首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Ralstonia solanacearum is a widespread and destructive plant pathogen. We present the genome of the type strain, K60 (phylotype IIA, sequevar 7). Sequevar 7 strains cause ongoing tomato bacterial wilt outbreaks in the southeastern United States. K60 generally resembles R. solanacearum CFBP2957, a Caribbean tomato isolate, but has almost 360 unique genes.  相似文献   

2.
A locus in Pseudomonas solanacearum AW1 responsible for the hypersensitive response (HR) on tobacco was cloned by complementation in the tobacco-pathogenic strain P. solanacearum NC252. The NC252 HR+ transconjugants lost pathogenicity on tobacco, indicating that the cloned locus could restrict the host range of NC252. Restriction enzyme mapping, transposon mutagenesis, and subcloning showed that, at most, 2.0 kilobases of the cloned DNA was required for NC252 transconjugants to elicit HR on tobacco. Site-directed insertional mutagenesis of the wild-type locus in strain AW1 to create AW1-31 eliminated HR activity on tobacco. However, AW1-31 retained pathogenicity on tomato and eggplant, confirming that this locus contains an avirulence gene, designated avrA. In contrast to the wild type, AW1-31 multiplied to almost the same extent as NC252 after infiltration into tobacco leaves. Nevertheless, AW1-31 did not wilt tobacco when stem inoculated, suggesting that additional factors condition host range. AW1 was HR+ on 27 N. tabacum cultivars, whereas AW1-31 was always HR-, strongly suggesting that avrA is specific at the host species level.  相似文献   

3.
The rare ospC allele L was detected in 30% of Borrelia burgdorferi sensu stricto strains cultured from a tick species, Ixodes affinis, and two rodent host species, Peromyscus gossypinus and Sigmodon hispidus, collected in a coastal plain area of Georgia and South Carolina, in the southeastern United States.  相似文献   

4.
Bacterial wilt caused by Ralstonia (formerly Pseudomonas) solanacearum is worldwide in distribution. It is one of the most destructive bacterial diseases of economically important crops. The serological assays so far developed for the detection of R. solanacearum were able to provide information as to the presence or absence of the pathogen in soil and plant materials. However, they could not discriminate between virulent and avirulent strains of the pathogen and were not specific to strains and races. In the present investigation, virulent bacterial cells (encapsulated with mucin) from tomato seeds were used as antigen and polyclonal antisera were developed in rabbit using a classical immunization protocol. Antisera thus developed were examined for the antibody titre, sensitivity, specificity, rapidity and the efficacy of the antibody in identifying the virulent and avirulent strains of the pathogen and the potential for application of this assay to the screening of infected plant materials and seeds. Our results indicate that the anti-tomato R. solanacearum: (i) has a good antibody titre of 1:10,000; (ii) can detect as few as 100 bacterial cells/ml; (iii) is tomato-specific (it reacted with tomato R. solanacearum, and not with isolates from chilli or eggplant); (iv) is reactive to all isolates of R. solanacearum from tomato; (v) is not cross-reactive with non-pseudomonads; (vi) is virulent strain-specific as it recognizes the virulent exopolysaccharide component as an antigenic determinant; (vii) reactivity could be correlated well with the degree of infection in tomato seeds and plant materials. The enzyme linked immunosorbent assay developed is sensitive, specific and rapid, therefore suitable for the detection of R. solanacearum isolates from tomato seeds during routine assays.  相似文献   

5.
Tomato-spotted wilt (TSW) is caused by the tomato-spotted wilt virus (TSWV) and is a major disease affecting the production of tomato and pepper in the Southeastern United States. Before initiating a multistate, regional project addressing this issue, a survey was conducted in North Carolina, South Carolina, Georgia, and Florida to assess the need for improved management of TSWV in these crops. We investigated farmer's stated effectiveness of four common TSWV management tactics (reflective mulch, resistant cultivar, imidacloprid, and Actiguard) in pepper and tomato production using logistic regression. We found that the odds that farmers were satisfied with the use of reflective mulch alone in controlling TSWV is 9-1, about one and a half times the amount obtained from using Actiguard alone. Moreover, the odds that farmers were satisfied with a practice that combines reflective mulch and Actiguard was far greater than that obtained from using each of the technique separately. We found some similarities between farmer's stated effectiveness and revealed effectiveness from experiments.  相似文献   

