首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
The effects of the heavy metals Cu, Cd, Ni, Pb and Zn on [(14)C]methylamine and [(14)C]aminoisobutyric acid uptake were studied in the free-living fungus Paxillus involutus and in mycorrhizal and non-mycorrhizal birch roots. The uptake of both N sources by P. involutus was inhibited by the five metals tested. However, Cu(2+) and Pb(2+) had a greater inhibitory effect. Non-competitive inhibitions were determined between heavy metals and [(14)C]methylamine uptake. [(14)C]Methylamine uptake was reduced by one third by 2 μM Cd(2+) and Cu(2+) in non-mycorrhizal roots, whereas that of mycorrhizal roots was not affected. However, it was reduced by 30 to 80% by 200 μM Cd(2+) and Cu(2+) irrespective of the mycorrhizal status. [(14)C]Aminoisobutyric acid uptake in mycorrhizal roots was not significantly affected by Cd(2+) and Cu(2+), whereas that of non-mycorrhizal roots was decreased by 77% at 200 μM Cu(2+). [(14)C]Aminoisobutyric acid uptake was 4.5 to 6 fold higher in mycorrhizal roots, compared with non-mycorrhizal roots, even under metal exposure. The high efficiency of N acquisition by mycorrhizal birch seedlings under metal exposure might be regarded as a mechanism of stress avoidance.  相似文献   

2.
Living bio-sludge from domestic wastewater treatment plant was used as adsorbent of heavy metals (Pb(2+), Ni(2+)) and its adsorption capacity was about 10-30% reduced by autoclaving at 110 degrees C for 10 min. The living bio-sludge acclimatized in synthetic industrial estate wastewater (SIEWW) without heavy metals showed the highest Pb(2+) and Ni(2+) adsorption capacities at 840+/-20 and 720+/-10 mg/g bio-sludge, respectively. The adsorbed Pb(2+) and Ni(2+) were easily eluted (70-77%) from bio-sludge by washing with 0.1 mol/l HNO(3) solution. The heavy metals (Pb(2+), Ni(2+)) removal efficiency of both SBR and GAC-SBR systems were increased with the increase of hydraulic retention time (HRT), or the decrease of organic loading. The SBR system showed higher heavy metals removal efficiency than GAC-SBR system at the same organic loading or HRT. The Pb(2+), Ni(2+), BOD(5), COD and TKN removal efficiencies of GAC-SBR system were 88.6+/-0.9%, 94.6+/-0.1%, 91.3+/-1.0%, 81.9+/-1.0% and 62.9+/-0.5%, respectively with industrial estate wastewater (IEWW) with 410 mg/l glucose, 5 mg/l Pb(2+) and 5 mg/l Ni(2+) under organic loading of 1.25 kg BOD(5)/m(3) d (HRT of 3 days). The bio-sludge quality (sludge volume index: SVI) of the system was less than 80 ml/g. The excess sludge from both SBR and GAC-SBR systems with SIEWW under the organic loading of 1.25-2.50 kg BOD(5)/m(3) d contained Pb(2+) and Ni(2+) at concentrations of 240-250 mg Pb(2+)/g bio-sludge and 180-210 mg Ni(2+)/g bio-sludge, respectively.  相似文献   

3.
A unicellular alga displaying a high growth rate under heterotrophic growth conditions was isolated from soil and identified as Chlorella sorokiniana. The optimal temperature for growth was 35 degrees C and the optimal pH was 6.0-7.0. Glucose, sucrose, galactose, maltose, and soluble starch served as carbon sources supporting growth under dark conditions. The cell yield was 50 g/l (wet weight) in a heterotrophic medium containing 3% glucose. Isolated unicellular algae were highly resistant to heavy metals such as Cd(2+), of which the minimal inhibitory concentration was 4 mM. Algae were capable of taking up the heavy metal ions Cd(2+), Zn(2+) and Cu(2+) at 43.0, 42.0 and 46.4 microg/mg dry weight, respectively. Growth inhibition of Oryza sative shoots by 5 ppm Cd(2+) in hydroponic medium was completely prevented by the addition of 0.25 mg of wet Chlorella cells. These results indicated that this isolate was potentially useful for phytoremediation by preventing environmental dispersion of heavy metals.  相似文献   

