were not investigated in this study. We found no recurrent pattern of evolution on islands, indicating that site‐specific factors play a prevailing role on Mediterranean islands. The correlation between molecular and phenotypic data is incomplete, suggesting that factors other than phylogenetic relationships, potentially connected with feeding ecology, have played a role in shaping cranial morphology in this species complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号