6.
为了探讨无致病力青枯雷尔氏菌对烟草根系土壤微生物群落结构的影响,测定了接种无致病力青枯雷尔氏菌RS-1403和清水对照的烟草根系土壤的磷脂脂肪酸(Phospholipid Fatty Acids,PLFAs),比较分析两种处理下的烟草根系土壤微生物PLFAs组成、含量、微生物群落结构及多样性的差异,以期从微生物群落水平解析RS-1403菌株胁迫对烟草青枯病的免疫抗病机制。结果表明,与对照相比,RS-1403菌株胁迫下烟草根系土壤微生物PLFAs的组成及含量发生了变化,分为5种变化类型,分别为下降型、无变化型、增加50%以下类型、增加50%—100%类型,增加100%以上类型,其中指示放线菌的10Me16∶0含量降低,为下降型,增加100%以上类型的PLFAs均指示革兰氏阴性菌。进一步分析表明,接种RS-1403菌株能改变烟草根系土壤微生物群落结构,促进细菌和真菌的生长,抑制放线菌的生长。接种RS-1403菌株能提高烟草根系土壤的群落优势度Simpson指数、群落丰富度Shannon指数和均匀度Pielou指数,增加土壤的微生物群落多样性。对RS-1403菌株胁迫下烟草根系土壤微生物亚群落分化的比较分析,显示RS-1403菌株处理组与对照组亚群落分化不同,当兰氏距离为2.56时,可将处理组和对照组均分为4个亚群落,但它们的各亚群落组成及特征不同。聚类分析表明,基本上可将取样期内的RS-1403菌株胁迫处理和清水对照的烟草根系土壤分别聚在两个不同的类群中,说明RS-1403菌株能明显改变烟草根系土壤微生物群落结构。  相似文献   

7.
An update is presented on the distribution of the meningeal worm (Parelaphostrongylus tenuis) of white-tailed deer (Odocoileus virginianus) in the southeastern United States. The parasite is widely distributed and common in all or much of Arkansas, Kentucky, Louisiana, Maryland, North Carolina, Tennessee, Virginia and West Virginia. It is also common in the northern half of Alabama and Georgia. In contrast, it is rare or absent along the Atlantic and Gulf coastal plains of Alabama, Georgia, Mississippi and South Carolina. It has been collected from a single deer in Florida.  相似文献   

8.
We investigated a destructive pathogenic variant of the plant pathogen Ralstonia solanacearum that was consistently isolated in Martinique (French West Indies). Since the 1960s, bacterial wilt of solanaceous crops in Martinique has been caused primarily by strains of R. solanacearum that belong to either phylotype I or phylotype II. Since 1999, anthurium shade houses have been dramatically affected by uncharacterized phylotype II strains that also affected a wide range of species, such as Heliconia caribea, cucurbitaceous crops, and weeds. From 1989 to 2003, a total of 224 R. solanacearum isolates were collected and compared to 6 strains isolated in Martinique in the 1980s. The genetic diversity and phylogenetic position of selected strains from Martinique were assessed (multiplex PCRs, mutS and egl DNA sequence analysis) and compared to the genetic diversity and phylogenetic position of 32 reference strains covering the known diversity within the R. solanacearum species complex. Twenty-four representative isolates were tested for pathogenicity to Musa species (banana) and tomato, eggplant, and sweet pepper. Based upon both PCR and sequence analysis, 119 Martinique isolates from anthurium, members of the family Cucurbitaceae, Heliconia, and tomato, were determined to belong to a group termed phylotype II/sequevar 4 (II/4). While these strains cluster with the Moko disease-causing strains, they were not pathogenic to banana (NPB). The strains belonging to phylotype II/4NPB were highly pathogenic to tomato, eggplant, and pepper, were able to wilt the resistant tomato variety Hawaii7996, and may latently infect cooking banana. Phylotype II/4NPB constitutes a new pathogenic variant of R. solanacearum that has recently appeared in Martinique and may be latently prevalent throughout Caribbean and Central/South America.  相似文献   