4.
The removal by crab shell of mixed heavy metal ions in aqueous solution   总被引:12,自引:0,他引:12  
In order to examine the inhibition effect of other heavy metal ions on the removal by crab shell of heavy metal ions in aqueous solutions, three ions (Pb(2+), Cd(2+), Cr(3+)) were used in single, binary and ternary systems. In single heavy metal ion systems, the removals of Cr(3+) and Pb(2+) were much higher than that of Cd(2+). In binary heavy metal ions systems, Cd(2+) did not affect Pb(2+) removal while Cr(3+) had a severe inhibition effect on the removal of Pb(2+). Cd(2+) removal was slightly affected by the presence of Pb(2+); however, it was severely affected by the presence of Cr(3+). The inhibitory effect of Cd(2+) on Cr(3+) was relatively lower than that of Pb(2+).  相似文献   

5.
We examined changes in profiles of isoflavonoids in roots of lupine (Lupinus luteus L. cv. Juno) seedlings in response to treatment with two heavy metals: cadmium (at 10 mg/l) and lead (at 150 mg/l). Overall, 21 flavonoid conjugates were identified in root extracts, some of them with up to six positional isomers. The total amount of all isoflavonoids increased by about 15 % in cadmium-treated plants and by 46 % in lead-treated ones. Heavy metals markedly increased the content of two compounds: 2'-hydroxygenistein glucoside and 2'-hydroxygenistein 7-O-glucoside malonylated. Possible functions of the identified isoflavonoids in yellow lupine exposed to heavy metal stress are discussed.  相似文献   

6.
According to in silico analysis, the genome of Pseudomonas putida KT2440 encodes at least four Zn/Cd/Pb efflux transporters-two P-type ATPases (CadA1 and CadA2) and two czc chemiosmotic transporters (CzcCBA1 and CzcCBA2). In this study we showed that all these transporters are functional, but under laboratory conditions only two of them were involved in the mediation of heavy metal resistance in P. putida KT2440. CadA2 conferred Cd(2+) and Pb(2+) resistance, whereas CzcCBA1 was involved in export of Zn(2+), Cd(2+), and possibly Pb(2+). CadA1, although nonfunctional in P. putida, improved Zn(2+) resistance and slightly improved Cd(2+) resistance when it was expressed in Escherichia coli. CzcCBA2 contributed to Zn resistance of a czcA1-defective P. putida strain or when the CzcA2 subunit was overexpressed in a transporter-deficient strain. It seemed that CzcA2 could complex with CzcC1 and CzcB1 subunits and therefore complement the loss of CzcA1. The CzcCBA2 transporter itself, however, did not function. Expression of cadA1, cadA2, and czcCBA1 was induced by heavy metals, and the expression levels were dependent on the growth medium and growth phase. Expression of cadA2 and czcCBA1 was nonspecific; both genes were induced by Zn(2+), Cd(2+), Pb(2+), Ni(2+), Co(2+), and Hg(2+). On the other hand, remarkably, expression of cadA1 was induced only by Zn(2+). Possible roles of distinct but simultaneously functioning transporters are discussed.  相似文献   

7.
Soybean [Glycine max (Linn.) Merrill] and mung bean [Vigna radiate (Linn.) Wilczek] plants were challenged with 5 kinds of heavy metals [cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb) and mercury (Hg)] in a hydroponic system. We applied 4 different metal treatments to study the effects of heavy metals on several physiological and biochemical parameters in these species, including root length, heavy metal concentrations and allocation in different organs, superoxide dismutase, catalase, and peroxidase activities, the content of malondialdehyde (MDA), protein and chlorophyll. The data showed that the growth of the roots of soybean and mung bean was equally sensitive to external Hg concentrations. Soybean was more sensitive to external Cd concentrations, and mung bean was more sensitive to external Cr, Cu and Pb concentrations. Normal concentrations of heavy metal would not cause visible toxic symptoms, and a low level of heavy metal even slightly stimulated the growth of plants. With the rise of heavy metal concentration, heavy metal stress induces an oxidative stress response in soybean and mung bean plants, characterized by an accumulation of MDA and the alternation pattern of antioxidative enzymes. Meanwhile, the growth of plants was suppressed, the content of chlorophyll decreased and leaves showed chlorosis symptoms at high metal concentrations.  相似文献   

8.
The biosorption of cadmium and lead ions from artificial aqueous solutions using waste baker's yeast biomass was investigated. The yeast cells were treated with caustic, ethanol and heat for increasing their biosorption capacity and the highest metal uptake values (15.63 and 17.49 mg g(-1) for Cd(2+) and Pb(2+), respectively) were obtained by ethanol treated yeast cells. The effect of initial metal concentration and pH on biosorption by ethanol treated yeast was studied. The Langmuir model and Freundlich equation were applied to the experimental data and the Langmuir model was found to be in better correlation with the experimental data. The maximum metal uptake values (qmax, mg g(-1)) were found as 31.75 and 60.24 for Cd(2+) and Pb(2+), respectively. Competitive biosorption experiments were performed with Cd(2+) and Pb(2+) together with Cu(2+) and the competitive biosorption capacities of the yeast biomass for all metal ions were found to be lower than in non-competitive conditions.  相似文献   

