首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
2.
3.
The in vitro translated products of several c-erbA cDNAs have recently been shown to bind thyroid hormones with high affinity and have been termed thyroid hormone receptors. We have used a panel of five erbA-related antibodies to probe the relationship between c-erbA translated products and thyroid hormone receptors, as conventionally measured by 125I-T3 labeling of nuclear extracts. All five antibodies immunoprecipitated the chick c-erbA translated products, but only one of them recognized chick liver and brain T3 receptor, as judged by acceleration of sedimentation through sucrose gradients. None of the antibodies reacted with rat liver and brain or human liver T3 receptors, although one antibody did immunoprecipitate a human c-erbA translated product. We conclude that the T3 receptor, as conventionally measured from these sources, is related but not identical to recently cloned c-erbA sequences.  相似文献   

4.
5.
6.
7.
To determine the capacity of the chicken c-erbA (cTR-alpha) gene product in regulating expression of known thyroid hormone-responsive genes, both the cTR-alpha and the viral v-erbA genes were expressed in FAO cells, a rat hepatoma cell line defective for functional thyroid hormone receptors. Upon nuclear expression of the cTR-alpha protein the cells become responsive to thyroid hormone, as detected by expression of a number of genes (malic enzyme, phosphoenolpyruvate carboxykinase, and Na+/K(+)-ATPase) reported to be indirectly induced by the hormone in vivo. In addition, our data show that the c-erbA product directly activates the Moloney murine leukemia virus promoter in a ligand-dependent manner. The data show that the chicken c-erbA-alpha protein can modulate the expression of rat genes under either direct or indirect control by thyroid hormone.  相似文献   

8.
Major progress has been achieved in the mechanism of action of thyroid hormones thanks to the identification of the T3 receptor as the product of the proto-oncogene c-erbA. Recognition of subsets of receptors with and without T3-binding properties and of the interaction of different receptors with each other leads to new insights in cell regulation and development. In thyroid hormone resistance, distinct mutations in the T3-binding domain of thyroid hormone receptor (TR)beta have been identified in unrelated families. No correlation between the type of mutation and tissue resistance has been established. Mutant TRs bind to thyroid hormone response elements (TREs) on both negative or positive T3-controlled genes. Subjects with heterozygous TR beta gene deletion are not affected, supporting the hypothesis that mutant TRs act through a dominant negative effect. In generalized thyroid hormone resistance, mutated TR beta may interfere through competition for TREs and/or formation of inactive dimers. Finally, deficiency in T3 receptor auxiliary protein or other accessory proteins or competition between mutant and normal TRs for these factors is not excluded.  相似文献   

9.
10.
We have constructed dominant-negative retinoic acid receptors by substituting a single amino acid which has been found in a dominant-negative thyroid hormone receptor, and have expressed the dominant-negative retinoic acid receptors in the epidermis, a potential target organ of retinoic acid. The resultant transgenic mice exhibited dramatic suppression of epidermal development, demonstrating the absolute requirement of retionic acid in normal skin development. This novel method, targeted expression of the dominant-negative receptor, is theoretically applicable to any organ, thus opening the way to defining the physiological roles of retionic acid as well as other lipophilic hormones during embryogenesis as well as in adults  相似文献   

11.
Thyroid hormone plays important roles in development, differentiation, and metabolic homeostasis by binding to nuclear thyroid hormone receptors, which regulate target gene expression by interacting with DNA response elements and coregulatory proteins. We show that thyroid hormone receptors also are single-stranded RNA binding proteins and that this binding is functionally significant. By using a series of deletion mutants, a novel RNA-binding domain was localized to a 41-amino acid segment of thyroid hormone receptor alpha1 between the second zinc finger and the ligand-binding domain. This RNA-binding domain was necessary and sufficient for thyroid hormone receptor binding to the steroid receptor RNA activator (SRA). Although SRA does not bind directly to steroid receptors, it has been identified as a steroid receptor coactivator, and was thought not to be a coactivator for thyroid hormone receptors. However, transfection studies revealed that SRA enhances thyroid hormone induction of appropriate reporter genes and that the thyroid hormone receptor RNA-binding domain is important for this enhancement. We conclude that thyroid hormone receptors bind RNA through a novel domain and that the interaction of this domain with SRA, and perhaps other RNAs, enhances thyroid hormone receptor function.  相似文献   