9.
Ralstonia solanacearum is the causative agent of bacterial wilt in many important crops. A specific and sensitive PCR detection method that uses primers targeting the gene coding for the flagella subunit, fliC, was established. Based on the first fliC gene sequence of R. solanacearum strain K60 available at GenBank, the Ral_fliC PCR primer system was designed; this system yielded a single 724-bp product with the DNAs of all of the R. solanacearum strains tested. However, R. pickettii and four environmental Ralstonia isolates also yielded amplicons. The Ral_fliC PCR products obtained with 12 strains (R. solanacearum, R. pickettii, and environmental isolates) were sequenced. By sequence alignment, Rsol_fliC primers specific for R. solanacearum were designed. With this primer system, a specific 400-bp PCR product was obtained from all 82 strains of R. solanacearum tested. Six strains of R. pickettii and several closely related environmental isolates yielded no PCR product; however, a product was obtained with one Pseudomonas syzygii strain. A GC-clamped 400-bp fliC product could be separated in denaturing gradient gels and allowed us to distinguish P. syzygii from R. solanacearum. The Rsol_fliC PCR system was applied to detect R. solanacearum in soil. PCR amplification, followed by Southern blot hybridization, allowed us to detect about one target DNA molecule per PCR, which is equivalent to 10(3) CFU g of bulk soil(-1). The system was applied to survey soils from different geographic origins for the presence of R. solanacearum.  相似文献   

10.
Li Z  Wu S  Bai X  Liu Y  Lu J  Liu Y  Xiao B  Lu X  Fan L 《Journal of bacteriology》2011,193(21):6088-6089
Ralstonia solanacearum is a causal agent of plant bacterial wilt with thousands of distinct strains in a heterogeneous species complex. Here we report the genome sequence of a phylotype IB strain, Y45, isolated from tobacco (Nicotiana tabacum) in China. Compared with the published genomes of eight strains which were isolated from other hosts and habitats, 794 specific genes and many rearrangements/inversion events were identified in the tobacco strain, demonstrating that this strain represents an important node within the R. solanacearum complex.  相似文献   

11.
[背景]番茄青枯病是由青枯劳尔氏菌(Ralstonia solanacearum)引起的一种土传细菌性病害,该病原菌严重影响番茄的生产。[目的]筛选番茄青枯病的生防细菌,并将其用于病害防治。[方法]采用抑菌圈法、琼脂扩散法从湖南衡阳青枯病发病田的健康番茄根际土壤筛选对青枯劳尔氏菌具有较强拮抗能力的菌株,通过形态学观察、生理生化试验、16S rRNA基因和gyrA基因测序分析确定其分类地位;以单因素试验和正交试验对发酵条件进行优化;通过田间小区试验初探其防效。[结果]筛选的菌株TR-1被初步鉴定为贝莱斯芽孢杆菌(Bacillus velezensislezensis);菌株TR-1最佳培养基配方(g/L):可溶性淀粉20.0,大豆蛋白胨10.0,磷酸氢二钾5.0;最佳发酵条件:pH6.0-7.0,温度30-33℃,摇床转速160 r/min,发酵时长48 h,优化后TR-1无菌发酵上清液对青枯菌抑菌圈直径达2.95 cm,约为优化前的2倍;其田间小区防效为60.30%。[结论]通过对菌株TR-1发酵条件进行优化可大大提升其发酵液抑菌效果,而且菌株TR-1在田间小区试验中对番茄青枯病防效优...  相似文献   