9.
Emerging mechanisms for heavy metal transport in plants   总被引:49,自引:0,他引:49  
Heavy metal ions such as Cu(2+), Zn(2+), Mn(2+), Fe(2+), Ni(2+) and Co(2+) are essential micronutrients for plant metabolism but when present in excess, these, and non-essential metals such as Cd(2+), Hg(2+) and Pb(2+), can become extremely toxic. Thus mechanisms must exist to satisfy the requirements of cellular metabolism but also to protect cells from toxic effects. The mechanisms deployed in the acquisition of essential heavy metal micronutrients have not been clearly defined although a number of genes have now been identified which encode potential transporters. This review concentrates on three classes of membrane transporters that have been implicated in the transport of heavy metals in a variety of organisms and could serve such a role in plants: the heavy metal (CPx-type) ATPases, the natural resistance-associated macrophage protein (Nramp) family and members of the cation diffusion facilitator (CDF) family. We aim to give an overview of the main features of these transporters in plants in terms of structure, function and regulation drawing on information from studies in a wide variety of organisms.  相似文献   

10.
The effects of Cu(2+)-sulfate and Pb(2+)-acetate on carp (Cyprinus carpio L.), silver carp (Hypopthalmichtys molitrix V.) and wels (Silurus glanis L.) were studied. The liver microsomal Cyt P450 content, the EROD, ECOD and APND monooxygenase activities were measured. In vivo treatment with 1 mg L(-1) Cu(2+) significantly elevated the activities of these enzymes and Cyt P450 content in silver carp livers. The high-dose Cu(2+) treatment (10 mg L(-1)) on silver carp caused two-fold higher induction in the P450 dependent monooxygenase isoensymes than in wels. Although the 2 mg kg(-1) treatment with Pb(2+) in carp elevated significantly the P450 content, the EROD isoenzyme activities were significantly decreased after 1 day, showing the destructive effect of metal ion on the enzyme system. In vitro, Cu(2+) and Pb(2+) decreased the Cyt P450 content in the carp liver microsomes and the absorption peak shifted to higher wavelength. Fourier Transform Infrared (FTIR) spectroscopy was used to detect the damaging effects of the heavy metals. According to the inhibitory potency to Cu(2+), the most sensitive isoenzyme was the EROD in wels, the least was the silver carp's isoenzyme. The investigated fish P450 isoenzymes showed, that the Cu(2+) was a stronger inhibitor than Pb(2+).  相似文献   

11.
S Hechtenberg  D Beyersmann 《Enzyme》1991,45(3):109-115
The effect of Cd2+, Pb2+ and Hg2+ on the Ca(2+)-ATPase activity of sarcoplasmic reticulum from rabbit muscle was studied. The concentration of relevant free and complex species for the assay conditions have been computed. As a result, ATP hydrolysis was found to be inhibited with an IC50 value of 950 nmol/l free Cd2+ or 95 nmol/l free Pb2+. Although calculation of the free Hg2+ was not possible, the comparison of the IC50 values for total metal ions show that Hg2+ is the strongest inhibitor of enzyme activity. The inhibition by Cd2+ seems to be independent of substrate concentration, whereas the inhibitory effect of Pb2+ is lowered in the presence of higher MgATP concentrations. Our data illustrate that the three heavy metals are potent inhibitors of the Ca2+ pump. Therefore low concentrations of these metal ions may disturb intracellular Ca2+ homeostasis and act on Ca(2+)-mediated cell functions.  相似文献   

12.
13.
A heavy metal ion sensor was constructed by cross-linking melanin onto the gold electrode of quartz crystal microbalance (QCM). A mercury ion sensitivity of 518+/-37 Hz/ppm was observed, a substantial increase in sensitivity compared to previous reports of 10-50 Hz/ppm with the limit of detection at 5 ppb. Detection of other metal ions including Sn(2+), Ge(4+), Li(+), Zn(2+), Cu(2+), Bi(3+), Co(2+), Al(3+), Ni(2+), Ag(+), and Fe(3+) were also performed. Unexpectedly, binding of Mn(7+), Pb(2+), Cd(2+), and Cr(3+) increased resonant frequencies. The surface profile of melanin thin film upon binding to metal ions was investigated by atomic force microscopy (AFM). Structural change of melanin upon binding to metal ions was characterized by circular dichroism and by infrared spectroscopy. The current study provides the first example of melanin-coated piezoelectric sensor showing high sensitivity and selectivity to metal ions.  相似文献   