12.
Alpha-fetoprotein (AFP)
  • 1 AFP, alpha-fetoprotein; T3R, thyroid hormone (triiodothyronine) receptor; RAR, retionic acid receptor; erbA, putative thyroid hormone receptor proto-oncogene products; VDR, vitamin D receptor; MR, mineralocorticoid receptor; GR, glucocorticoid receptor; PR, progesterone receptor; AR, androgen receptor; HRE, hormone response element on DNA; RXR, retionic-X-receptor; RAP, receptor auxiliary (accessory) proteins; E, estrogen.
  • is a tumor-associated fetal marker, associated both with tumor growth and with birth defects. AFP, whose precise function is unknown, has been classified as belonging to a protein superfamily together with albumin and vitamin D-binding (Gc) protein. AFP has been shown to bind various ligands in vitro including fatty acids, estrogens, thyroid hormones and retinoic acids. The steroid/thyroid nuclear receptor superfamily of proteins has recently become a major focus of biomedical investigation regarding regulation of gene expression. These receptors are thought to bind to DNA-hormone response elements (HRE) that affect growth, development, differentiation, reproduction and homeostasis. The HREs are known to share DNA sequences with the various members of the nuclear receptor superfamily. In the present report, the possibility of a leucine-zipper dimerization (heptad) motif in the carboxy-terminal third domain of both rodent and human AFP is postulated. The presence of nine such hydrophobic repeats in the third domain of the AFP molecule mimics the heptad dimerization repeats found in the retinoic acid, thyroid, e-erbA and other members of the nuclear receptor superfamily. Computer analysis revealed that the most conservative matching occurred between AFP and the retinoic acid class of receptors. However, other superfamily members displayed 40–60% homology with 5 of 9 AFP heptads. These findings could provide a possible mechanism for explaining the growth-regulatory properties (both inhibition and enhancement) that have been ascribed to AFP in the last decade.  相似文献   

    13.
    14.
    15.
    Recently, many lines of evidence have been accumulated indicating that thyroid hormone receptor (TR) and retinoic acid receptor (RAR) undergo a ligand-dependent conformation change. Since most of these results were obtained by either gel-shift assay or circular dichroism spectroscopic studies, it was not clear which part of the receptor bore the major conformational change. Moreover, it is not clear whether the formation of heterodimer between TR or RAR and retinoic X receptor (RXR) has any effects on this structural change. Utilizing partial proteolytic analysis, we demonstrated that thyroid hormone and retinoic acid induce a specific protease-resistant conformation to their cognate receptors. Studies of various deletion mutants reveal that the entire ligand binding domain of these receptors is involved in this change, and suggest that ligand may induce a more compact structure in its binding domain. Evidence from native gel electrophoresis supports this notion. This conformational change occurs in the absence of DNA and occurs indenpendently of other domains in the receptor. Heterodimerization between TR or RAR and the RXR has little effect on receptor conformation in the absence of hormone but does enhance the ligand-dependent structural change. Interestingly, dual hormone treatment, i.e. thyroid hormone and 9-cis RA, intensifies this enhancement. We suggest that the observed protease-resistant conformation may introduce a different configuration to the receptor and therefore may effect the receptor in various ways, but most likely is involved in converting the receptor from a negative regulator to a positive activator.  相似文献   

    16.
    17.
    18.
    We have previously reported a family, Kindred A, with autosomal dominant generalized thyroid hormone resistance in which affected members were found to have a mutation in the carboxy-terminal domain of the c-erbA beta thyroid hormone receptor. In the current study, the thyroid hormone and DNA-binding properties of this mutant receptor were determined using c-erbA beta protein synthesized in vitro. Both the wild-type human placental c-erbA beta and Kindred A receptors bound [125I]-triiodothyronine, although the Kindred A receptor had decreased affinity for the hormone. The affinity for triiodothyronine was 4.5 x 10(9) M-1 and 2.3 x 10(10) M-1 for the mutant and wild-type receptors, respectively. No abnormality of DNA-binding was detected with the Kindred A receptor using a sensitive avidin-biotin DNA-binding assay with DNA fragments containing thyroid hormone response elements. The Kindred A mutant receptor which displays abnormal triiodothyronine-binding but normal DNA-binding activities in vitro acts as a dominant negative inhibitor of thyroid hormone action in man.  相似文献   

    19.
    20.
    Different point mutations have been identified in the T3-binding domain of the c-erbA beta thyroid hormone receptor gene that are associated with variant phenotypes of generalized thyroid hormone resistance (GTHR). In most cases of GTHR, heterozygotes are affected; a single mutant allele results in the inhibition of the function of normal thyroid hormone receptors. We report here a novel genetic abnormality, a 3-basepair (bp) deletion in the T3-binding domain of the beta-receptor in a kindred, S, with GTHR. One patient, S1, was the product of a consanguineous union of two heterozygotes and was homozygous for this defect. Heterozygotes from kindred S harbored a CAC deletion at nucleotides 1295-1297, which resulted in the deduced loss of amino acid residue threonine at codon 332, and they displayed elevated free T4 levels and inappropriately normal TSH levels characteristic of other kindreds with GTHR. However, patient S1, who had two mutant alleles, had markedly elevated TSH and free T4 levels and displayed profound abnormalities in brain development and linear growth. A fibroblast c-erbA beta cDNA extending from codon 175 to stop codon 457 was cloned from patient S1, sequenced, and used to create a full-length mutant cDNA. The kindred S mutant receptor was synthesized in vitro and did not bind T3. This mutant receptor did bind with similar avidity as the wild-type human beta-receptor to thyroid hormone response elements of the human TSH beta (-12 to 43 bp) and rat GH (-188 to -160 bp) genes. Kindred S showed the effect in man of heterozygous and homozygous expression of a dominant negative form of c-erbA beta.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号