12.
It has been reported that the growth of Ralstonia solanacearum is suppressed at the rhizoplane of tomato plants and that tomato bacterial wilt is suppressed in plants grown in a soil (Mutsumi) in Japan. To evaluate the biological factors contributing to the suppressiveness of the soil in three treated Mutsumi soils (chloroform fumigated soil; autoclaved soil mixed with intact Mutsumi soil; and autoclaved soil mixed with intact, wilt-conducive Yamadai soil) infested with R. solanacearum, we bioassayed soil samples for tomato bacterial wilt. Chloroform fumigation increased the extent of wilt disease. More of the tomato plant samples wilted when mixed with Yamadai soil than when mixed with Mutsumi soil. Consequently, the results indicate that the naturally existing population of microorganisms in Mutsumi soil was significantly able to reduce the severity of bacterial wilt of tomato plants. To characterize the types of bacteria present at the rhizoplane, we isolated rhizoplane bacteria and classified them into 22 groups by comparing their 16S restriction fragment length polymorphism patterns. In Yamadai soil a single group of bacteria was extremely predominant (73.1%), whereas in Mutsumi soil the distribution of the bacterial groups was much more even. The 16S rDNA sequence analysis of strains of dominant groups suggested that gram-negative bacteria close to the beta-proteobacteria were most common at the rhizoplane of the tomato plants. During in vitro assays, rhizoplane bacteria in Mutsumi soil grew more vigorously on pectin, one of the main root exudates of tomato, compared with those in Yamadai soil. Our results imply that it is difficult for the pathogen to dominate in a diversified rhizobacterial community that thrives on pectin.  相似文献   

13.
Milling A  Babujee L  Allen C 《PloS one》2011,6(1):e15853
Ralstonia solanacearum, which causes bacterial wilt of diverse plants, produces copious extracellular polysaccharide (EPS), a major virulence factor. The function of EPS in wilt disease is uncertain. Leading hypotheses are that EPS physically obstructs plant water transport, or that EPS cloaks the bacterium from host plant recognition and subsequent defense. Tomato plants infected with R. solanacearum race 3 biovar 2 strain UW551 and tropical strain GMI1000 upregulated genes in both the ethylene (ET) and salicylic acid (SA) defense signal transduction pathways. The horizontally wilt-resistant tomato line Hawaii7996 activated expression of these defense genes faster and to a greater degree in response to R. solanacearum infection than did susceptible cultivar Bonny Best. However, EPS played different roles in resistant and susceptible host responses to R. solanacearum. In susceptible plants the wild-type and eps(-) mutant strains induced generally similar defense responses. But in resistant Hawaii7996 tomato plants, the wild-type pathogens induced significantly greater defense responses than the eps(-) mutants, suggesting that the resistant host recognizes R. solanacearum EPS. Consistent with this idea, purified EPS triggered significant SA pathway defense gene expression in resistant, but not in susceptible, tomato plants. In addition, the eps(-) mutant triggered noticeably less production of defense-associated reactive oxygen species in resistant tomato stems and leaves, despite attaining similar cell densities in planta. Collectively, these data suggest that bacterial wilt-resistant plants can specifically recognize EPS from R. solanacearum.  相似文献   

14.
We collected information on 860 stream restoration projects in four states in the southeastern United States—Georgia, Kentucky, North Carolina, and South Carolina—to gain a better understanding of the practice of stream restoration in this area of high aquatic biodiversity and rapid metropolitan expansion. This was completed as a part of the National River Restoration Science Synthesis, with the larger goal of understanding the state of the science of stream restoration. Stream restoration project density, goals, and monitoring rates varied by state, although southeastern monitoring rates were higher than in other parts of the country. North Carolina had the most projects in the Southeast, of which 36% were monitored. In‐depth phone interviews with project managers from a random subsample of projects provided insights into the process of stream restoration. Land availability was the most common basis for site prioritization, and 49% of projects involved mitigation. Although 51% of projects were associated with a watershed assessment, only 30% of projects were done as part of a larger plan for the watershed. Projects were monitored using physical (77% of monitored projects), chemical (36%), and biological (86%) variables, although many projects were planned and ultimately evaluated based on public opinion. Our results suggest that stream restoration in the southeastern United States is at an exciting point where better incorporation of a watershed perspective into planning and establishment and evaluation of stated, measurable success criteria for every project could lead to more effective projects.  相似文献   

