首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
光声结构与功能成像技术研究进展   总被引:2,自引:2,他引:0  
光声成像技术利用短脉冲激光激发产生光声信号,可重建出组织的光吸收分布图像,它结合了纯光学成像的高对比度和纯声学成像的高分辨率特性.光声成像技术不仅能够有效的刻画生物组织结构,还能够精确实现无损功能成像,为研究生物组织的形态结构,生理、病理特征,代谢功能等提供了全新手段.本文简要分析了光声信号产生的机理,总结报道了目前实验室几套典型的成像系统及其最新应用进展,指出光声成像作为一种新型的生物医学成像方法,可望引发生物医学影像领域的一次革新.  相似文献   

2.
光声成像及其在生物医学中的应用   总被引:5,自引:0,他引:5  
光声成像是一种新近迅速发展起来、基于生物组织内部光学吸收差异、以超声作媒介的无损生物光子成像方法,它结合了纯光学成像的高对比度特性和纯超声成像的高穿透深度特性的优点,以超声探测器探测光声波代替光学成像中的光子检测,从原理上避开了光学散射的影响,可以提供高对比度和高分辨率的组织影像,为研究生物组织的结构形态、生理特征、代谢功能、病理特征等提供了重要手段,在生物医学临床诊断以及在体组织结构和功能成像领域具有广泛的应用前景.对光声成像技术的机理、光声成像技术和方法、光声图像重建算法以及光声成像在生物医学上的应用情况作一个简单介绍,希望有助于推动我国在该领域的科研和开发应用工作的迅速发展.  相似文献   

3.
光声成像是一种新兴的非侵入式的生物成像方式,具有极高的空间分辨率和良好的成像对比度,已逐步应用于肿瘤成像诊断基础研究。光声成像主要依赖于光声信号转换,而光声信号转换能力主要取决于造影剂的选择。近年来,随着无机纳米材料在生物医学成像领域的研究逐渐深入,越来越多的二维无机纳米材料也应用于光声成像造影剂,尤其是新型类石墨烯二维纳米材料,其优异的近红外吸收率类似于石墨烯,光热转换效率高,生物相容性良好,而且部分材料还具备带隙可调特性以及良好的生物降解性,因此有望成为肿瘤光声成像理想的造影剂。其中,二维过渡金属硫化物、二维过渡金属碳/氮化物以及二维单元素材料已被多次报道应用于肿瘤光声成像造影剂的研发。该文将综述上述几类二维纳米材料在肿瘤光声成像诊断中的应用进展。  相似文献   

4.
光声成像是一种新兴的无损生物医学成像方法,因其兼具高灵敏的光学对比度和超声能够对深层组织进行高分辨成像的优点,已经成为当前生物医学成像领域发展最快的技术之一。光声成像的光吸收对比度能够反映生物组织微小的组织病变,与血氧饱和度等多种功能和生理信息紧密相关,目前已被证明在肿瘤血管新生研究、早期癌症检测和心血管疾病诊断等方面有很大的应用潜力。基于超声阵列探测的常规光声计算层析成像系统,数据采集量大,由此导致的较低数据采集和成像速度成为制约该技术临床应用和转化的重要因素。压缩感知理论可以在远低于Nyquist采样定理的欠采样方式下,高质量重建信号,已被广泛用于信号处理和传统的医学图像重建领域。自2009年压缩感知理论被应用于光声成像以来,已有的研究结果表明,该方法为解决目前大区域光声成像的数据采集和成像速度问题提供了一条有效的途径。本文将重点介绍压缩感知理论用于光声成像的基本原理、研究现状、面临的问题和应用前景。  相似文献   

5.
光声成像技术是近年来发展的一种新型的无损医学成像技术,它是以脉冲激光作为激发源,以检测的声信号为信息载体,通过相应的图像重建算法重建组织内部结构和功能信息的成像方法。该方法结合了光学成像和声学成像的特点,可提供深层组织高分辨率和高对比度的组织层析图像,在生物医学临床诊断以及在体成像领域具有广泛的应用前景。目前光声成像的扫描方式主要有基于步进电机扫描方式和基于振镜的扫描方式,本文针对目前步进电机扫描速度慢(10 mm×10 mm;0.001帧/s),振镜扫描范围小(1 mm2)的不足,发展了基于直线电机扫描的大视场快速光声显微成像系统。同一条扫描线过程中直线电机速度最高可达200 mm/s。该技术采用逐线采集光声信号的方式,比逐点采集光声信号的步进电机快800倍。该系统对10 mm×10 mm全场扫描的扫描速度为0.8帧/s。最大可扫描视场范围可以达到50 mm×50 mm。大视场快速光声显微成像系统的发展将为生物医学提供新的成像工具。  相似文献   