14.
Heavy metal resistance patterns of Frankia strains   总被引:4,自引:0,他引:4  
The sensitivity of 12 Frankia strains to heavy metals was determined by a growth inhibition assay. In general, all of the strains were sensitive to low concentrations (<0.5 mM) of Ag(1+), AsO(2)(1-), Cd(2+), SbO(2)(1-), and Ni(2+), but most of the strains were less sensitive to Pb(2+) (6 to 8 mM), CrO(4)(2-) (1.0 to 1.75 mM), AsO(4)(3-) (>50 mM), and SeO(2)(2-) (1.5 to 3.5 mM). While most strains were sensitive to 0.1 mM Cu(2+), four strains were resistant to elevated levels of Cu(2+) (2 to 5 mM and concentrations as high as 20 mM). The mechanism of SeO(2)(2-) resistance seems to involve reduction of the selenite oxyanion to insoluble elemental selenium, whereas Pb(2+) resistance and Cu(2+) resistance may involve sequestration or binding mechanisms. Indications of the resistance mechanisms for the other heavy metals were not as clear.  相似文献   

15.
Summary Concentrations of Cd, Pb and Cu in the roots, stems and leaves of bulgarian bush beans (Phaseolus vulgaris L.) were determined for plants grown in various soils of increasing levels of contamination of these metals. Most of each heavy metal absorbed by plants was retained in roots. Concentrations of Cd, Pb and Cu in roots increased in response to soil concentrations, whereas, in stems, only Cd and Pb concentrations increased and Cu concentration was relatively constant. It is thought that Cu transport to the stele was metabolically controlled, whereas Cd and Pb reached the stem by leakage across non suberised areas of the endodermis. Uptake of heavy metals was associated with a decrease in zinc content in plants and a decrease in yield. By regression analysis decrease in both zinc content and plant yield could be best related to Cd content in stems. Possible reasons for these effects are discussed.  相似文献   

16.
湖南柿竹园矿区土壤重金属含量及植物吸收特征   总被引:54,自引:1,他引:53  
矿区重金属污染十分严重,寻找和发现适合当地气候与土壤条件的重金属耐性植物是矿区植被恢复和污染土壤修复的前提。对我国湖南柿竹园有色金属矿区调查发现,该地区选矿厂的重金属污染问题普遍比尾砂库严重。选矿厂土壤砷、镉、铅、锌严重超标,尾砂库周围也受到不同程度的重金属污染。土壤重金属胁迫效应影响着植物物种分布,选矿厂物种分布较少,相比之下尾砂库的植物多样性较为丰富。柿竹园矿区植物对重金属的吸收表现为富集型(如蜈蚣草Pteris Vittata L .和苎麻Boehmerianivea (L .) Gaud.)、根部囤积型(如攀倒甑Patrinia villosa和木贼Equisetum hyemale)和规避型(如蔓出卷柏Selaginelladavidii Franch和芒草Miscanthus sinensis Andlerss)等3种类型。  相似文献   

17.
Pot culture experiments were established to determine the effects of colonization by arbuscular mycorrhizal fungi (AMF) (Glomus mosseae and G. sp) on maize (Zea mays L.) grown in Pb, Zn, and Cd complex contaminated soils. AMF and non-AMF inoculated maize were grown in sterilized substrates and subjected to different soil heavy metal (Pb, Zn, Cd) concentrations. The root and shoot biomasses of inoculated maize were significantly higher than those of non-inoculated maize. Pb, Zn, and Cd concentrations in roots were significantly higher than those in shoots in both the inoculated and non-inoculated maize, indicating the heavy metals mostly accumulated in the roots of maize. The translocation rates of Pb, Zn, and Cd from roots to shoots were not significantly difference between inoculated and non-inoculated maize. However, at high soil heavy metal concentrations, Pb, Zn, and Cd in the shoots and Pb in the roots of inoculated maize were significantly reduced by about 50% compared to the non-inoculated maize. These results indicated that AMF could promote maize growth and decrease the uptake of these heavy metals at higher soil concentrations, thus protecting their hosts from the toxicity of heavy metals in Pb, Zn, and Cd complex contaminated soils.  相似文献   