15.
The soil-borne bacterial pathogen Ralstonia solanacearum invades a broad range of plants through their roots, resulting in wilting of the plant, but no effective protection against this disease has been developed. Two bacterial wilt disease-inhibiting compounds were biochemically isolated from tobacco and identified as sclareol and cis-abienol, labdane-type diterpenes. When exogenously applied to their roots, sclareol and cis-abienol inhibited wilt disease in tobacco, tomato and Arabidopsis plants without exhibiting any antibacterial activity. Microarray analysis identified many sclareol-responsive genes in Arabidopsis roots, including genes encoding or with a role in ATP-binding cassette (ABC) transporters, and biosynthesis and signaling of defense-related molecules and mitogen-activated protein kinase (MAPK) cascade components. Inhibition of wilt disease by sclareol was attenuated in Arabidopsis mutants defective in the ABC transporter AtPDR12, the MAPK MPK3, and ethylene and abscisic acid signaling pathways, and also in transgenic tobacco plants with reduced expression of NtPDR1, a tobacco homolog of AtPDR12. These results suggest that multiple host factors are involved in the inhibition of bacterial wilt disease by sclareol-related compounds.  相似文献   

16.
The southeastern United States harbors an unusually large number of endemic plant taxa, which may reflect the refugial nature of the region during Pleistocene glacial maxima. Understanding the genetic diversity and structure of extant plant taxa can provide insights into the biogeographical processes that shaped them genetically. Here, we investigate the levels and partitioning of allozyme diversity in the southeastern North American endemic, Ceratiola ericoides, which displayed greater genetic variation and structure than other endemics. Central Florida populations represent a center of genetic diversity, whereas South Carolina and Georgia Fall Line sandhill populations have a subset of the Central Florida genetic diversity and may be relicts of a once continuous distribution. This much broader, continuous distribution throughout the southeastern United States occurred during glacial maxima when the scrub habitat, dominated by C. ericoides, expanded considerably owing to drier climatic conditions. Georgia Coastal Plain populations appear to have been independently founded more recently by propagules from Central Florida and the Fall Line sandhills because they have an even more limited subset of genetic diversity and greater genetic heterogeneity among populations. Since their establishment, coastal plain populations appear to have had little, if any, gene exchange among each other or with the relatively proximate Fall Line sandhill populations. These data underscore the importance of understanding the genetic composition and historical biogeography of species before intelligent management or restoration decisions can be made regarding their preservation.  相似文献   

17.
To enhance bacterial wilt resistance in tobacco expressing a foreign protein, we isolated the bacteriolytic gene from a bacteriophage that infects Ralstonia solanacearum. The bacteriolytic protein of phage P4282 isolated in Tochigi Prefecture was purified from a lysate of R. solanacearum M4S cells infected with the phage, and its bacteriolytic activity was assayed by following the decrease in the turbidity of suspensions of R. solancacearum M4S cells. The molecular weight of the bacteriolytic protein was approximately 71 kDa, and the sequence of the N-terminal 13 amino acids was determined. We used oligonucleotide probes based on this amino acid sequence to isolate the bacteriolytic gene from phage P4282 DNA. This gene of 2061 bp encodes a product of 687 amino acids, whose calaculated molecular weight was 70.12 kDa. The bacteriolytic gene was placed under the control of an inducible promoter. and the plasmid was transformed into Escherichia coli NM522. The soluble proteins extracted from E.coli NM522 cells harboring the plasmid with the bacteriolytic gene showed obvious bacteriolytic activities against several strains of R. solanacearum isolated in various districts in Japan. DNA fragments from five phages, isolated in Niigata, Aomori, Okinawa, Fukushima and Yamaguchi Prefectures, hybridized to the bacteriolytic gene of phage P4282. These observations indicate that the bacteriolytic protein shows nonspecific activity against R. solanacearum strains, and a sequence similar to that of the bacteriolytic gene is conserved in the DNA of other bacteriophages. These results indicate that the generation of transgenic (tobacco) plants expressing the bacteriolytic gene of phage P4282 might result in enhanced resistance to bacterial wilt in tobacco.  相似文献   