6.
光声显微成像技术依赖于样品的内源性光吸收,对强散射弱吸收样品成像效果差,甚至无法进行成像。为了实现强散射弱吸收高透明生物样品的光声显微成像,以及获得图像的边缘增强效果,使光声显微成像技术在实际的生物医学研究中更有应用价值,本文首次将散射光声技术引入到光声微分显微技术中,研制了新型的散射光声微分成像技术。该技术不仅可以获得强散射弱吸收高透明生物样品的散射光声显微图像,还可以获得对应的边缘清晰的散射光声微分图像,对在生物医学研究领域有重要的应用意义。  相似文献   

7.
本文提出了一种基于非线性热扩散效应的光声二次谐波显微SH-PAM成像技术,用于实现亚衍射极限光声成像。生物组织受到强度调制的高斯激光束辐射时,组织吸收光子形成高斯分布的温度场,由于热扩散系数非线性热效应引起的非线性光声PA效应,从而产生光声二次谐波信号。模拟和试验结果均表明,重建后的光声二次谐波成像的横向分辨率超过了传统光学成像分辨率。本文通过仿体样品验证了该方法的可行性,并且对人表层皮肤细胞进行了成像,以证明其对生物样品的成像能力。该方法扩展了传统光声成像的范围,为超分辨成像开辟了新的可能性,为生物医学成像和材料检测提供了新的方法。  相似文献   

8.
无损光声成像技术结合了纯光学成像高选择特性和纯超声成像中深穿透特性的优点,克服了光散射限制,实现了对活体深层组织的高分辨、高对比度成像。该成像技术对内源物质例如脱氧血红蛋白、含氧血红蛋白、黑色素、脂质等进行成像,提供了活体生物组织结构和功能信息,已经在生物医学领域表现出巨大的应用前景。然而,很多与病理过程相关的特征分子的光吸收能力较弱,在活体环境中难以被光声成像系统所识别,从而限制了光声成像技术的应用范围。基于功能纳米探针的光声成像-光声分子成像极大拓展光声成像的应用范围,可以在活体层面对病理过程进行分子水平的定性和定量研究,将为实现目标疾病的早期诊断提供强大的技术支持。本文发展在近红外具有窄吸收线宽(半高宽仅为60 nm)的纳米金锥作为新型的光声探针。通过选择不同径长比的纳米金锥,可以任意调节纳米金锥的吸收峰。通过调谐激光器的波长,可实现对不同吸收峰纳米金锥的选择性激发。纳米金锥将有可能用于多光谱光声成像,实现对不同靶标的目标分子探测。  相似文献   

9.
随着生物医学诊断和治疗的持续深入研究,出现了多种医学诊断和治疗新方法,为人类的健康提供了更大的保证,其中纳米生物技术在生物医学诊断和治疗中的应用日益增多,基于纳米技术,开发传统材料的生物医学新应用成为了人们的研究热点。普鲁士蓝是一种历史悠久的蓝色染料,其制备过程简单、绿色、成本低,化学结构稳定,具有优良的物理、化学、光学以及磁性等性能,已经在许多领域得到了广泛的应用。近年来,普鲁士蓝开始在生物医学诊断和治疗领域中崭露头角,它已经成功的被开发为新型的核磁共振造影剂和光声成像造影剂,并且在药物输送系统和光热治疗等领域也开始占有一席之地,开发基于纳米技术的普鲁士蓝的生物医学应用已经成为极具吸引力的研究方向。本文对普鲁士蓝在生物医学诊断和治疗中的应用及进展进行综述。  相似文献   

10.
光声成像突破了传统的光学成像和超声成像在生物组织成像领域的困境,该技术基于光声(Photoacoustic,PA)效应,脉冲激光激励下的生物组织产生超声信号,超声信号被接收后,通过反投影算法将其携带的时间信息和强度信息转化为能够反映生物组织吸收结构和分布的可视化图像。基于不同生物组织的光吸收差异,当激发光强度均匀且稳定时,光声成像反映的就是该物质对于该波长光的吸收特性。本文中,我们基于导管式的血管内光声断层扫描平台结合多波长激发的光声成像算法开发了基于光谱编码的血管内光声组分成像系统,实现了在离体血管斑块中脂质组分的定量成像,高分辨获得了脂质核心的大小形态和边界信息,表征了斑块内的脂质相对含量。  相似文献   