18.
When the off-gas from an aerobic culture of Klebsiella pneumoniae M426 grown in the absence of added heavy metals was passed through a solution of Hg(2+), Cd(2+), Pb(2+), or Cu(2+) a yellow-white (Hg), white (Cd, Pb), or blue (Cu) precipitate was formed. Metal removal from solution was >97% within 2 h at initial concentrations of (as metal): Hg, 8.5; Cd, 12.6; Pb, 7.8; Cu, 9.5 mg/mL. Mercury was removed from solution at pH 2 and in up to 1 M NaCl. Energy dispersive X-ray microanalysis (EDX) of the precipitates showed them to comprise metal, sulfur and carbon in the case of Hg, Cd, and Pb, and, in the case of Cd and Pb, also oxygen. The pH of the solution increased by 1-2 units at an initial pH of 7 and by 4-5 units at an initial pH of 2. In the case of cadmium and lead, the presence of crystalline metal carbonates and hydroxides was confirmed by X-ray powder diffraction (XRD) analysis and additional peaks were seen which could not be assigned to known compounds in the diffraction file database. In the case of copper, hydroxides, and a form of copper sulfate, were found. In the case of mercury the XRD patterns could not be assigned to any known compound, except for HgCl in the solution at the acidic initial pH. The absence of sharp peaks in the pattern for the Hg-precipitate was indicative of poorly crystalline, nanocrystalline or amorphous material. The unknown mercury compound, since it contained non-carbonate carbon, was suggested to be derived from a volatile organothiol in the gases evolved from the culture. Analysis of the culture head gas by GC-MS showed the presence of dimethyldisulfide as a likely precipitant. No sulfur compound was found using XRD analysis in the case of cadmium and lead, although EDX analysis suggested this as a major component and the lack of XRD pattern is evidence for a non-crystalline metal-organothiol. The exact chemistry of the new materials remains to be elucidated but metal precipitation via a biogenic organothiol is a potentially effective approach to the remediation of aggressive metal wastes.  相似文献   

19.
The aim of this study was to investigate the biosorption characteristics of Cd(2+), Cu(2+), and Pb(2+) by the fruiting body of jelly fungus Auricularia polytricha. Batch experiments were conducted to characterize the kinetics, equilibrium, and mechanisms of the biosorption process. Optimum values of pH?5, biomass dosage 4?g?L(-1), and contact time 60?min provided maximum biosorption capacities of A. polytricha for Cd(2+), Cu(2+), and Pb(2+) of 63.3, 73.7, and 221?mg?g(-1), respectively. The maximum desorption was achieved using 0.05?mol?L(-1) HNO(3) as an elute. The fruiting body was reusable at least for six cycles of operations. The pseudo-second-order model was the best to describe the biosorption processes among the three kinetic models tested. Freundlich and Dubinin-Radushkevich models fitted the equilibrium data well, indicating a heterogeneous biosorbent surface and the favorable chemisorption nature of the biosorption process. A Fourier transform infrared spectroscopy analysis indicated that carboxyl, amine/hydroxyl, amino, phosphoryl, and C-N-C were the main functional groups to affect the biosorption process. Synergistic ion exchange and surface complexation were the dominant mechanisms in the biosorption process. The present work revealed the potential of jelly fungus (fruiting body of A. polytricha) to remove toxic heavy metals from contaminated water.  相似文献   

20.
In order to study the effect of mycorrhizal fungi (inoculated and non-inoculated) and heavy metals stress [0, Pb (150 and 300 mg/kg) and Cd (40 and 80 mg/kg)] on pot marigold (Calendula officinalis L.), a factorial experiment was conducted based on a randomized complete block design with 4 replications in Research Greenhouse of Department of Horticultural Sciences, University of Tehran, Iran, during 2012–2013. Plant height, herbal and flower fresh and dry weight, root fresh and dry weight and root volume, colonization percentage, total petal extract, total petal flavonoids, root and shoot P and K uptakes, and Pb and Cd accumulations in root and shoot were measured. Results indicated that with increasing soil Pb and Cd concentration, growth and yield of pot marigold was reduced significantly; Cd had greater negative impacts than Pb. However, mycorrhizal fungi alleviated these impacts by improving plant growth and yield. Pot marigold concentrated high amounts of Pb and especially Cd in its roots and shoots; mycorrhizal plants had a greater accumulation of these metals, so that those under 80 mg/kg Cd soil?1 accumulated 833.3 and 1585.8 mg Cd in their shoots and roots, respectively. In conclusion, mycorrhizal fungi can improve not only growth and yield of pot marigold in heavy metal stressed condition, but also phytoremediation performance by increasing heavy metals accumulation in the plant organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号