18.
The plant pathogen Ralstonia solanacearum, which causes bacterial wilt disease, is exposed to reactive oxygen species (ROS) during tomato infection and expresses diverse oxidative stress response (OSR) genes during midstage disease on tomato. The R. solanacearum genome predicts that the bacterium produces multiple and redundant ROS-scavenging enzymes but only one known oxidative stress response regulator, OxyR. An R. solanacearum oxyR mutant had no detectable catalase activity, did not grow in the presence of 250 μM hydrogen peroxide, and grew poorly in the oxidative environment of solid rich media. This phenotype was rescued by the addition of exogenous catalase, suggesting that oxyR is essential for the hydrogen peroxide stress response. Unexpectedly, the oxyR mutant strain grew better than the wild type in the presence of the superoxide generator paraquat. Gene expression studies indicated that katE, kaG, ahpC1, grxC, and oxyR itself were each differentially expressed in the oxyR mutant background and in response to hydrogen peroxide, suggesting that oxyR is necessary for hydrogen peroxide-inducible gene expression. Additional OSR genes were differentially regulated in response to hydrogen peroxide alone. The virulence of the oxyR mutant strain was significantly reduced in both tomato and tobacco host plants, demonstrating that R. solanacearum is exposed to inhibitory concentrations of ROS in planta and that OxyR-mediated responses to ROS during plant pathogenesis are important for R. solanacearum host adaptation and virulence.  相似文献   

19.
20.
一株番茄青枯病生防菌的鉴定与防病、定殖能力初探   总被引:4,自引:1,他引:3  
摘要:【目的】采用根系分泌物培养基筛选到一株番茄根际优势细菌YPP-9。本文分析测定该菌株对植物青枯病菌茄科雷尔氏菌的拮抗作用和控病能力,及其在番茄根际的定殖能力,并系统分析该菌株的分类学地位。【方法】以平板双重培养法和温室盆栽试验分别测定菌株对病原菌的拮抗能力和对番茄青枯病的控病能力;利用变性梯度凝胶电泳技术分析菌株在番茄根际的定殖能力;以形态学和生理生化特性以及16S rRNA基因序列分析确定菌株的分类地位。【结果】菌株YPP-9对茄科雷尔氏菌SSF-4的平板抑菌带宽为5 mm,其盆栽控制番茄青枯病的效果达63.7%。菌株YPP-9在番茄根际具有较好的定殖能力。该菌株培养24 h后菌落呈奶酪色,革兰氏染色阳性,菌体杆状、大小1.8-4.1 μm×0.9-1.1 μm,形成芽孢,芽孢中生或偏端生且为近似柱形,孢囊不膨大,无伴孢晶体,侧生鞭毛。菌株生长pH范围为pH 5.5-8.5且最适生长pH为6.0,生长温度范围为20℃-45℃且最适生长温度为30℃。The BIOLOG GP2结果显示该菌为芽孢杆菌属。16S rRNA基因序列分析显示该菌株与Bacillus fumarioli的亲缘关系最近且序列相似性为97%,且其序列号为FJ231500。该菌株的G+C含量为41.9%,甲基萘醌主要类型为MK-7,细胞壁脂肪酸的主要种类为C14:0 iso、C15:0 iso 和C16:0 iso以及C16 : 1ω7c alcohol且含量分别为28.27%、19.59%、12.93%和10.88%。【结论】菌株YPP-9对茄科雷尔氏菌具有良好的拮抗作用和盆栽控病能力,且能良好的定殖于番茄根际。分类学上,该菌株归入芽胞杆菌属(Bacillus),并可能是一个新的种。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号