11.
12.
Curcumin is the yellow pigment of turmeric that interacts irreversibly forming an adduct with thioredoxin reductase (TrxR), an enzyme responsible for redox control of cell and defence against oxidative stress. Docking at both the active sites of TrxR was performed to compare the potency of three naturally occurring curcuminoids, namely curcumin, demethoxy curcumin and bis-demethoxy curcumin. Results show that active sites of TrxR occur at the junction of E and F chains. Volume and area of both cavities is predicted. It has been concluded by distance mapping of the most active conformations that Se atom of catalytic residue SeCYS498, is at a distance of 3.56 from C13 of demethoxy curcumin at the E chain active site, whereas C13 carbon atom forms adduct with Se atom of SeCys 498. We report that at least one methoxy group in curcuminoids is necessary for interation with catalytic residues of thioredoxin. Pharmacophore of both active sites of the TrxR receptor for curcumin and demethoxy curcumin molecules has been drawn and proposed for design and synthesis of most probable potent antiproliferative synthetic drugs.  相似文献   

13.
正Dear Editor,In December 2019, a novel human coronavirus caused an epidemic of severe pneumonia(Coronavirus Disease 2019,COVID-19) in Wuhan, Hubei, China(Wu et al. 2020; Zhu et al. 2020). So far, this virus has spread to all areas of China and even to other countries. The epidemic has caused 67,102 confirmed infections with 1526 fatal cases  相似文献   

14.
15.
16.
The young pistils in the melanthioid tribes, Hewardieae, Petrosavieae and Tricyrteae, are uniformly tricarpellate and syncarpous. They lack raphide idioblasts. All are multiovulate, with bitegmic ovules. The Petrosavieae are marked by the presence of septal glands and incomplete syncarpy. Tepals and stamens adhere to the ovary in the Hewardieae and the Petrosavieae but not in the Tricyrteae. Two vascular bundles occur in the stamens of the Hewartlieae and Tricyrtis latifolia. Ventral bundles in the upper part of the ovary of the Hewardieae are continuous with compound septal bundles and placental bundles in the lower part. Putative ventral bundles occur in the alternate position in the Tricyrteae and putative placental bundles in the opposite. position in the Petrosavieae. The dichtomously branched stigma in each carpel of the Tricyrteae is supplied by a bifurcated dorsal bundle.  相似文献   

17.
Some closely related members of the monocotyledonous familiesAlismataceae, Liliaceae, Juncaceae, Cyperaceae, Poaceae andAraceae with variable modes of pollination (insect- and wind-pollination) were studied in relation to the ultrastructure of pollenkitt and exine (amount, consistency and distribution of pollenkitt on the surface of pollen grains). The character syndromes of pollen cementing in entomophilous, anemophilous and intermediate (ambophilous or amphiphilous) monocotyledons are the same in principal as in dicotyledons. Comparing present with former results one can summarize: 1) The pollenkitt is always produced in the same manner by the anther tapetum in all angiosperm sub-classes. 2) The variable stickiness of entomophilous and anemophilous pollen always depends on the particular distribution and consistency of the pollenkitt, but not its amount on the pollen surface. 3) The mostly dry and powdery pollen of anemophilous plants always contains a variable amount of inactive pollenkitt in its exine cavities. 4) A step-by step change of the pollen cementing syndrome can be observed from entomophily towards anemophily. 5) From the omnipresence of pollenkitt in all wind-pollinated angiosperms studied one can conclude that the ancestors of anemophilous angiosperms probably have been zoophilous (i.e. entomophilous) throughout.
  相似文献   

18.
19.
正Dear Editor,Parainfluenza virus 5 (PIV5), known as canine parainfluenza virus in the veterinary field, is a negative-sense,nonsegmented, single-stranded RNA virus belonging to the Paramyxoviridae family (Chen 2018). The virus was first reported in primary monkey kidney cells in 1954 (Hsiung1972), then it has been frequently discovered in various  相似文献   

20.
<正>Dear Editor,Infectious bursal disease (IBD) is one of the most important diseases of the poultry. The IBD virus (IBDV), a nonenveloped virus belonging to the Birnaviridae family with a genome consisting of two segments of double-stranded RNA (segments A and B), targets B lymphocytes of bursa of Fabricious leading to immunosuppression. In Pakistan,poultry farming is the second biggest industry and IBD is the second biggest disease threating the poultry sector.However, there is limited genome information of IBDV  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号